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Abstract

We consider a statistical model-based approach to the
segmentation of magnetic resonance (MR) images with
bias field correction. The proposed method of penalized
maximum likelihood is implemented via the expectation-
conditional maximization (ECM) algorithm, using an ap-
proximation to the E-step based on a fractional weight ver-
sion of the iterated conditional modes (ICM) algorithm. A
Markov random field (MRF) is adopted to model the spatial
dependence between neighouring voxels. The approach is
illustrated using some simulated and real MR data.

1. Introduction

Medical magnetic resonance imaging (MRI) has the ad-
vantages of being able to penetrate bony and air-filled struc-
tures with negligible attenuation and artifact. The modality
has proven to be a very useful noninvasive medical imag-
ing technique because of the ability to render high anatom-
ical resolution of soft tissues with imaging in any arbitrary
plane. Tissue-segmentation of magnetic resonance (MR)
images of the human brain has a large potential to facili-
tate an imaging-based medical diagnosis, providing an aid
to surgery and treatment planning [10]. Accurate estima-
tion of the tissue parameters, including their volume sizes,
will help to monitor changes in brain haemodynamics and
metabolism resulting from neuronal activity [4], and so will
assist in the diagnosis and treatment of neurogenerative dis-
ease such as Alzheimer’s disease. MRI is also useful in
providing anatomical information about the location of po-

tential discontinuities in the Positron Emission Tomography
(PET) image [17] and an opportunity to monitor the human
brain activation effects to stimuli at relatively high spatial
resolution [15]. Such tissue segmentation of MR images
is often achieved by applying statistical classification tech-
niques to the signal intensities [5, 21, 29], in conjunction
with post-processing operations to remove acquisition arti-
facts [7, 12, 18]. A comprehensive review on MR image
segmentation methods is provided by [6].

We consider here a statistical-based approach whereby
the intensities on each voxel is modelled by a mixture of
a finite number, say � , of normal distribution [19, 21]. In
the latter, the expectation-maximization (EM) algorithm [8]
is adopted to segment MR images and estimate the tissue
parameters. An approximation to the E-step of the EM al-
gorithm is employed based on a fractional weight version
of Besag’s iterated conditional modes (ICM) algorithm [2].
The prior (spatial) distribution of different tissue types is
modelled by a hidden Markov Random Field (MRF) so as to
incorporate spatial continuity constraints on the tissue seg-
mentation. We refer to this model as GMM-HMRF (Gaus-
sian Mixture Model with Hidden Markov Random Field).
However, the intensity inhomogeneity of MR images due to
acquisition equipments, severely degrades intensity-based
segmentation of MR images [14, 30]. This low (spatial)
frequency artifact known as the bias field arises from in-
homogeneities in the radio-frequency (RF) field. Let ��������
	������	��������

and ����� ��� �� 	�����	�� �� ��� be the observed
and the ideal log-transformed intensities of a given image
of � voxels, respectively, where the superscript � denotes
vector transpose. The degradation effect of the bias field at



the � th voxel can be expressed by an additive model as�
� � � ����! � � �"�$# 	�����%	 � �%	 (1)

where
 �

is the bias field at the � th voxel. It is noted that (1)
implies that the observed MRI signal intensity is modelled
as a product of the ideal intensity and a spatially varying
factor (exponential of

 �
).

In this paper, we extend the GMM-HMRF model by al-
lowing the segmentation of MR images with bias field cor-
rection. Based on a penalized likelihood approach, we show
how the estimation of the bias field and tissue parameters,
and segmentation of the MR images can be obtained simul-
taneously via a partial version of an expectation-conditional
maximization (ECM) algorithm [24].

2. Segmentation of MR Images for Gaussian
Mixture Model with HMRF

Suppose that a continuous MR image is partitioned into
a set of disjoint voxels labelled 1 to � , and that each voxel
is assumed to belong to one of � distinct tissue types. This
assumption is tenable because MR images have a spatial
resolution at the range of the voxel size [19]. For notational
convenience, we consider univariate intensity of each voxel,
where the observed log-transformed intensities are denoted
by a one-dimensional (1D) array �&� ��� � 	������	�� � ��� . Also,
we let the � groups ' � 	������	 ')( represent the � possible tis-
sue types. Further, we let * � 	����%	 * � denote the unobserv-
able group-indicator vectors, where the + th element ,.- � of* � is taken to be one or zero according as to whether the� th voxel does or does not belong to the + th group. We put*/� � * � � 	�����	 * �� ��� .

A parametric mixture model approach [22] is adopted to
represent the marginal distribution of � of a given image
of � voxel, where the bias field

 �0	�����	  �
are considered

as unknown parameters. We assume that, unconditionally
with respect to the group of origin,

�.�1� �2�3# 	�����%	 � � has
the finite mixture form of4 ��� ��5  � 	768	�9:� � (; -=< � 4 � ,0- � �># 5 9:� 4 ��� ��5 ,0- � �?# 	  � 	76@� (2)

where
9

is the parameter in the prior probability function
of A and

6
is the vector containing the tissue parameters.

Suppose that the ideal log-transformed intensity of a voxel
belonging to the + th group is normally distributed around a
certain mean B8- , with a variance CED- . Then, we have4 ���0� 5 , - � �$# 	  �.	76F� �HGFIJ ���0�LK B - K  ���%	 (3)

where GFIMJ ��N � denotes a zero-mean normal distribution with
variance C@D- [28, 30] and

6 � � B � 	 C@D� 	�����	 B@( 	 C@D( ��� is the
vector containing the tissue parameters.

For the segmentation of MR images, the problem of in-
ferring the vector * can be viewed as an incomplete-data
problem, which can be approached by the application of
the EM algorithm. This line of approach was undertaken
by Kay and Titterington [16], who related some of the re-
laxation algorithms for image analysis with methods in the
literature on the statistical analysis of incomplete data. The
complete-data vector is given by

��OP�Q	 * �R��� .
We consider a penalized complete-data log likelihood asS=TVUXWXY8Z �\[]	768	�9:� � S=TVUXW^Z �\[_	`6:	�9:�PK �D [ �Racb �d [ (4)� SeT�U 4 ��O 5 * 	7[f	76@� � SeT�U 4 � * 5 9:�K �D [ �Pa b �d [_	

where
[ � �  �
	������	  �f���

,
S=TVUXW Z

is the complete-data log
likelihood, and

a d � WXW �
, where

W
is a pre-defined low-

pass filter [30]. In (4), The latter term can be viewed as
a penalty term to stabilise the ML solution and to pro-
mote piecewise smoothness in the resulting segmentation
and the bias field estimation. Thus, (4) can be regarded as
a regularization method based on a penalized likelihood ap-
proach [13, 25]. It will be seen in Section 4 that this penalty
term improves the segmentation and the bias field estima-
tion.

Markov random fields are commonly employed in im-
age processing problems to reflect the extent to which spa-
tially neighbouring voxels belong to the same group [2, 11].
The incorporation of such spatial information on the images
plays an important role in the estimation of * [5, 19]. The
Hammersley-Clifford theorem states that the MRF prior can
be specified using a Gibbs distribution [2, 11]4 � * 5 9R� ��g�hjiEk Kmln� * 5 9:�po
q.rn��9:�p	 (5)

where
rn��9:�

is a normalizing constant known as the parti-
tion function and

ln� * 5 9R� is the energy function specified by
the neighbourhood system for the image. Because of the ex-
istence of the term

rn��9:�
on the right-hand side of (5), there

will be a stumbling block with the M-step with respect to9
. Although the parameter

9
of a fairly general MRF can

be estimated using Besag’s pseudo-likelihood method [2],
good estimates of

9
do not necessarily result in good seg-

mentation [1]. We assume henceforth that
9

is specified a
priori; see also the discussion in [3]. Besag [2] settled on9 �s# �ut empirically. For the segmentation of MR images,
the usage of such large value of

9
might, however, fail to

detect small patches of voxels of one group surrounded by
voxels of another group.

It will be seen that the E-step requires the calculation
of vxwey%z- � �|{1k
} - � 5 O^	7~ weypz o , which unfortunately cannot
be computed exactly under a HMRF mixture model [27].
McLachlan et al. [21] considered an approximation to the
E-step based on a fractional weight version of the ICM al-
gorithm. In the next section, we extend their GMM-HMRF



model to simultaneously estimate the bias field and the tis-
sue parameters, via an ECM algorithm.

3. An ECM Algorithm for Penalized ML Esti-
mation

Concerning the probability density function of � given* and
[
, a common assumption in image analysis is to take� � to be independently distributed given the group mem-

bership and bias field. Thus, with (3), the first term of (4)
can be expressed asS=TVU 4 ��O 5 * 	`[_	`6x� � (; -=< � �;� < � , - � SeT�U GFIMJ ���
��K B - K  �M�p� (6)

Let
~

denote the vector of all the unknown parameters
in the elements of

[
and

6
. On the

��� � # � th iteration of the
EM algorithm, the E-step requires the calculation of� Y ��~��7~ weypz ���{nk SeT�UXW^Y8Z �\[]	`6:	�9R� 5 OX	p~ weypz o� (; -=< � �;� < � {nk.}�- ��5 O^	7~ wey%z o S=TVU G I J ��� � K BE- K  � �� {nk SeT�U 4 � * 5 9:� 5 O^	7~ weypz oLK �D [ � a b �d [f	 (7)

which is the conditional expectation of the penalized
complete-data log likelihood given ��� O

, using the cur-
rent fit

~ weypz for
~

. On the M-step of the
��� � # � th iter-

ation, the intent is to find the value of
~

that maximizes� Y ��~��7~ wey%z � , which gives
~ wey%� � z . The E- and M-steps

are then alternated repeatedly until the penalized log likeli-
hood changes by an arbitrary small amount, assuming con-
vergence of the sequence of the penalized likelihood values.

E-step: We follow the approximation to the E-step con-
sidered in [21] by specifying the current conditional expec-
tation of } - � given

O
and

~ weypz asv weypz- � � {1k
}�- ��5 OX	p~ w�ypz o� {1k
}�- ��5 OX	p~ w�ypz 	 ,0�:�����, w�y b � z� � o� pr k
}Q- � �># 5 OX	p~ weypz 	 ,0�:���s�, w�y b � z� � o� � wey%z- � G I������J ��� � K B weypz- K  weypz� �� ( � < � � wey%z� � G I������� ��� � K B weypz� K  weypz� � 	 (8)

where � � is some specified neighbourhood of the � th
voxel, containing � voxels, labelled � � 	������	 �M� , and ,0�:�1�� , ���� 	�����%	 , ���  ��� is the vector containing the group labels of

these � voxels in � � . In (8), � weypz- � � pr k
} - � �¡# 5 , � �n��, wey b � z�:� o
is the probability that the � th voxel belongs to the+ th group '¢- given the group membership of its specified

neighbours as implied by �,]wey b � z�8� . As in [21], we adopt the
MRF modelS=TVU � weypz- �3£ 9X�¥¤ � ; ¦ �, wey b � z- ¦ � ¤ D ; ¦ �, wey b � z- ¦ � ¤�§ ; ¦ �, wey b � z- ¦ �p	

(9)
where the summations in (9) are, respectively, over the
prescribed first-, second-, and third-neighbours of the � th
voxel. The parameters

¤]�
	�¤ D , and
¤ §

control the spatial
relatedness between neighbouring voxels [5]. In the third-
order model adopted by [19] for 3D MR images,

¤F�0	�¤ D , and¤ §
are set equal to 1, # q�¨ © , and # qV¨ ª , respectively. In the

calculation of � weypz- � in (9), we followed McLachlan et al. [21]

and replaced �,]wey b � z- ¦ , which is zero or one, by vEwey b � z- ¦ . This
modification avoids the discretization in counting the neigh-
bours of the � th voxel and effectively avoids premature clas-
sification of the voxel with insufficient neighbourhood in-
formation. It can be viewed as a fractional weight version
of the ICM algorithm [26]. Initially, we calculated

SeT�U � w¬«`z- �by using �,_w¬«7z- ¦ in the right-hand side of (9).
M-step: The M-step involves the maximization of� Y ��~��p~ weypz � with respect to

[
and

6
. This maximization is

implemented using a conditional approach, and the result-
ing algorithm can be viewed as an ECM algorithm. With
the application of the ECM algorithm here, the M-step is
replaced by two conditional maximization (CM) steps. The
first involves the calculation of

[ weyp� � z by maximization (7)
with

6
fixed at

6 wey%z . The second CM step calculates
6 wey%� � z

by maximization (7) with
[

fixed at
[ weyp� � z .

On the
��� � # � th iteration, the first CM-step yields[ wey%� � z�®�¯ UX° .h[ � Y ��[]	`6 weypz �7[ w�ypz 	`6 wey%z ��®�¯ UX° .h[ ±² ³ (; -e< � �;� < � v weypz- � SeT�U G I �����J ��� � K B wey%z- K  � �K �D [ � a b �d [x´��.¯ U�° 
h[¶µ [ �8· weypz K �D [ �P¸ weypz [�K �D [ �Pacb �d [ ´ 	 (10)

where, for �¹�?# 	�����%	 � ,º w�ypz� � � · weypz � � � (; -e< � v weypz- ��» � � K B weypz-C D- weypz½¼ (11)

and
¸ weypz is a diagonal matrix with the diagonal elements¾ weypz� � �\¿ weypz � � � (; -e< � v weypz- �ÁÀ # q C D- w�ypz�Â � (12)

Letting Ã denote the �ÅÄÆ� identity matrix, it follows from
(10) that we have[ wey%� � z � � ¸ wey%z � acb �d � b � · w�ypz



� � a d ¸ weypz � Ã � b � a d · weypz� � WXW � ¸ weypz � Ã � b � WXW � · w�ypz 	 (13)

which coincides with result of Wells et al. [30]. To speed up
the estimation of the bias field, Wells et al. [30] presented
an efficient filtering method for (13) by replacing the matrix¸ weypz with a vector

¸ wey%zpÇ and the identity matrix Ã by the
vector Ç as follows: weyp� � z� � � W · weypz ���� W ¸ wey%zpÇ � � � # � � W · wey%z ���� W ¿ w�ypz � � � #� � W · weypz � �� W ¿ w�ypz ��� (14)

for �È�É# 	E����%	 � , where Ç � � # 	 # 	�����p	 # ��� . The linear
transformation

W ¿
in (14) is implemented by convolution of

the point spread function (psf) Ê and the 3D image matrix Ë
corresponding to

W
and

¿
, respectively. The convolution ÊVÌË is operated repeatedly by 20–30 times in order to increase

its lowpass filtering effect. An alternative filtering operation
using Gaussian convolution may also be adopted [9].

With
[

fixed at
[ weyp� � z in (7), the second CM-step yields6 weyp� � z�®�¯ UQ° .h6 � Y ��[ w�yp� � z 	`6R�`[ weyp� � z 	76 weypz ��®.¯ UQ° 
h6 ±² ³ (; -=< � �;� < � v weypz- � S=TVU GFIJ ���0�LK B - K  w�yp� � z� �.Í ÎÏ 	 (15)

which can be carried out in closed form asB wey%� � z- � �;� < � v weypz- � ��� � K  wey%� � z� ��q �;� < � v weypz- � (16)

andC D- w�yp� � z � �;� < � vxweypz- � ���0�FK BPweyp� � z- K  weyp� � z� � D q �;� < � vxweypz- � (17)

for +P�$# 	�����	 � .
The ECM algorithm preserves the appealing conver-

gence properties of the EM algorithm. It thus has reliable
global convergence in that it monotonely increases the pe-
nalized likelihood after each iteration, no matter what start-
ing value is used. A detailed account of the convergence
properties of the EM and ECM algorithms can be found
in [20, 23]. In our proposed algorithm, we do not update
the bias field (low frequency degrade) estimate

[
in every

CM cycle. This approach speeds up the algorithm as the
computational cost using an iterative lowpass filtering for
a 3D MR image can be enormous. In addition, as the bias
field is estimated using a more accurate estimate of * and6

by more frequent update, it avoids the oscillations of the

bias field estimate and hence improves the final segmenta-
tion and the bias field estimation, as demonstrated in Sec-
tion 4. Our algorithm is summarized as follows:

1. Obtain initial estimates of Ð�Ñ�Ò�Ó , Ô@ÑuÒ�Ó , and ÕxÑ�Ò�Ó .
2. E-step: Calculate the posterior probabilities Ö Ñ¬×7ÓØ Ù based on

(8).

3. CM-Step 1: Estimate the bias field Ð Ñ¬×7ÚxÛ\Ó based on (14),
given Ö Ñ�×7ÓØ Ù and Ô Ñ¬×`Ó .

4. Do Ü cycles with Ð fixed at Ð Ñ�×7Ú@Û\Ó :
4.1 E-step: Calculate Ö Ñ¬×`ÚQÝ�Þ�ß�ÓØ Ù based on (8),

4.2 CM-Step 2: Calculate Ô Ñ�×7ÚXÝ�Þ�ß�Ó based on (16) and
(17),

where the Ö Ñ�×7ÚXÝ�Þ�ß�ÓØ Ù and Ô Ñ�×7ÚXÝ�Þ�ß�Ó denote the posterior prob-
abilities and the value of Ô , respectively, after the à th cycle
on the á�â�ãÅäpå th iteration ( à8æÈäMçFè`è7è7ç�Ü ).

5. Repeat from 2 until parameter sequences converge.

As not all the CM-steps were performed in every CM cy-
cle, we refer to our algorithm as a “partial” ECM algorithm.
As an E-step is performed before each CM-step, the algo-
rithm corresponds to a “multi-cycle ECM”, where a cycle is
defined by one E-step followed by one CM-step [24]. It can
be seen that (10) and (15) imply� Y �\[ weyp� � z 	76 weypz �7[ wey%z 	`6 weypz �êé � Y ��[ w�ypz 	`6 wey%z �`[ weypz 	76 weypz �
and � Y �\[ weyp� � z 	76 w�yp� � z �`[ weyp� � z 	76 w�ypz �é � Y ��[ weyp� � z 	`6 wey%z �`[ weyp� � z 	76 w�ypz �p�
It follows that the penalized log-likelihoodW ��O^�`[_	`6x�PK �D [ � a b �d [
increases at each cycle and thus increases at each iteration
monotonically if an exact E-step were used.

As in [14, 28], we set initially the bias field
[ w¬«7z to be

zero. The initial estimates
6 w¬«7z and * w¬«`z can be obtained

by performing the “noncontextual” segmentation of the MR
image [21]. That is, the segmentation of the voxels is pro-
ceeded by ignoring all the spatial characteristics

��9 �ìë �
and the bias field estimation step (14). Van Leemput et
al. [28] refer to this method as the independent model.

4. Experimental Results

We now demonstrate the use of the partial ECM algo-
rithm for the fitting of the GMM-HMRF model with bias
field correction. The first example is a simulated three-class



Figure 1. Simulated data: (From left to right)
Top: the three groups; Middle: the true image,
the true bias field, and the combined images
with

¿
=0.05, 0.12, and 0.20; Bottom: the inten-

sity profile for each image

image obtained by adding the true image
O � and true bias

field as � � � � # K ¾ �í� ��)� ¾  � 	
where ënî ¾ îï# is a constant governing the amount of bias
field contamination. The true image simulates 256 gray-
leveled brain MR image. The intensities for the white mat-
ter, gray matter, and the CSF are # t ë , # © ë , and #ë , respec-
tively. Gaussian noise with variance of

© ë , #ð , and # © is
added to the three groups, respectively, before scaling by©�t.ñ

. The bias field simulates Gaussian-distributed function
varied from zero (dark) to one (bright). Figure 1 presents
the simulated data and the contaminated images. It can be
seen that the image is heavily contaminated with bias field
when

¾ �òë �u© ë . In this simulation experiment, we consid-
ered � � ª , 9 �óë � ô , and �ó� ª . The results from fitting the
GMM-HMRF model via our ECM algorithm are displayed
in Figure 2 for

¾ �®ë � © ë .

Figure 2. From left to right: the three groups
segmented, estimated bias field, and the re-
stored image. Top: GMM-HMRF model with
bias field correction; Bottom: GMM-HMRF
model without bias field correction

For comparison, we present also in Figure 2 the results

obtained by the GMM-HMRF model without bias field cor-
rection. It can be seen that the GMM-HMRF algorithm fails
to segment correctly. This result indicates how the segmen-
tation is affected by the contamination of bias field. With
the modification of GMM-HMRF model with bias field cor-
rection, it can be seen that almost perfect segmentation is
obtained.

The second example is a real MR image of the human
brain. The data set was a slice of a 3D � � -weighted MR
image, where the acquisition matrix was

©�t.ñ Ä ©Vt.ñ Ä ©�t.ñ .
In this example, we considered � � ª corresponding to the
white matter, gray matter, and CSF. We adopted

9 �3ë � ª
and �H� ª . The results are displayed in Figure 3. It can be
seen that the three tissue types, brain-white matter, brain-
gray matter, and CSF are well separated using the proposed
GMM-HMRF model with bias field correction. For com-
parison, the segmented image from the GMM-HMRF algo-
rithm without bias field correction is also given in Figure
3. It can be seen that white matter at the upper half of the
brain is misclassified as gray matter, whereas the result is
much better when the bias field correction is included in the
algorithm.

Figure 3. From left to right: Top (GMM-HMRF
with bias field correction): Segmented white
matter, Segmented gray matter, Segmented
CSF; Bottom: Original image, Segmented im-
age (with bias field correction), Segmented
image (without bias field correction)

5. Discussion

For the segmentation of MR images with bias field cor-
rection, Wells et al. [30] have developed a mixture model-
based approach via the EM algorithm to estimate the bias
field and segment the images. Guillemaud and Brady [14]
further refined this technique by introducing the extra tissue



class “other” and initializing the EM algorithm automati-
cally for a given number of classes. Both methods assume
statistical independence of the voxel intensities (that is, the
noise in the MR signal is spatially white). Moreover, the pa-
rameters of each tissue class are required to be pre-defined
or estimated in advance of applying the algorithm. Re-
cently, Zhang et al. [31] proposed a hidden MRF model to
allow for the spatial continuity of image intensities and the
bias field correction simultaneously. This model adopts the
ICM algorithm [2] to sequentially update each ,.- � , which
are zero or one, by local minimization of the conditional
posterior probability. A maximum a posteriori (MAP) ap-
proach is applied to estimate the bias field, and the tissue
parameters are estimated by maximum likelihood. How-
ever, this algorithm fails to segment correctly when the bias
field contamination is heavy.

The EM algorithm is a popular tool in statistics for car-
rying out ML estimation because of its simplicity of im-
plementation and reliable global convergence [20]. Here
we have been able to develop an extension of the EM al-
gorithm which can handle penalized ML estimation for the
present problem, while still preserving the desirable prop-
erties of the EM algorithm. The extension of the GMM-
HMRF model with bias field correction is justified using
some simulated and real MR data, as shown in Section 4.
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