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Abstract 

 

Microarrays are being increasingly used in cancer research for a better understanding 

of the molecular variations among tumours or other biological conditions. They allow 

for the measurement of tens of thousands of transcripts simultaneously in one single 

experiment. The problem of analysing these data sets becomes non-standard and 

represents a challenge for both statisticians and biologists, as the dimension of the 

feature space (the number of genes or transcripts) is much greater than the number of 

tissues. Therefore, the selection of marker genes among thousands to diagnose a 

cancer type is of crucial importance and can help clinicians to develop gene-

expression based diagnostic tests to guide therapy in cancer patients. 

In this chapter we focus on the classification and the prediction of a sample given 

some carefully chosen gene expression profiles. We review some state-of-the-art 
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machine learning approaches to perform gene selection: recursive feature elimination, 

nearest-shrunken centroids, and random forests. We discuss the difficulties that can be 

encountered when dealing with microarray data, such as selection bias, multiclass, 

and unbalanced problems. The three approaches are then applied and compared on a 

typical cancer gene expression study.  

 

 

1. Introduction  

Microarray data allow the measurement of expression levels of tens of thousands of 

genes simultaneously on a single experiment. The biological aim of these experiments 

is to better understand interactions and regulations between genes, which are spotted 

on the array in some given conditions. For example, in the context of cancer data, 

there are several types of statistical problems that can be considered: 

-to identify new tumour classes using gene expression signatures (e.g. cluster analysis, 

unsupervised learning). 

-to classify samples into known cancer classes (e.g. discriminant analysis, supervised 

learning). 

-to identify marker genes that characterize one or several cancer types (i.e. feature 

selection). 

Considering this last point, feature selection or gene selection may allow for the 

development of diagnostic tests to detect diseases and, in the particular case of cancer 

data, the selected genes can give more insight into the tumours characteristics. These 

genes are called prognosis signatures or gene signatures.  
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From a statistical point of view, the number of genes is usually often greater than the 

number of arrays, which renders the problem non-standard to solve. The selection of a 

relevant subset of genes enables one to improve the prediction performance of 

classification methods and to circumvent the curse of dimensionality. It also enables 

one to reduce computation time and allows for an understanding of the underlying 

biological process that generated these data.  

Statistical analysis of microarray data involves several important steps, such as 

normalization and pre-processing; see McLachlan et al. (2004), Chapter 2 and Li et al. 

(2003). In this chapter, the focus is solely on the analysis of microarray data and the 

selection of genes using classification methods. 

1.1. Notation 

In this chapter, we will adopt the following notation. A microarray data set consists of 

the quantitative measurements of p genes (called predictor variables) on n tissues 

(called samples). These data are summarized in a  כ  ݊ matrix ࢄ ൌ   isݔ , whereݔ 

the expression of gene ݅ in the jth microarray (݅ ൌ 1, … , ݆ ; ൌ 1, … , ݊).  

In the context of classification, we can represent the a  כ  ܰ matrix ࢄ of gene 

expressions as 

ࢄ ൌ ሺ࢞ଵ, … ,  ,ሻ࢞

 

where the feature vector ࢞ (the expression signature) contains the expression levels 

of the p genes in the jth tissue sample (݆ ൌ 1, … , ݊). 
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2. Supervised classification 

In the context of supervised classification, each tissue belongs to a known biological 

class ݇, ݇ ൌ  1, … , ݃. In the following, we let 1࢞, … ,  n denote the feature vectors and࢞

,1ݖ … ,  n the corresponding vectors of zero-one indicator variables defining the knownݖ

class of each sample.  The collection of the data 

࢚ ൌ ሺ࢞ଵ
், ଵࢠ

், … , ࢞
், ࢠ

்ሻ் 

will be referred to as the training data.  

In supervised classification, the aim is to construct a rule ݎሺ࢞;  ሻ based on the training࢚

data ࢚ with feature vectors for which the true class is known. Based on this rule, the 

final aim of supervised classification approaches is to predict the class label of a new 

tissue sample. 

Such problems are ubiquitous and, as a consequence, have been tackled in several 

different research areas.  As a result, a tremendous variety of algorithms and models 

have been developed for the construction of such rules. In the sequel, we will describe 

some classification methods, such as Support Vector Machines, Shrunken centroids, 

and classification trees. We will show that these classifiers can be included in some 

machine learning approaches to perform variable selection. 

2.1 Linear classifier 

As an introduction to prediction rules, we first consider the basic linear function in the 

case where ݃ ൌ 2 (binary problem). For any feature vector, here denoted  ࢞, its label 

is assigned to class 1 or class 2 if 

;࢞ሺݎ ሻ࢚ ൌ  1,  if  ܿሺ࢞; ሻ࢚  0,             

            ൌ  2,  if  ܿሺ࢞; ሻ࢚ ൏ 0, 
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where ܿሺ࢞; ሻ࢚ ൌ  ߚ  ்࢞ࢼ  ൌ  ߚ  ሻଵ࢞ଵ ሺߚ   ڮ  ߚ ሺ࢞ሻ  …   ,ሻ࢞ ሺߚ 

and ሺ࢞ሻ denotes the ith element of the feature vector ࢞ (݅ ൌ 1, … ,   .(

The function ܿሺ࢞;  ሻ is a linear combination of the features (or genes) with different࢚

weights ߚ ሺ݅ ൌ 1, … , ;࢞ሺݎ ሻ. Once the rule  , ሻ is constructed on the training data࢚

we can use it to predict the class label of a new feature vector. 

2.2      Support vector machines 

The Support Vector Machine (SVM) is a powerful machine learning tool that has 

often been applied to microarray data (Vapnik, 2000). We briefly describe the 

formulation of a soft margin SVM, that is, when classes are linearly non-separable. In 

this section, we assign a label ݕj ∈  ሼ1, … , ݃ሽ for ݆ ൌ 1, … , ݊ to each tissue sample to 

indicate the known class of each sample. 

In the case where ݃ ൌ 2, the SVM learning algorithm with a linear kernel aims to find 

the separating hyperplane 

்࢞ࢼ  ࢼ  ൌ 0, 

that is maximally equidistant from the training data of the two classes. In this case of 

݃ ൌ 2, it is conveninent if we let the class label ݕj be 1 or -1 to denote membership of 

class 1 or class 2. When the classes are linearly separable, the hyperplane is located so 

that there is maximal distance between the hyperplane and the nearest point in any of 

the classes. This distance is called the margin and is equal to 2 ⁄ࢼ்ࢼ  . The aim is to 

maximize this margin, that is, to minimize ࢼ்ࢼ.   

When the data are not separable, the margin is maximized so that some classification 

errors are allowed. In that case, the so-called slack variables ߦ are used (݆ ൌ 1, … , ݊).  

The quadratic optimization problem to solve is: 

minࢼ,ఉబ,א ࣈԹశభశ  (2.1)                                             ,ࢼ்ࢼ 
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subject to 

y൫࢞ ்ࢼ  ࢼ൯  1 െ  ,                                          (2.2)ߦ 

                             

where ࣈ ൌ ሺߦଵ, … ,  .ேሻ்   is the vector of so-called slack variablesߦ

The cases  ்࢞ࢼ  ࢼ ൌ  േሺ1 െ ߦሻ are the support vectors which define the 

solution. The Lagrangian dual formulation is finally 

min ଵ
ଶ

 ∑ ݕݕߙߙ

, .࢞ ࢞ െ  ∑ ߙ


 ,        

 subject to                      0 ≤ ߙ ≤ C      and             ∑ ݕ ߙ  ൌ 0,                   (2.3) 

 

where C corresponds to a penalty for misclassified cases and the ߙ  (݆ ൌ 1, … , ݊) are 

the Lagrange multipliers corresponding to the constraints (2.2). We call the support 

vectors the cases where . The use of this ‘soft’ margin enables the 

misclassification of outliers during training and avoids overfitting.  

Let S the set of indices of the Support Vectors and ࢞௦ any Support Vector case, then 

given the solution to the problem (2.1), the corresponding discriminant rule is 

 

;࢞ሺݎ ሻ ൌ࢚   signሺݕ௦ ∑ ௌא࢞ ݕ ߙ . ௦࢞  ࢼሻ. 

 

By using the ‘kernel trick’ and the scalar product in the Lagrangian formulation (2.3), 

this standard SVM can be extended to nonlinear decision functions to map the data 

into a higher, possibly infinite, dimensional space. The user will then need to specify 

the kernel function to use. More details about the SVM methodology can be found in 

the tutorial of Burges (1998) and Cristianini & Shawe-Taylor (1999). 
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2.3 Nearest centroid 

The  nearest centroid rule assigns the feature vector x to the class whose mean 

centroid is closest in Euclidian distance. For the classes ݇ ൌ 1, … , ݃, let ܥk be indices 

of the ݊k samples in class ݇. The ith component of the centroid for class ݇ is ܠത ൌ

 ∑ x/݊

אೖ , which is the mean expression value in class ݇ for the gene ݅. The ith 

component of the overall centroid is ܠത  ൌ  ∑ x

ୀଵ /݊.  

Nearest centroid classification takes the gene expression profile of a new sample, and 

compares it to each of these class centroids. The class whose centroid that it is closest 

to, in squared distance, is the predicted class for that new sample.  

Note that in contrary to SVM, nearest centroid classifiers can be naturally generalized 

to multiclass problems (݃  2). 

In the case of high dimensional microarray data, Tibshirani et al. (2002) proposed the 

‘nearest-shrunken centroid’ rule that ‘shrinks’ each of the class centroids toward the 

overall centroid for all classes by moving the centroid towards zero by a threshold. It 

also takes into account the different gene variances. This approach has two 

advantages: 1) it can make the classifier more accurate by reducing the effect of noisy 

genes, 2) it performs automatic gene selection (see Section 3.3).  

2.4 Classification and regression trees 

Tree-based methods such as Classification And Regression trees (CART, Breiman et 

al., 1984) are conceptually simple and easy to interpret. In our case we will focus on 

binary classification trees only, that is, when a binary split is performed at each node 

of the tree.  

The construction of CART requires one to choose: 
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i. the best split for each node, i.e. the best predictor (gene) to split the node and the 

best threshold among this predictor. 

ii. a rule to declare a node ‘terminal’, i.e. when to stop splitting. 

iii. a rule to affect a class to each terminal node. 

The best split criterion (i) relies on a heterogeneity function, so that the cases or 

samples that belong to the same class land in the same node. Gini index or entropy 

index is an example of such heterogeneity functions; see Breiman et al. (1984). 

When applying classification trees to noisy data like microarray data, a major issue 

concerns the decision when to stop splitting (ii). For example, if 9 splits are performed 

(i.e. with AND/OR rules for each split) with only 10 observations, then it is easy to 

perfectly predict every single case. However, if new cases run this tree, it is highly 

likely that these cases will land in a terminal node with a wrong predicted class. This 

issue is called ‘overfitting’, that is, the model applied on the data does not generalize 

well to new data because of random noise or variation. The way to address this issue 

with CART is to stop generating new split nodes when subsequent splits only result in 

very little overall improvement of the prediction. This is called ‘pruning’. The tree is 

first fully grown and the bottom nodes are then recombined or pruned upward to give 

the final tree, where the degree of pruning is determined by cross-validation (see 

Section 2.5.2) using a cost complexity function.  

The class of the terminal node (iii) is determined as the majority class of the cases that 

land in the same terminal node. Details of the CART methodology can be found in 

Breiman et al. (1984).  

Trees are different from other previously considered classification methods as they are 

learning and selecting features simultaneously (embedded approach, see Section 33.1. 

However, one of the major problems with trees is their high variance. Indeed, a small 
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change in the data can result in a very different series of splits and hence a different 

prediction for each terminal node. A solution to reduce the variance is to consider 

bagging (Breiman, 1996) as was done in Random Forests, see Section 03.4. 

2.5 Error rate estimation 

Given a discriminant rule ݎሺ࢞;  ሻ constructed on some training data , we now࢚

describe some techniques to estimate the error rates associated with this rule. 

2.5.1. Apparent error rate 

The apparent error rate, also called resubstitution error rate, is simply the proportion 

of the samples in ࢚ that are misallocated by the rule ݎሺ࢞;  ሻ. Therefore, this rate is࢚

obtained by applying the rule to the same data from which it has been learnt. As 

mentioned by several authors (McLachlan, 1992, Chapter 10), it provides an overly 

optimistic assessment of the true error rate and would need some bias correction. To 

avoid this bias, the rule should be tested on an independent test set or a hold out test 

set from which the rule has not been formed. We next present some estimation 

methods to avoid this bias.  

2.5.2 Cross-validation 

To almost eliminate the bias in the apparent error rate, one solution is to perform 

leave-one-out cross-validation (LOO-CV) or V-fold cross-validation (CV). Cross-

validation consists in partitioning the data set into V subsets of roughly the same size, 

such that the learning of the rule ݎሺ࢞;  ሻ is performed on the whole subsets minus the࢚

vth subset, and tested on the vth subset, ݒ ൌ  1, … , ܸ. This is performed V times, such 

that each sample is tested once and the V subsequent error rates are then averaged.  
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In the case of LOO-CV, ܸ ൌ  ݊ and therefore, the rule is tested on only one sample 

point for each fold. LOO-CV may seem to require considerable amount of computing, 

as the rule has to be formed n times to estimate the error rate. Furthermore, this 

estimate may yield a too high a variance. A bootstrap approach was then proposed in 

an attempt to avoid these limitations. 

 

2.5.3 Bootstrap approach 

Efron (1979, 1983) showed that suitably defined bootstrap procedures can reduce the 

variability of the leave-one-out error in addition to providing a direct assessment of  

variability for estimated parameters in the discriminant rule. Furthermore, if the 

number of bootstrap replications is less than n, it will result in some saving in 

computation time relative to LOO-CV computation. 

Let E denote the error computed on the cases that were not drawn in the bootstrap 

sample, Efron (1983) proposed the estimator to correct some upward bias in the 

error E with the downwardly biased apparent error A: 

 

ଷଶ.ܤ ൌ  ܣ 0.368   .ܧ 0.632 

 

Previously, McLachlan (1977) had derived an estimator similar to ܤ.ଷଶ in the special 

case of two classes with normal homocedastic distributions. 

When the number of variables is much larger than the number of samples, the 

prediction rule ݎሺ࢞;  ሻ  usually overfits, that is,  often equals 0. Efron & Tibshirani࢚

(1997) then proposed the  estimate, 

 

ଷଶା.ܤ  ൌ  ሺ1 െ  ܣሻݓ  ,ܧݓ 
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where 

ݓ  ൌ  .ଷଶ
ଵି.ଷ଼

ݎ  , ൌ  ாି
୫୧୬ሺா,ఊሻି

  and  ߛ ൌ  ∑ 

ୀଵ ሺ1 െ   .ሻݍ 

r is an overfitting rate and ߛ is the no-information error rate,  is the proportion of 

samples from class ܥ, ݍ is the proportion of samples assigned to class ܥ with the 

prediction rule ݎሺ࢞; ሻ (݇ ൌ࢚  1, … , ݃).  

 

3 Variable selection 

The so-called “large p small n problem” poses analytic and computational challenges. 

It motivates the use of variable selection approaches, not only to infer reliable 

statistical results and to avoid the curse of dimensionality, but also to select relevant 

and potential gene signature related to the tissue characteristics. 

In the machine learning literature, there exists three types of classification and feature 

selection methods (Kohavi & John, 1997; Guyon & Elisseeff, 2003): the filter 

methods, the wrapper methods and the embedded methods. We first describe the 

particularities of these approaches, before detailing some useful wrapper and 

embedded  methods to perform gene selection: Recursive Feature Elimination (Guyon 

et al., 2002), Nearest Shrunken Centroids (Tibshirani et al., 2002) and Random 

Forests (Breiman, 2001), that will be applied on one well-known microarray data set 

from Golub et al. (1999). 

3.1 Filter, wrapper and embedded approaches 

The filter methods are often considered as a pre-processing step to select differentially 

expressed genes. The principle of this method is to independently test each gene and 

to order the genes according to a criterion, for example a p-value. The t- and F- tests 

are often used for microarray data. In one of the first comparative studies of 
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classification methods in the context of microarray data, Dudoit & Fridlyand (2002) 

proposed to pre-process the genes based on the ratio of their between-groups to 

within-groups sum of squares:  

ሺ݅ሻܵܤܤ
ܹܵܵሺ݅ሻ ൌ  

∑ ഥሻଶ࢞ ഥെ࢞௬ೕୀሺܫ
,

∑ ,ݔ௬ೕୀ ሺܫ െ  ഥሻଶ࢞ 

 

where  ࢞ഥ is the average expression level of gene i across all samples and ࢞ഥ is the 

average expression level of the gene i across the samples that belong to class k.  

They compared the performance of some classification methods, such as the k nearest 

neighbours (k-NN), CART and Linear Discriminant Analysis on a selection of 30 to 

50 genes. 

The main advantages of the filter methods are their computational efficiency and their 

robustness against overfitting. However, these methods do not take into account the 

interactions between genes, and they tend to select variables with redundant rather 

than complementary information (Guyon & Elisseeff, 2003). Furthermore, the gene 

selection that is performed in the first step of the analysis does not take into account 

the performance of the classification methods that are applied in the second step of the 

analysis (Kohavi & John, 1997). 

 

The wrapper terminology was introduced by John et al. (1994). These methods 

involve successive evaluation of the performance of a gene subset and therefore, take 

the interactions between variables into account. The selection algorithm wraps the 

classification method, also named classifier, which evaluates the performance. The 

search for the optimal gene subset requires one to define 1) how to search the space of 

all possible variable subsets, 2) how to assess the prediction performance of a learning 
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machine to guide the search and 3) how to halt it. Of course, an exhaustive search is 

an NP-hard problem and when p is large, the problem is intractable and requires 

stochastic approximations. Furthermore, there is a risk of overfitting if the number of 

cases n is small. The number of variables to select must be fixed by the user, or 

chosen according to a criterion, such as the classification error rate. One of the main 

disadvantages of these methods is their computational cost that increases with p. 

Nonetheless, the wrapper strategy might be superior to the filter strategy in terms of 

classification performance, as was first shown by  Aha & Bankert (1995) and John et 

al. (1994) in an empirical manner. 

 

The embedded methods include variable selection during the learning process, without 

the validation step, to maximize the goodness-of-fit and minimize the number of 

variables which are used in the model. A well-known example is CART, where the 

selected variables split each node of the tree. Other approaches include greedy types 

of strategies, such as forward selection or backward elimination, that result in nested 

variable subsets. In a forward selection, variables are progressively included in larger 

and larger variable subsets, whereas the backward elimination strategy begins with all 

original variables and progressively discards the less relevant variables. According to 

the review of Guyon & Elisseeff (2003), these approaches are more advantageous in 

terms of computation time than wrapper methods, and should be robust against 

overfitting. The forward selection seems computationally more efficient than the 

backward elimination to generate nested variable subsets. However, the forward 

selection may select variable subsets that are not relevant, as the variable importance 

is not assessed with respect to the other variables, which are not included yet in the 
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model. As opposed to wrapper methods, the embedded methods define the size of the  

variable selection, which is often very small. 

3.2 Recursive feature elimination 

RFE (Guyon et al., 2002) is an embedded method which is based on a backward 

elimination and applies SVM to select an optimal non-redundant gene subset. The 

method relies on the fact that variables can be ranked on the basis of the magnitude of 

the coefficient ߚ of each variable i when using a linear kernel SVM. In fact, each 

element ߚ of the weight vector ࢼ is a linear combination of the cases, and most ߙ are 

null, except for the support cases in the optimization problem (2.3). Consequently, the 

values in β can be directly interpreted as an importance measure of the variables in the 

SVM model. The variables i with the smallest weights |ߚ| will then be progressively 

discarded (recursive elimination) in the RFE procedure. 

To speed up the computations, Guyon et al. (2002) proposed to discard several 

variables at a time in the algorithm, in spite of the fact that the classification 

performance may be altered. In this case, we obtain a ranking criterion on the variable 

subsets that are nested in each other, rather than a rank criterion on each variable. It is 

advised to discard variable subsets of various sizes, for example half of the variables 

in remaining set, to obtain sufficient density of information for the genes eliminated 

last. These latter will be ranked as first in the selection. Note that in any case, the user 

can actually choose the number of variables to select if desired. 

RFE was first applied to microarray data (Ramaswamy et al., 2001) and was followed 

by numerous variants. SVM-RFE-annealing from Ding & Wilkins (2006) is based on 

a simulated annealing method and discards a large number of variables during the first 

iterations, and then reduces the number of discarded variables. This enables a 
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significant reduction in computation time. This method, which is very similar to RFE, 

requires a choice of the number of variables to select. Another example is SVM-RCE  

for Recursive Cluster Elimination (Yousef et al., 2007), to select correlated gene 

subsets and avoid missing important genes with small weights as they were correlated 

with some dominant genes. This stresses the issue of correlated genes that bring 

redundant information. Should they all be in the selection even if genes with 

complementary information may get a lower rank? Or should the selection be larger?  

Other variants were also proposed and the reader can refer to Tang et al. (2007);  

Mundra & Rajapakse (2007) or Zhou & Tuck (2007) for the MSVM-RFE for multiclass 

case. The abundant literature on this method shows the popularity of RFE for 

analysing microarray data. 

3.3 Nearest shrunken centroids 

Tibshirani et al. (2002) proposed a ‘de-noised’ version of the nearest-centroid rule 

defined in Section 2.3. The idea is to shrink the class centroids toward the overall 

centroids after standardizing by the within-class standard deviation for each gene. 

This gives higher weight to genes whose expression is stable within samples of the 

same class. 

In the definition of the nearest centroid rule, the sample mean of the ith gene in class k 

ഥ࢞ ത is replaced by is shrunken estimateܠ
כ ൌ ഥ࢞    ݉ሺݏ  ݏሻ݀

כ  

With the following notations: 

 

 ݀
כ ൌ signሺ݀ሻሺ|݀| െ ∆ሻା,                                        (4.1)  
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where the + means positive part and zero otherwise, and ݀ ൌ ഥ࢞ ഥೖି࢞ 
ೖሺ௦ା ௦బሻ

  is theݏ  ;

pooled within-class standard deviation for gene i and ݏ is the median value of the ݏ 

over the set of genes; ݉ ൌ ඥ1 ݊⁄ െ  1/݊ . 

This shrinkage when computing ݀
כ  is called soft thresholding, as the absolute value 

of ݀ is reduced by an amount of ∆ and is set to zero if the result of (4.1) is less than 

zero. This allows variable selection as when ∆ increases, many genes are eliminated 

from the class prediction and do not contribute to the nearest centroid computation. 

The shrinkage parameter ∆ can be chosen by cross-validation. 

Guo et al. (2007) then generalized the idea of Nearest Shrunken Centroids (NSC) with  

SCRDA (Shrunken Centroids Regularized Discriminant Analysis). Other variants of 

the nearest-shrunken centroids have been proposed in the literature for microarray 

data; see for example Dabney & Storey (2005) or Wang & Zhu (2007). 

Nearest shrunken centroids are implemented in the pamr R package. 

3.4 Random forests 

Some classification methods are sensitive to small perturbations in the initial data set. 

For example, the construction of CART can dramatically vary if some values are 

modified in the data set. If a model does not generalize well, i.e. if its variance is 

large, a solution proposed by Breiman (1996) is to aggregate classifiers. The variance 

is consequently reduced, but the classifier interpretation becomes more difficult. This 

is why these techniques are sometimes called ‘black box’. Breiman (1996) proposed 

to aggregate CART to reduce their variance by estimating each tree on a bootstrap 

sample. He introduced the bagging methodology for ‘bootstrap aggregating’, by 

creating perturbed learning sets of the same size as the original sample. We describe a 

variant called Random Forests (Breiman, 2001) where an additional perturbation is 
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introduced when splitting the nodes of each tree to introduce more ‘independence’ 

between each tree. 

Random forests is a wrapper method that became very popular for classification and 

feature selection in several contexts: Izmirlian (2004); Bureau et al. (2005); Diaz-

Uriarte (2007) applied it with biological data, Svetnik et al. (2003) with QSAR data, 

Prasad et al. (2006) with ecological data etc. This approach, which at first seemed 

empirical is now theoretically studied, for example Biau et al. (2008) established 

some results regarding the consistency of aggregated trees. 

The surprising paradox of random forests is that it benefits from the great instability 

of the classifiers CART by aggregating them. This approach combines two sources of 

randomness that largely improve the prediction accuracy: the bagging and the random 

feature selection to split each node of the tree. This results in low bias and low 

variance in the model.  

Each tree (classification or regression) is constructed as follows: 

1. B  bootstrap samples ሼܤଵ, … ,  .ሽ are drawn from the original dataܤ

2. Each sample ܤ(ܾ ൌ 1, … ,  is used as a training set to construct an unpruned (ܤ

tree ܶ. Let p be the number of input variables of the tree, for each node of ܶ, 

m variables are randomly selected (m<<p) to determine the decision at the 

node, where m is constant during the forest growing. Then, the best split 

among these m predictors is chosen to split the node.  

The predictions of the B trees are then aggregated to predict new data either by 

majority vote for classification or by average for regression. 

Random forests also generate an internal estimation of the generalisation error by 

computing the out-of-bag error rate for each bootstrap sample. However, this error 

rate, which seems accurate and unbiased, cannot be used to evaluate the performance 
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of the variable selection. Indeed, Svetnik et al. (2003) showed that the OOB error 

estimate tends to overfit since the evaluation is not performed on an external test set. 

Instead, the variable selection should be evaluated on a test set sample. We will come 

back to the bias on the variable selection evaluation in Section 3.6. 

The choice of the m randomly selected variables to split each node can be fixed by 

default to ඥ (Liaw & Wiener, 2003). However, the number of trees B must be 

chosen by the user. To obtain stable results, in particular when the number of cases is 

small, we strongly advise to set a large number of trees to be large, i.e.  5000.. 

Two internal measures of variable importance are proposed in random forests, which 

allow for feature selection. These are called ‘Mean Decrease Accuracy’ and ‘Mean 

Decrease Gini’. Both importance measures are described in Liaw & Wiener (2003) 

and in the RandomForests R package. Note that these measures can lead to different 

results if the data set contains a very small number of cases, or if some of the classes 

share similar (biological) characteristics.  

 

3.5 Extension to multiclass 

3.5.1 Division into binary problems 

Multiclass problems could make feature selection easier than binary problems, as the 

more classes, the better the gene subset for a perfect classification task (Guyon & 

Elisseeff, 2003). But in practice, the multiclass case is difficult to deal with. Indeed, in 

the context of high dimensionality, the number of cases per class is usually smaller 

than in the binary problem due to experimental costs. This degrades the prediction 

accuracy when there are numerous classes. Furthermore, some authors  noticed that 
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most of the classification errors were due to cases belonging to very similar classes, 

rather than being outliers (Yeang et al., 2001).  

Some binary classification methods are naturally adapted to multiclass problems. This 

is the case for example for Linear Discriminant Analysis, CART or Nearest Centroid. 

Other methods require the decomposition of the multiclass problem into several 

binary problems, such as one class against the other (1 vs. 1) or one class against the 

rest (1 vs. rest). Another solution is to define multiclass objective functions. This 

solution was often addressed with SVMs. For example, Weston & Watkins (1999) 

and Lee & Lee (2003) proposed to solve the multiclass optimization quadratic 

problem directly into the SVM, rather than aggregating binary SVMs. The authors 

concluded that there was a smaller number of support vectors by directly solving the 

multiclass case than by aggregating binary SVMs. However, it is still less costly to 

solve several small binary problems rather than a big complex multiclass problem.  

 

Dividing a multiclass problem into several binary problems requires one to choose the 

appropriate aggregation method. For example with SVM, one could choose majority 

vote, least square estimation based on weighting that involves weighting each SVM, 

or double layer hierarchical combining that aggregates SVMs outputs into another 

SVM (Kim et al., 2003). The type of binary classifier must also been chosen. Lee and 

Lee (2003) showed that the 1 vs. rest SVM can give bad results if several classes are 

similar, and that the 1 vs. 1 SVM may contain a high variance, as each binary 

classifier is computed on a very small subset of cases with only one misclassifying 

cost for all classes. This latter problem is partly due to unbalanced classes. 

A comparative study of several multiclass SVM approaches such as the Weston & 

Watkins (1999) or Lee & Lee (2003) approaches, 1 vs. rest, and 1 vs. 1 was presented 
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in Statnikov et al. (2005) for microarray data, with first an initial pre-processing step 

with a filter method.  

3.5.2 Unbalanced multiclass problems 

In addition to numerous classes in microarray data, one often faces unbalanced 

classes. The main reason is that the class of interest is the rare one where data are 

difficult to obtain. There has been little attention given to the problem of unbalanced 

multiclasses in the context of microarray data, although of Eitrich & Lang (2006) and 

Qiao & Liu (2008) recently address this issue for general classification purposes. 

The main concern when performing feature selection in a classification context is that 

a classifier aims at minimizing the overall classification error rate. It thus minimizes 

the classification error rate of the majority classes, to the detriment of the minority 

classes. This type of approach has a serious drawback when performing feature 

selection, as the selected genes will mainly discriminate against the majority classes 

which are not the most biologically relevant. 

 In the case of random forests, Chen et al. (2004) proposed two approaches to balance 

the classes and to introduce a higher penalty when a minority class is misclassified. 

The first approach, called Balanced Random Forests (BRF) is based on a re-sampling 

technique. Each tree is constructed on the same number of cases in the majority and 

minority classes (sampling with replacement). The second approach, called Weighted 

Random Forests (WRF, currently implemented in the RandomForests R package) is 

based on cost sensitive learning. Weights are introduced in the RF algorithm, first 

during the tree construction, where class weights are used when splitting the nodes 

with the Gini criterion, and second when assigning the class of the terminal node.  

However, BRF risks overfitting the data if the number of cases in the minoritary class 

is very low, as this down sampling approach does not use many cases in the 
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majoritary classes. The inclusion of weights into the feature selection algorithm seems 

a better approach and was proposed in  Lê Cao et al. (2008) in a stochastic wrapper 

algorithm. 

For the SVM case, Qiao & Liu (2008) recently proposed an adaptive weighted 

learning procedure in the multiclass quadratic formulation of Lee & Lee (2003) to  

optimally weight each class. 

 

3.6 Selection bias and performance assessment 

In the classification context, the performance assessment of a variable selection 

remains difficult due to the small number of samples. As Dudoit & Fridlyand (2002) 

underlined, more cases would be needed to compute an accurate classification error 

rate. It is often unfeasible to obtain an external test set and the performance evaluation 

must often be computed on the learning set. Furthermore, several authors warn of the 

selection bias problem (Ambroise & McLachlan, 2002; Reunanen, 2003). Indeed, 

some articles presented extremely optimistic results as the classification error rate 

estimation and the variable selection were both performed on the learning set. 

Therefore, to correct for this selection bias, it is essential that cross-validation or the 

bootstrap be used external to the gene selection process.  

In the present context where feature selection is used in training the prediction rule 

;࢞ሺݎ  ሻ from the full training set, the same feature selection method must be࢚

implemented in training the rule on the V-1 subsets combined at each stage of an  

cross-validation of ݎሺ࢞;  ሻ  for the selected subset of genes. Of course, there is no࢚

guarantee that the same subset of genes will be obtained as during the original training 

of the rule (on all the training observations). Indeed, with the huge number of genes 
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available, it generally will yield a subset of genes that has at most only a few genes in 

common with the subset selected during the original training of the rule. 

In the case where the final version of the discriminant rule is based on a small subset 

selected in some optimal way from a much larger set of variables (genes), it is 

important that cross-validation is undertaken as described above, as otherwise a large 

selection bias can result; see Ambroise & McLachlan (2002); McLachlan et al. 

(2008); Wood et al. (2007); Zhu et al. (2008). 

3.7 Optimal size of the selection 

Choosing the optimal size of the selection is a difficult question as the small number 

of samples does not allow for an accurate estimate of the classification error. A naïve 

choice would be to select a number of genes that gives the lowest error rate. However, 

McLachlan et al., 2004, Chapter 7) showed on the van 't Veer et al. (2002) study that 

the estimated error rate needed to be corrected for bias. The authors showed that the 

minimum error rate was attained for approximately 256 genes when evaluating the 

gene selection with bias correction on the whole data set, instead of only 70 genes as 

originally proposed in this study. 

 A solution to choose the optimal set of genes would be to select the genes which give 

a stabilized error rate and, therefore, consistent predictive results. 

 

4 Illustrative example with the Golub data set 

4.1 Performance of the three feature selection methods 

As an illustrative example, we considered the well known leukaemia data set (Golub 

et al., 1999), where Affymetrix oligonucleotide arrays were used to measure gene 
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expressions in two types of acute leukaemias: acute lymphoblastic leukaemia (ALL), 

and acute myeloid leukaemia (AML). The entire data set consists in 72 tissue 

samples, among which 47 are ALL cases and 25 are AML, and the measurement of 

7,129 genes. The data set was pre-processed as in Dudoit & Fridlyand (2002) by 

filtering and log transforming the data. The final data set comprises 3,731 genes. 

 

We performed external 10-fold cross validation A (CV10E) as used by Ambroise & 

McLachlan (2002) for different sizes of selected subsets of genes to evaluate the 

performance of Recursive Feature Elimination (RFE), Nearest Shrunken Centroids 

(NCS), and Random Forests (RF). For the 10-folds, we divided the 72 tissues into 

balanced training and test sets such that approximately 42 ALL and 22 AML were 

used for training, 5 ALL, and 3 AML were used for testing in the binary problem. We 

calculated the 10-CV estimated error rates over 50 random splits.  

The averaged values of these estimates are plotted in Figure 1. It can be seen from this 

figure that all three wrapper methods perform similarly, except for NCS that requires 

a larger selection of genes to be competitive with the other approaches. A (CV10E) was 

found to have little bias when estimating the error rate (Ambroise & McLachlan, 

2002). However, the conclusion about this graph should be taken with caution, as the 

error rate should be corrected for bias.  

 

As an illustrative example, this data set is of interest as the ALL cases can be divided 

into 2 subclasses, called ALL-B cells (38 samples) and ALL-T cells (9 samples). We 

are here in the typical case of unbalanced multiclass data set, where the ALL-T class 

is the minority class. Therefore, when performing external balanced 10-fold cross-

validation, 34 ALL-B, 8 ALL-T, and 22 AML were used for training and 
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approximately 4 ALL-B, 1 ALL-T, and 3 AML were used for testing. The fact that 

there is only one ALL-T sample in the test set may severely affect the estimation of a 

too optimistic error rate. Indeed, as mentioned in Section 3, when computing A(CV10E), 

we tend to neglect misclassified cases from of the minority class.  

The averaged values of the A (CV10E) estimates are plotted in Figure 2 over 50 random 

splits. In this multiclass problem, the estimated error rate is higher than in the binary 

case presented above where the gene selection is small. Therefore, a larger selection 

of genes might be advisable for further biological validation. Interestingly, the 

stabilized error rate seems to be similar to the one obtained in the binary case (around 

5%). This may be due to the fact that there is only one ALL-T sample in the test set 

that can be misclassified. This may result in a too optimistic estimation of the error 

rate. Indeed (not shown), the error rate for RFE was between 0.1 and 0.2 for the ALL-

T minority class, and between 0.01 and 0.02 for the two other classes. Since in this 

last example the classes are strongly unbalanced, a better way to take into account the 

minority class would be to weight the error rate estimation according to the proportion 

of samples in each class, as was proposed in Lê Cao et al. (2008). 

4.2 Comparison of the gene selections 

We arbitrarily chose a selection size of 50 genes and compared the overlap between 

the selected genes resulting with each approach, for the binary and the 3-class cases 

(Figure 3). Note that the same trend was observed when the selection size was 

increased. 

It is interesting to see that although each approach uses a different classifier, a fair 

amount of genes are commonly selected by the three methods (20 and 15 genes for the 

binary and the multiclass problems). Therefore, these approaches have the ability to 
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select (the same) discriminative genes and these discriminative genes may be of 

potential relevance for the biological experiment. 

Half of the genes selected with RFE differed from those selected with RF and NSC. 

This difference might be due to the fact that as a backward technique, RFE tends to 

select non-redundant and non-correlated genes (Yousef et al., 2007) whereas NSC and 

RF can highlight correlated genes in their selections. 

As expected, when the number of classes increased from ݃ ൌ 2 to ݃ ൌ 3, the overlap 

between all three methods became smaller. This can be explained by the increasing 

complexity of the data set, where numerous subsets can lead to a good classification 

of the samples. 

As an illustrative example, Figure 4 displays the heat map of the 50 genes selected 

with NSC for the multiclass case, with Euclidian distance and Ward aggregation 

method. This type of unsupervised clustering enables a global overview of the genes 

that were selected with respect to each tissue sample. 

For the binary problem (not shown), it was surprising to see that although RFE 

selected genes with a poor contrast (mostly under-expressed genes), it allowed for a 

perfect classification of the tissue samples, whereas RF and NSC seemed to select 

interesting and contrasted gene clusters, but with one misclassified sample. 

The same trend could be observed for the 3-class case, where contrasted gene clusters 

were obtained with RF and NSC (Figure 4). One would expect the ALL-T and ALL-B 

to share the same dendogram as they are a subclass of ALL. In fact it is the AML 

samples that seem to share similarities with ALL-B with these gene selections.  

4.3 Choice of method 

The large difference between the three feature selection methods, and therefore the 

three gene selections did not really appear when estimating the classification error rate 
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(Figures 1 and 2). It is highly probable that different gene subsets can lead to the same 

classification performance of a given classifier. Nevertheless, some genes were 

commonly selected by all 3 approaches, despite the fact that these statistical 

approaches differ in their construction and the classifiers they use. It is therefore 

difficult to choose the appropriate statistical method to perform variable selection and 

we cannot have a definitive answer for this question. Microarray data are very 

complex and the statistical outcome highly depends on the biological experiment, 

design and the quality of the data. Furthermore, some statistical approaches might be 

appropriate in one study, but not in another. Therefore, one has to take into account 

different criteria as proposed in this illustrative section, compare several statistical 

approaches, as well as to investigate the biological relevance of the selected genes 

related to the biological experiment. 

 

 

5 Validation 

 

Validation of the results has been often discussed in the literature. Once the gene 

signatures have been selected, their clinical utility must be established. For example, 

they must prove to reliably identify patients with poor or good prognosis. The first 

step consists in validating the microarray experiment, while the second part consists 

in an independent validation using these gene signatures. 

 

5.1 Biological interpretation 

Once the gene signatures have been selected using a statistical approach, it is of 

tradition to validate the results and look for false positive by using the same samples, 
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but on different mRNA measurement procedure, such as reverse-transcriptase PCR. 

This may highlight erroneous inferences due to poor measurement quality.  However, 

repeating measurement on the same biological samples but with a different 

measurement technique is a highly debatable practice to validate the microarray 

experiment. 

Post hoc analysis is then required to assess the biological relevance of the gene list. 

For example, pathway analysis, using softwares such as DAVID (Dennis et al., 2003), 

Panther (Mi et al., 2005), FatiGO (Al-Shahrour et al., 2004)-to cite a few, can be 

performed on the gene selection to identify biological functions and networks;  see 

also Lê Cao et al. (2007) for an example of such analysis. This type of analysis also 

enables one to highlight other genes that are strongly correlated to the selected genes 

and interact with these genes in biological pathways, but might not be spotted on the 

microarray, or were discarded during the pre-processing step because of poor quality 

spots. 

 

5.2 Independent test set 

The gene signatures then need to be proven that they provide additional information to 

the clinicopathologic risk criteria that are currently used in the clinic. The validation 

must hence be performed completely independently, not only on a new batch of 

patients, but also by external institutions to the study.  In addition, it should also be 

applied to a prospective study, rather than using retrospective data of patient that may 

not be representative of the nowadays breast cancer population.  

Buyse et al. (2006) performed this type of analysis, using independent statisticians 

and multinational collaborations to assess the usefulness of the 70-gene signature in 

breast cancer on a retrospective study. They showed that this set of gene had 
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reproducible prognostic value across different patient populations, laboratories and 

biostatistical facilities. However, many questions remain, such as the lack of gene 

overlap among different studies (Michiels et al., 2005). Some authors argue that these 

different gene selection that predict the same outcome might be the result of 

differences among microarray platforms, but also the differences among the genes 

spotted on the array or the different experimental conditions.  Others state that the 

resulting lists of genes are highly unstable as it depends on the patients on the training 

set.  

 

 

6 Conclusion 

 

Microarray technology is a promising and a powerful high-throughput tool for 

researchers in many fields of biology and medicine. Microarray analysis has the 

potential to refine cancer prognosis, well beyond the currently used clinical 

parameters to predict disease outcome. Diagnostic assays developed on gene 

expression profiling studies will therefore benefit to oncology and other areas of 

medicine.  

Many studies showed that supervised classification methods appear to be one of the 

best approaches to identify prognostic and predictive profiles (Golub et al., 1999; van 

't Veer et al., 2002; Nuyten & van de Vijver, 2008). Further studies are required to 

check the consistency of the results obtained with these sophisticated statistical 

approaches before they can replace the current clinical and pathological indicators and 

be made available to patients.  
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It would be interesting to further investigate the integration of clinical data and 

microarray data to improve the prediction performance of the classification methods. 

Gevaert et al. (2006) and McLachlan & Ng (2008) have shown that a significant 

improvement could be achieved by using Bayesian networks or expert networks to 

integrate both discrete and continuous data on the van ’t Veer breast data set. Clinical 

variables are often under-used when analysing microarray data. Combined with often 

noisy gene expression data, they would allow for a better cancer prognosis as they 

have a very low noise level (Gevaert et al., 2006). 
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Figure Captions 

Figure 1. Estimation of the classification error rate for each method with external 10-

fold cross-validation (repeated 50 times) with respect to the number of genes selected, 

for the binary problem. 

Figure 2. Estimation of the classification error rate for each method with external 10 

fold cross-validation (repeated 50 times) with respect to the number of genes selected, 

for the unbalanced multiclass problem. 

Figure 3. Venn diagrams. Overlap between the gene lists selected with Random 

Forests, Recursive Feature Elimination and Nearest Shrunken Centroids (selection of 

50 genes for each method). 

Figure 4. Heat map for the 50 genes selected with Nearest Shrunken Centroids for the 

unbalanced multiclass problem. Rows (genes) and columns (tissues) are arranged 

according to a hierarchical clustering method. Tissue classes are indicated by color 

bars on the upper dendogram (black: ALL-T, grey: AML, and light grey: ALL-B) 

 

 


