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In this paper, we consider the use of the EM algorithm for the ®tting of distributions by maximum
likelihood to overdispersed count data. In the course of this, we also provide a review of various
approaches that have been proposed for the analysis of such data. As the Poisson and binomial regression
models, which are often adopted in the ®rst instance for these analyses, are particular examples of a
generalized linear model (GLM), the focus of the account is on the modi®cations and extensions to GLMs
for the handling of overdispersed count data.

1 Introduction

In medical research, data are often collected in the form of counts, corresponding to
the number of times that a particular event of interest occurs. Because of their
simplicity, one-parameter distributions for which the variance is determined by the
mean are often used at least in the ®rst instance to model such data. Familiar
examples are the Poisson and binomial distributions, which are members of the one-
parameter exponential family. However, there are many situations, where these
models are inappropriate, in the sense that the mean±variance relationship implied by
the one-parameter distribution being ®tted is not valid. In most of these situations, the
data are observed to be overdispersed; that is, the observed sample variance is larger
than that predicted by inserting the sample mean into the mean±variance relationship.
This phenomenon is called overdispersion. There are occasions in data analysis where
the data are underdispersed; that is, the sample variance is smaller than that implied
by the mean±variance relationship, called underdispersion. These phenomena are also
observed with the ®tting of regression models, where the mean (say of the Poisson or
the binomial distribution), is modelled as a function of some covariates. If this
dispersion is not taken into account, then using these models may lead to biased
estimates of the parameters and consequently incorrect inferences about the
parameters (Wang1 and Wang et al.2). We focus here on the more common case of
overdispersion.

Aitkin et al.,3 Breslow,4±6 Breslow and Clayton,7 Brillinger,8 Clayton,9 Cox,10

Efron,11;12 Gelfand and Dalal,13 Hinde,14 Lawless15;16 and McCullagh and Nelder17

(Section 6.2), among many others, have discussed the analysis of count data when
overdispersion is present. Score statistics for detecting extra-Poisson variation have
been developed by Fisher18, Collings and Margolin19, Cameron and Trivedi,20;21 Dean
and Lawless22 and Dean.23 In addition to relevant work in these papers, tests for extra-
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binomial variation have been presented by Tarone,24 Williams25 and Prentice.26

Lambert and Roeder27 have considered overdispersion diagnostics for generalized
linear models.

Various approaches to handling overdispersion have been suggested over the years,
including the use of quasi-likelihood, continuous mixture models, and random effects
models whose use has been broadened through the recent development of hierarchical
generalized linear models by Lee and Nelder.28 In recent times, much attention has
been given to the use of ®nite mixture models for which the EM algorithm plays a
central role in computing iteratively the maximum likelihood estimates (MLEs) of the
parameters. The EM algorithm can also play useful role in the implementation of the
random effects model. The Poisson and binomial regression models are particular
examples of generalized linear models (GLMs) that can be ®tted by maximum
likelihood via an iteratively reweighted least-squares algorithm as in the GLIM
program (Francis et al.29). We shall brie¯y review this approach to the ®tting of a
standard GLM model before proceeding to describe modi®cations and extensions to
GLMs for the handling of overdispersed data.

2 Generalized linear models

2.1 Maximum likelihood approach
With the generalized linear model (GLM) approach originally proposed by Nelder

and Wedderburn,30 the log density of the response variable Y for a given subject has
the form

log f � y; �; �� � m�ÿ1f�yÿ b���g � c�y; �� �2:1�
where � is the natural or canonical parameter, � is the dispersion parameter and m is
the prior weight. In the case of discrete Y, we still view f � y; �; �� as a density by the
adoption of counting measure. We use f throughout the paper as a generic symbol for
a density. The mean and variance of Y are given by

E�Y� � � � b0���
and

var�Y� � �b00���
respectively, where the prime denotes differentiation with respect to �. In a GLM, it is
assumed that

� � g���
� xT���

where x is a vector of covariates or explanatory variables and ��� is a vector of unknown
parameters, and g� � � is a monotonic function known as the link function. Here the
superscript T refers to vector transpose. If the dispersion parameter � is known, then
the distribution (2.1) is a member of the (regular) exponential family with natural or
canonical parameter �. The distribution may or may not be a member of the two-
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parameter exponential family if � is unknown. The variance of Y is the product of two
terms, the dispersion parameter � and the variance function b00���, which is usually
written in the form as

V��� � @�=@�
So-called natural or canonical links occur when � � �, which are respectively the log
and logit functions for the Poisson and binomial distributions; see Table 2.1 in
McCullagh and Nelder17(Chapter 2). In the standard form of a GLM, � is modelled as
a function of the unknown parameter vector ���, assuming � ®xed and with V���
containing no unknown parameters. Of distributions of the form (2.1), the Poisson and
binomial have � � 1 (that is, ®xed a priori at 1). The negative binomial distribution,
whose variance function can be written in the form

V��� � �� �2k

is an example of a variance function containing an unknown parameter that is not a
dispersion parameter. Suppose y1; . . . yn denote n independent observations on the
response variable, where Yj has prior weight mj, canonical parameter �j, mean �j, and
covariate vector xj � j � 1; . . . ; n�. Then the log likelihood for ��� is given by

log L����� �
Xn

j�1

�mj�
ÿ1f�jyj ÿ b��j�g � c�yj; ��� �2:2�

On differentiation in (2.2) with respect to ��� using the chain rule (McCullagh and
Nelder,17 Section 2.5), the likelihood equation for ��� can be expressed asXn

j�1

mj w��j��yj ÿ �j��0��j�f@���j�=@���g � 0 �2:3�

where �0��� � d�=d� and w��� is the weight function de®ned by

w��� � 1=�f�0���g2V����
In (2.3), @���j�=@��� � xj, but we have left it as such in (2.3) for comparative purposes in
Section 5 with a mixture of GLMs. It can be seen that for ®xed �, the likelihood
equation for ��� is independent of �. The likelihood equation (2.3) can be solved
iteratively using Fisher's method of scoring, which for a GLM is equivalent to using
iteratively reweighted least squares.30 On the �k� 1�th iteration, we form the adjusted
response variable ~yj as

~y
�k�
j � ����k�j � � �yj ÿ ��k�j ��0���k�j � �2:4�

These n adjusted responses are then regressed on the covariates x1; . . . ; xn using
weights m1w���k�1 �; . . . ; mnw���k�n �. This produces an updated estimate ����k�1� for ���,
and hence updated estimates �

�k�1�
j for the �j, for use in the right-hand side of (2.4) to

update the adjusted responses, and so on. This process is repeated until changes in the
estimates are suf®ciently small.
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2.2 Quasi-likelihood approach
For all GLMs, we have the relation

@log f �y; �; ��=@� � m�yÿ ��=f�V���g
so that this ®rst derivative depends only on the ®rst two moments of Y. This led
Wedderburn31 to de®ne a quasi-likelihood approach by the relation

@q=@� � m�yÿ ��=f�V���g
The use of q as a criterion for ®tting allows the class of GLMs to be extended to models
de®ned only by the properties of the ®rst two moments. The function q will correspond
to a true log density if there is a distribution of the GLM type for which

var�Y� � �V��� �2:5�
For a ®xed value of the dispersion parameter �, the quasi-likelihood approach esti-
mates ��� by the value of ��� that minimizes the sum of weighted squaresXn

j�1

mj�yj ÿ �j�2=f�V��j�g �2:6�

A simple moment estimate of � is obtained by the value of � that makes the mean
deviance equal to one or the expected value of the Pearson statistic equal to its degrees
of freedom. With the latter, � is obtained as a root of the equationXn

j�1

mj�yj ÿ �j�2=f�V��j�g � �nÿ d� �2:7�

where d is the number of parameters in the model. In the context of allowing for extra-
Poisson variation, Breslow4 suggested ®rst ®tting the ordinary Poisson model with
� � 1 to obtain an initial estimate of �j for use in the left-hand side of (2.7). The value
of � obtained from (2.7) is then substituted into (2.8) to produce a new estimate of ���
and hence the �j, which are substituted into the left-hand side of (2.7) to produce a
new estimate of �, and so on. This process can be continued until convergence. A
detailed review of the quasi-likelihood approach may be found in the book of
McCullagh and Nelder.17 It is well known that this approach leads to a consistent and
ef®cient estimate of ���; see also Lawless,16 Stirling32 and Kim.33

3 Poisson regression model

3.1 Some standard modi®cations for overdispersed data
We consider now the Poisson regression model. We shall brie¯y review some

modi®cations that can be made to it within a single-GLM framework for the modelling
of overdispersed count data before proceeding to consider some methodology that can
be implemented using a ®nite mixture of GLMs. The Poisson regression model is an
example of a GLM in which the distribution of the response Y with covariate vector x
is Poisson with density

On the EM algorithm for overdispersed count data 79



f �y;�� � feÿ��y=y!gIA�y�; �3:1�
which has mean E�Y� � �, and the natural link is the log function

g��� � log�

� ���Tx

In (3.1), A � f0; 1; 2; . . .g is the set of nonnegative integers and IA�y� is the indicator
function, which is one if y belongs to the set A and is zero otherwise. In many
situations in practice, the population size or, say, the time of exposure varies for each
subject so that the mean of Y is given by a�, where a denotes the known population
size or time of exposure, and � now denotes the mean rate per unit size or time. This
can be dealt with in the theory and software for GLMs by either declaring a as an
`offset' in the speci®cation of the linear predictor or by rede®ning the response to be
the observed rate y=a, with aÿ1 speci®ed as the prior weight. Hence in the sequel we
shall assume without loss of generality that a � 1 for all subjects. A consequence of
using the Poisson regression model is that the variance equals the mean; that is

var�Y� � E�Y�
� �

In practice, however, we often have overdispersed data; that is

var�Y� > �

When the Poisson regression model ®ts the count data poorly, overdispersion is often a
cause of the problem. There are several ways to modify the Poisson regression model.
Using the GLM formulation, we can modify it by either choosing an alternative link
function or an alternative frequency distribution, or both. Since the log link has
properties such as multiplicative effects of covariates on the Poisson mean, researchers
have suggested the use of alternative link functions. On the other hand, there are a lot
of studies of alternative frequency distributions for the Poisson distribution; see, for
example, Breslow,4 Efron11;12 and Lawless.16

3.2 Gamma-Poisson mixture model
A classical approach is to use a continuous Poisson mixture model to adjust for

extra-Poisson variation. In this framework in the nonregression case, the Poisson mean
� is taken to be a latent variable from a distribution, H���, so that the density of Y is
modelled as

f �y� �
Z 1

0

feÿ��y=y!gIA�y�dH��� �3:2�

A common choice for H��� in (3.2) is the gamma ��; �� distribution, which has
probability density function (pdf)
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f��u�ÿ1=ÿ���gexp �ÿ�u�I�0;1��u� ; ��; � > 0� �3:3�
This leads to the density of Y being modelled as

f � y; �; �� � y� �ÿ 1
y

� �
�

� � 1

� �� 1

� � 1

� �y

IA�y� �3:4�

which is the negative binomial distribution NB��; �=�� � 1��. This distribution is the
model for the number of tails y, in independent ¯ips of a coin with probability of heads
equal to ��� � 1�, until one observes � heads. On letting � now denote the mean of this
distribution, we have that

� � �=�
while its variance is

var�Y� � ��=��f�� � 1�=�g
� �� k�2 �3:5�

where k � 1=�. Hence this two-parameter model allows the variance to be greater than
the mean, with the variance equal to the mean in¯ated multiplicatively by the factor
�1� �k�. As k tends to zero in (3.4), we obtain the Poisson model. We can rewrite (3.4) as

f � y;�; k� � y� kÿ1 ÿ 1
y

� �
kÿ1

�� kÿ1

� �kÿ1

�

�� kÿ1

� �y

IA�y� �3:6�

This is the standard negative binomial model for extra-Poisson variation, and it can be
seen that it arises by assuming that � is ®xed as � varies. If, however, we assume that �
varies with � and � remains constant, we obtain a negative binomial distribution with

var�Y� � ��1� k� �3:7�
where k � 1=�. This distribution does not have the form of a standard GLM; see
Nelder and Lee.34 For the negative binomial distribution (3.6), the maximum
likelihood estimate of 			� ����T ; k�T can be obtained as described in Lawless16 for the
log linear model

log� � ���Tx

It was noted there that the results for other regression speci®cations are qualitatively
similar. Within the GLM framework, 			 can be estimated as described in McCullagh
and Nelder17(Section 11.2). For ®xed k, the negative binomial distribution (3.6) has
the form of a GLM with canonical link

���� � log f�=��� kÿ1�g
and variance function

V��� � �� k�2
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Ordinarily, k is unknown. Using the method of moments, it can be computed as a
solution of Xn

j�1

�yj ÿ �̂j�2
�̂j�1� k�̂j� � nÿ d �3:8�

where �̂j is the current estimate of �j. Hence ��� can be estimated by a combined quasi-
likelihood and method of moments approach. Alternatively within the GLM frame-
work, ��� can be estimated by using the Poisson error function with the log link
function, and de®ning the prior weights mj as

mj � �1� k�̂j�ÿ1

The value of k is obtained iteratively from (3.8). The initial ®t is made with unit prior
weights mj � 1; see Breslow.4;5

3.3 Multiplicative random effects model
Another way of viewing the gamma-Poisson mixture model (3.2) is to write the

Poisson parameter as

� � u�0

where �0 is an unknown parameter and u is a value of the random effect U taken to
have some distribution H�u�, which without loss of generality, can be assumed to have
mean one. This is the multiplicative random-effects model.8,35

If we take the random effect U to have the gamma ��; �� distribution with
� � 1=� � kÿ1, we obtain the negative binomial distribution as given by (3.4). The
mean±variance relationship (3.5) will hold for any mixing distribution H for U that
has mean 1 and variance k. Other choices of the distribution of U include the inverse
Gaussian36 as adopted by Dean et al: 37 and the log normal.14

3.4 Additive random effects model
A random effect U can be introduced additively into a GLM on the same scale as the

linear predictor. If for the log link function, the distribution of exp�U� is taken to be
gamma, then it corresponds to the multiplicative random effects model given in the
previous section for overdispersed Poisson data; if it has a log normal distribution,
then it corresponds to the log normal model considered by Hinde.14

More generally, Aitkin38 considered this approach for an arbitrary GLM. For an
unobservable random effect uj for the jth response on the same scale as the linear
predictor, we have that

�j � ���Txj � �uj

where uj is realization of a random variable Uj distributed N�0; 1� independently of
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the jth response Yj � j � 1; . . . ; n�. The (marginal) log likelihood is thus

log L�			� �
Xn

j�1

log

Z 1
ÿ1

f �yj; ���; �; u���u�du �3:9�

where ��u� denotes the pdf of a standard normal random variable.
The integral (3.9) does not exist in closed form except for a normally distributed

response yj. Following the development in Anderson and Hinde,39 Aitkin38 suggested
that it be approximated by Gaussian quadrature, whereby the integral over the normal
distribution of U is replaced by a ®nite sum of g Gaussian quadrature mass-points ui

with masses �i; the ui and �i are given in standard references, for example, Abramowitz
and Stegun.40 The log likelihood so approximated thus has the form for that of a g-
component mixture model Xn

j�1

log
Xg

i�1

�i f � yj; �; �; ui�

where the masses �1; . . . ; �g correspond to the (known) mixing proportions, and the
corresponding mass points u1; . . . ; un to the (known) parameter values. The linear
predictor for the jth response in the ith component of the mixture is

�j � ���Txj � �ui

Hence in this formulation, ui becomes an observed covariate with regression
coef®cient �.

The in¯uential paper by Heckman and Singer41 showed substantial changes in
parameter estimates with quite small changes in the mixing distribution. As noted by
Aitkin,38 a particular disadvantage of the modeling approach described above is the
possible sensitivity of conclusions the choice of a particular distributional form for the
random effect U; there is a lack of information in the data about this distribution. A
second disadvantage is the need to expand the data vector to length g� n as g may have
to be large for accurate Gaussian quadrature. A third disadvantage is the possible
inaccuracy of Gaussian quadrature, where even 20-point integration may not give high
accuracy for the logistic/normal model (Crouch and Spiegelman42). As a consequence,
Aitkin38 suggested treating the masses �1; . . . ; �g as g unknown mixing proportions
and the mass points u1; . . . ; ug as g unknown values of a parameter. This g-component
mixture model is then ®tted using the EM algorithm, as to be described in the next
section. The value of g is increased sequentially until the increase in the likelihood is
assessed to be nonsigni®cant. If ��� were known, then this approach would correspond to
®nding the nonparametric MLE of the distribution of U (the mixing distribution). The
advantage of this approach is that it avoids having to specify the mixing distribution.

In this framework since now ui is also unknown, we can drop the scale parameter �
and de®ne the linear predictor for the jth response in the ith component of the mixture
as

�ij � ���Txj � ui
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Thus ui acts as an intercept parameter for the ith component. One of the ui parameters
will be aliased with the intercept term �0; alternatively, the intercept can be removed
from the model. Recently, Lee and Nelder28 proposed hierarchical generalized linear
models for which ��� is estimated by consideration of the likelihood formed on the basis
of the joint distribution of the observed responses and the unobservable random
effects. Their approach thus avoids the integration in (3.9) that is necessary with the
use of the marginal likelihood; that is, the likelihood based on just the observed
responses.

4 Logistic regression model

We consider now the binomial model for which the density of the jth response Yj is
given by

f � yj; �j� � Nj

yj

� �
�

yj

j �1ÿ �j�Njÿyj IAj
� yj� �4:1�

where Aj � f0; 1; . . . ; Njg. That is, the response yj denotes the number of successes in
a series of Nj independent Bernoulli trials on which the probability of success on each
Bernoulli trial is �j.

In the case of logistic regression, �j is postulated to depend on the vector xj of
covariates through the logit function

log f�j=�1ÿ �j�g � ���Txj; j � 1; . . . ; n �4:2�
or equivalently

�j � exp����Txj�=f1� exp����Txj�g
It is given within the GLM framework by taking the response variable to be yj=Nj,
specifying the error function to be the binomial, and using the canonical logit link.

Logistic regression is a common method for analyzing the effect of a vector of
covariates on the number of successes in a series of Nj independent Bernoulli trials.
Overdispersion relative to the binomial distribution may occur if the Nj trials in a set
are positively correlated, an important covariate is omitted, or xj is measured with
error. Other link functions include the probit, which gives similar results as the logit,
and the complementary log±log function, which is limited to situations where it is
appropriate to deal with the probability parameter � in an asymmetric manner; see
McCulloch and Nelder17 for a comparison of these link functions. A classical approach
in the case of no covariates is to use a continuous binomial mixture modelZ 1

0

Nj

yj

� �
� yj�1ÿ ��NjÿyjIAj

� yj� dH��� �4:3�

where H��� is taken to be the beta ��; �� distribution, which has density

fu�ÿ1�1ÿ u��ÿ1=B��; ��gI�0;1��u�
and
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B��; �� � ÿ���ÿ���=ÿ��� ��
This leads to the beta-binomial distribution

f �yj; �; �� � Nj

yj

� �
fB��� yj; � �Nj ÿ yj�=B��; ��gIAj

�yj� �4:4�

see Williams.43 If we now let � � �=��� ��, we have that

E�Yj� � Nj�

and

var�Yj� � Nj��1ÿ ��f1� �Nj ÿ 1��g
where � � ��� � � 1�ÿ1.

A beta-binomial regression model can be de®ned by postulating parametric forms
for � and �. Applications of this type of regression model appear to have been limited
mainly to the special cases of one- and two-way ANOVA designs as in Crowder;44 see
Ochi and Prentice45 and Anderson.46

As in the case of the Poisson distribution, a quasi-likelihood approach can be used
to deal with overdispersion with the use of the binomial regression model
(Williams25). With this approach, only the ®rst two moments of the distribution of Yj

have to be speci®ed. One such speci®cation has

E�Yj� � Nj�j �4:5�
and

var�Yj� � Nj�j�1ÿ �j�f1� �Nj ÿ 1��g �4:6�
where

log f�j=�1ÿ �jg � ���T
j xj; j � 1; . . . ; n

As Anderson46 noted, it is interesting that the assumptions (4.5) and (4.6) for the
®rst two moments of Yj are satis®ed by the beta-binomial distribution if
� � �1ÿ ���ÿ1�j and � � �1ÿ ���ÿ1�1ÿ �j�.

5 Finite mixtures of GLMs

5.1 Speci®cation of ®nite mixture model
We have seen in the last section that using an additive random effects model leads to

the ®tting of a ®nite mixture of GLMs. Also, if we work with an arbitrary distribution
in (3.2) and consider the nonparametric MLE of it, we are led to the ®tting of a ®nite
mixture mixture of Poisson regression models. It provides additional motivation to
adopt in the ®rst instance a ®nite mixture of GLMs to handle overdispersion when
present with the use of a single GLM. For a mixture of g component distributions of
GLM form in proportions �1; . . . ; �q, we have that the log density of the response
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variable Y is given by

f �y; 			� �
Xg

i�1

�ifi�y; �i; �i� �5:1�

where for a ®xed dispersion parameter �i

log fi� y; �i; �i� � �ÿ1
i f�iyÿ bi��i�g � ci� y; �i� �5:2�

for i � 1; . . . ; g. For the ith component GLM, we let �i be the mean of Y, gi��i� the link
function, and �i � gi��i� � ���T

i x the linear predictor �i � 1; . . . ; g�.
Typically in practice, the components of the mixture will be from the same GLM, so

that the log density for the ith component can be written as

log f �y; �i; �i� � �ÿ1
i f�iyÿ b��i�g � c�y; �i� �5:3�

for i � 1; . . . ; g.
In some applications, the mixing proportions may be modelled as functions of some

vector xm of covariates associated with the response. This vector of covariates xm may
or may not have some elements in common with the vector of covariates x on which
the component means of the mixture depend. A common model for expressing the ith
mixing proportion �i as a function of xm is the logistic for which

�i � �i����; xm�

� exp����T
i xm�

1�
Xgÿ1

h�1

exp�f���T
h xm�

; i � 1; . . . ; gÿ 1

where

��� � ����T
1 ; . . . ; ���T

gÿ1�T

contains the logistic regression coef®cients. The ®rst element of xm is usually taken to
be one, so that the ®rst element of each ���i is an intercept. We let 			 be the vector of
unknown parameters, given by

			 � ����T ; ���T�T

where ��� contains the elements of ���1; :::; ���g known a priori to be distinct.

5.2 Maximum likelihood estimation via the EM algorithm
As the mixing proportions are modelled to depend on the covariate vector xm, which

may have some elements in common with those of x, it means that there may be
identi®ability problems with some of the parameters in ��� and ���, in particular with the
intercept terms of the ���i and the elements of ���; see Wang.1 The question of
identi®ability is to be examined more closely later in the speci®c cases of Poisson and
binomial components. We let y1; . . . ; yn denote n independent observations of the
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response variable with covariates �xT
m1; xT

1 �T ; . . . ; �xT
mn; xT

n �T , respectively, and with
all prior weights unity. The log likelihood for 			 that can be formed from these data
under the mixture model (5.1) is given by

log L�			� �
Xn

j�1

log
Xg

i�1

�ijfi�yj; �ij; �i� �5:4�

where �ij is the canonical parameter for Yj in its ith component density and

�ij � �i����; xmj� �5:5�
for �i � 1; . . . ; g; j � 1; . . . ; n�.

The EM algorithm of Dempster et al:47 can be applied to obtain the MLE of 			 as in
the case of a ®nite mixture of arbitrary distributions; see also McLachlan and
Basford48 and McLachlan and Krishnan.49 More precisely, the EM algorithm can be
used to ®nd solutions of the likelihood function corresponding to local maxima. In the
complete-data framework for the application of the EM algorithm to this problem,
each response yj is viewed as having arisen from one of the g components of the
postulated mixture model of GLMs (5.1). Accordingly, for each yj, the vector zj is
introduced as missing data, where zij � 1 or zero according as yj does or does not
belong to the ith component of the mixture model �i � 1; . . . ; g; j � 1; . . . ; n�. The
unobservable indicator vector zj is taken to be the realization of a random sample of
size one from a multinomial distribution, consisting of a single draw on g categories
with probabilities �1j; . . . ; �gj � j � 1; . . . ; n�; z1; . . . ; zn are independently distributed.
The complete-data log likelihood is given by

log Lc�			� �
Xg

i�1

Xn

j�1

zijflog�ij � log fi� yj; �ij; �i�g �5:6�

5.3 E-step
On the �k� 1�th iteration of the EM algorithm, the E-step is easily affected to give

the Q-function

Q�			; 			�k�� �
Xg

i�1

Xn

j�1

�ij�yj; 			�k��flog�ij � log fi�yj; �ij; �i�g �5:7�

where

�ij�yj; 			�k�� �
�
�k�
ij fi�yj; �

�k�
ij ; �i�Xg

h�1

�
�k�
hj fh�yj; �

�k�
hj ; �h�

�5:8�

is the current estimate of the posterior probability that the jth response belongs to the
ith component given yj with covariate vectors xmj and xj �i � 1; . . . ; g; j � 1; . . . ; n�.
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5.4 M-step
The M-step on the �k� 1�th iteration involves solving the two system of equationsXg

i�1

Xn

j�1

�ij�yi; 			�k��@log�ij=@��� � 0 �5:9�
and Xg

i�1

Xn

j�1

�ij�yj; 			�k��@log fi�yj; �ij; �i�=@��� � 0 �5:10�

assuming that ��� and ��� have no elements known a priori to be in common. This will
often be the case in practice. An application where this is not the case concerns the
zero-in¯ated Poisson regression model of Lambert,50 which is to be discussed later.

Equation (5.8) can be solved using a standard algorithm for logistic regression to
produce the updated estimate ����k�1� for the logistic regression coef®cients. For g � 2,
����k�1� can be computed using the GLIM macro for a binomial error structure with the
canonical logit transformation as the link.

In the situation where the mixing proportions �1; . . . ; �g do not depend on any
covariates, the updated estimate of �i is given by

�
�k�1�
i �

Xn

j�1

�ij�yj; 			�k�1��=n �5:11�

where then

�ij�yj; 			�k�� � �
�k�
i fi�yj; �

�k�
ij ; �i�Xg

h�1

�
�k�
h fh�yj; �

�k�
hj ; �h�

�5:12�

Concerning the computation of ����k�1�, it follows from earlier work on the ML ®tting
of a single GLM that (5.10) can be written asXg

i�1

Xn

j�1

�ij�yj; 			�k��w��ij��yj ÿ �ij��0i��ij�f@�i��ij�=@���g � 0 �5:13�

where, for the ith component, �ij is the mean of Yj. If the ���1; . . . ; ���g have no elements
in common a priori, then

@�i��ij�=@���h � xj; if h=i

� 0; otherwise

In this case, (5.13) reduces to solvingXn

j�1

�ij�yj; 			�k��w��ij��yj ÿ �ij��0i��ij�xj � 0 �5:14�

separately for each ���i to produce ���
�k�1�
i �i � 1; . . . ; g�.
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On contrasting (5.4) with (2.3), it can be seen that it has the same form as for a
single GLM ®tted to the responses y1; . . . ; yn with prior weights m1 �
�i1�y1; 			�k��; . . . ; mn � �in�yn; 			�k�� and ®xed dispersion parameter �i.

In the general case where ���1; . . . ; ���g may have some elements in common, we can
still solve (5.3) using the iteratively reweighted least-squares approach for a single
GLM. The double summation over i and j in (5.11) can be handled by expanding the
response vector to have dimension g� n by replicating each original observation
�yj; xT

mj; xT
j �T g times, with prior weights �1j�yj; 			�k��; . . . ; �gj�yj; 			�k��, ®xed dispersion

parameters �1; . . . ; �g, and linear predictors xT
j ���1; . . . ; xT

j ���g.
Although there are more ef®cient methods of solving (5.13), this approach has the

advantage that it is easily done in a GLM ®tting program, such as GLIM or
GENSTAT. Dietz51 has provided a GLIM-macro for the computation of ���. Previously,
Hinde14 provided the GLIM code for a Poisson model and the modi®cations needed
for the binomial model; see also Anderson and Hinde,39 Anderson46 and Aitkin.38

Wang et al:2 have available FORTRAN codes for algorithms that ®t ®nite mixtures of
Poisson regression models.

The response for each subject has been taken to be unvariate in the above. The
results generalize in a straightforward manner to the case of multivariate responses
Yj � �Y1j; . . . ; Ypj�T , if it is assumed that Y1j; . . . ; Ypj are independently distributed
when conditioned on their component membership of the mixture model; see Wedel
and DeSarbo52 for the details. The case of component multivariate GLMs where
Y1; . . . ; Yp are not necessarily independent has been considered by Dietz.51 The reader
is referred to McLachlan and Krishnan49 for a detailed discussion of the computation
of standard errors of MLEs obtained via the EM algorithm and of the selection of
suitable starting values for this algorithm. As the likelihood function tends to have
multiple local maxima for mixture models, the choice of starting values for the EM
algorithm is an important consideration with its use.

5.5 Multicycle ECM algorithm
We have seen above in the computation of the updated estimate of

			 � �			T
1 ; 			T

2 �T

where 			1 � ��� and 			2 � ��� that ����k�1� and ����k�1� are computed independently of each
other on the M-step of the EM algorithm. Therefore, the latter is the same as the
expectation-conditional maximization (ECM) algorithm with two CM-steps, where on
the ®rst CM-step, 			�k�1� is calculated with 			2 ®xed at 			

�k�
2 , and where on the second

CM-step, 			
�k�1�
2 is calculated with 			1 ®xed at 			

�k�1�
1 . In order to improve convergence,

a multicycle version of the ECM algorithm can be used, where an E-step is performed
after the computation of ����k�1� and before the computation of ����k�1�; see Meng and
Rubin53 and McLachlan and Krishnan49 for further details of the ECM algorithm. The
multicycle E-step is effected here by updating ����k� with ����k�1� in 			�k� in the right-hand
side of the expression (5.8) for �ij�yj; 			�k��.
5.6 Choice of the number of components

Up to now, we have considered the ®tting of a ®nite mixture of GLMs for a given
value of the number of components g in the mixture model. Typically, in practice
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where the mixture model is being used to handle overdispersion, the value of g has to
be inferred from the data. A guide to the ®nal choice of g can be obtained from
monitoring the increase in the log likelihood as g is increased from a single com-
ponent. Unfortunately, it is dif®cult to carry out formal tests at any stage of this
sequential process for the need of an additional component, since, as is well known,
regularity conditions fail to hold for the likelihood ratio statistic � to have its usual
asymptotic null distribution. There is the resampling approach of McLachlan,54 which
was used by Schlattmann and BoÈhning55 to decide on g in their application of Poisson
mixtures to disease mapping. Also, Pauler et al:56 used this method to decide on the
number of Poisson components in the ®nite mixture modelling of anticipatory saccade
counts from schizophrenic patients and controls. In the context of the ®tting of
mixtures of Poisson regression components to overdispersed count data, Wang et al:2

have reported encouraging results for the selection of g based on Akaike's57

information criterion (AIC) and the Bayesian information criterion (BIC) of
Schwarz.58 With these criteria, the choice of g is that value of g that maximizes
2log L�	̂		� ÿ ad, where d denotes the number of parameters in the model, and a � 2;
and log n, for AIC and BIC, respectively. For mixture problems in general, AIC often
leads to too many components being ®tted. Concerning the signi®cance of the
covariates in the mixture of GLMs, Wang et al:2 considered the deletion of covariates
from the model only after the choice of g had been essentially ®nalized.

6 Finite mixture of Poisson regression models

6.1 Mean and variance
We consider now the ®nite mixture model (5.1) of arbitrary component GLMs to the

case where the component GLMs are Poisson regression models with means speci®ed
by a log linear model. That is

fi�yj; �ij� � feÿ�ij�
yj

ij =yj!gIA�yj�
where

log�ij � ���T
i xj; i � 1; . . . ; g

For this g-component mixture of Poisson regression models, the mean and variance
of Yj is equal to

E�Yj� �
Xg

i�1

�i�ij

and

var�Yj� � Efvar�Yj j Zjg � varfE�Yj j Zjg
� E�Yj� � vij

respectively, where
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vij �
Xg

i�1

�i�
2
ij ÿ

Xg

i�1

�i�ij

 !2

Here

�ij � exp��T
i xj�

is the mean of the jth response conditional on its membership of the ith component of
the mixture, and Zj is the component-indicator vector of zeros and ones, where
Zij � �Zj�i is one or zero, according as yj is viewed as having come from the ith
component or not �i � 1; . . . ; g; j � 1; . . . ; n�. Obviously, vij � 0 if and only if

�1j � �2j � � � � � �gj

Hence the mixture model is able to cope better than the one-component
(homogeneous) model with excess variation among Y1; . . . ; Yn.

6.2 Identi®ability
In order to be able to estimate 	, we require the mixture to be identi®able; that is,

two sets of parameters which do not agree after permutation cannot yield the same
mixture distribution. Without covariates, Teicher59 proved that the class of ®nite
mixtures of Poisson distributions is identi®able. As noted by Wang et al:;2 a suf®cient
condition for the class of Poisson regression mixtures to be identi®able is that the
matrices �xm1; . . . ; xmn� and �x1; . . . ; xn� each be of full rank. Wang et al:2 also
considered the residual analysis and goodness-of-®t statistics for this class of mixture
regression models. For examples of applications of ®nite mixtures of Poisson
regression models to biological data sets, the reader is referred to Wang et al:2 who
used this methodology to analyse epileptic seizure frequency and Ames salmonella
assay data.

6.3 Count data with excess zeros
Two-component mixture models are frequently used to model data that appear to

have an excess of zeros. In a medical context, a possible explanation for the excess of
zeros might be due to the fact that the patient is cured after the treatment and so no
realization of the symptom being monitored will occur. This phenomenon can be
handled by a two-component mixture where one of the components is taken to be a
degenerate distribution, having mass 1 at y � 0. The other component is a Poisson (or
binomial) regression model, depending on the situation. This model formed the basis
of the zero-in¯ated Poisson (ZIP) regression technique proposed by Lambert50 for the
handling of zero-in¯ated count data with covariates; see also Yip60;61 and Fong and
Yip.62;63 The fascinating history of this model (in the absence of covariates) has been
given elsewhere in this issue by Meng.64

6.4 Components and mixing proportions without covariates
BoÈhning et al:65 have provided an excellent account of the use of Poisson mixture

models where the mixing proportions and the components do not depend on any
covariates. They also gave several examples of applications of the Poisson mixture
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model in medical problems; see also Lindsay.66 Albert,67 Leroux and Puterman68 and
Lee et al:69 have presented examples in the context of modelling epileptic seizure
counts and fetal movements by Poisson mixtures where the assumption of
independence of the data has been relaxed. In the absence of covariates, we can write
the Poisson mixture model as

f �y; 			� �
Xg

i�1

�if �y; �i�

�
Z

f �y; �� dH���

where

f �y; �� � feÿ��y=y!gIA�y�
and H��� is the measure that puts mass �i at the point � � �i �i � 1; . . . ; g�.

In the work up to now, we have effectively considered the estimation of the mixing
distribution H in the ®xed support case. However, we can treat g itself as unknown,
which is the ¯exible support size case. In this latter case, we can approach the problem
by considering the so-called nonparametric maximum likelihood estimator (NPMLE)
of H, Ĥ, which is the probability measure that maximizes

l�H� �
Xn

j�1

log

Z
f �yj; ��dH���

where H��� is now allowed to be any mixing distribution. Lindsay70 showed that Ĥ is a
discrete measure with at most a ®nite number of support points; see also Lindsay66

and Lindsay and Roeder71 who have considered residual diagnostics for mixture
models.

6.5 Algorithms for NPMLE of a mixing distribution
BoÈhning et al:65 have provided the computer package C.A.MAN (computer-assisted

mixture analysis) for computing Ĥ. It includes an algorithmic menu with choices of
the EM algorithm, the vertex exchange algorithm, a combination of both, as well as the
vertex direction method. The package C.A.MAN has the option to work with ®xed
support size; that is, when the number of components is known a priori. In the latter
case, the EM algorithm is used. More recently, BoÈhning72 has reviewed reliable
algorithms for the ML ®tting of mixture models.

6.6 Disease mapping
Poisson mixtures have played a very useful role in disease mapping. The analysis of

the geographic variation of disease and its representation on a map is an important
topic in epidemiological research. Identi®cation of high-risk groups provides valuable
hints for possible experience and targets for subsequent analytical studies; see
Schlattmann and BoÈhning55 and Schlattmann et al:73 A measure often used is the
standardized mortality rate (SMR). For a given area, SMRj is de®ned as
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SMRj � yj=ej

� yj=
X

h

Ahj!h �6:1�

where for the jth regional area, yj is the number of observed cases, ej is the expected
number based on an external reference, Ahj is the person years in the hth age stratum,
and wh is the age-speci®c mortality rate, which is assumed to be known. A common
approach to map construction in the literature is based on the assumption that yj is the
realization of the random variable Yj which has a Poisson distribution with parameter
�j � �ej. Here � denotes the relative risk of disease due to living within the study area.

The assumption (6.1) implies that all geographical area have the same relative risk
�. This homogeneous model of a single Poisson distribution is often too simple with
overdispersion frequently occurring. One approach for more ¯exibility has been to be
adopt a random effects model, where � is gamma or log normal; see Clayton and
Kaldor,74 Mollie and Richardson75 and Breslow and Clayton.7

Schlattman and BoÈhning55 modelled the distribution of Yj by the Poisson mixture
distribution

f �yj� �
Xg

i�1

�if �yj; �iej�

where the relative risk �i is speci®c to the ith component of the mixture �i � 1; . . . ; g�.
More recently, Schlattmann et al:73 proposed the Poisson mixture regression model

f �yj� �
Xg

i�1

�if �yj; �ij�

for the distribution of Yj, where

�ij � �iej exp ����T
i xj�

and xj is a vector of covariates associated with the jth region, and the parameters �i

and ���i are speci®c to the ith component of the mixture �i � 1; . . . ; g�.

7 Finite mixtures of logistic regressions

7.1 Mean and variance
We consider now the mixture of GLMs model (5.1) in the case where the component

GLMs belong to the binomial family. That is, the density fi�yj; �ij� for the jth response
Yj is given by

fi�yj; �ij� � Nj

yj

� �
�

yj

ij �1ÿ �ij�Njÿyj IAj
�yj� �7:1�
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where Aj � f0; 1; . . . ; Njg. Under the logistic regression model, �ij is postulated to
depend on the covariates so that

log f�ij=�1ÿ �ij�g � ���T
i xj; i � 1; . . . ; g; j � 1; . . . ; n �7:2�

We consider now the mean and variance of the logistic regression mixture modelXg

i�1

�ijfi�yj; �ij� �7:3�

The mean of (7.3) is Xg

i�1

�ij�ij

and its variance is

var�Yj� � Efvar�Yj j Zjg � varfE�Yj j Zj�g

� Nj�
Xg

i�1

�ij�ij��1ÿ
Xg

i�1

�ij�ij�

� f�Nj ÿ 1�=NjgvarfE�Yj j Zj�g
where

varfE�Yj j Zj�g � N2
j f
Xg

i�1

�ij�
2
ij ÿ �

Xg

i�1

�ij�ij�2g:

For Nj > 1, varfE�Yj j Zj�g � 0 holds if and only if E�Yj j Zj� is constant. Hence for
each j � j � 1; . . . ; n�,

var�Yj� � Nj

Xg

i�1

�ij

 !
1ÿ

Xg

i�1

�ij

 !
if and only if

�1j � �2j � � � � � �gj

for 1 � j � n. This implies the proposed mixture model is able to cope better than the
one-component model with extra-binomial variation among Y1; . . . ; Yn due to
heterogeneity in the population.

7.2 Mixing at the binary level
For binary data �Nj � 1�, we can rewrite (7.1) as

Xg

i�1

�ij�ij

 !yj

1ÿ
Xg

i�1

�ij�ij

 !1ÿyj
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so that the g-component mixture of Bernoulli distributions is itself a Bernoulli dis-
tribution with probability parameter Xg

i�1

�ij�ij �7:4�

This model is given within the GLM framework by still specifying the binomial as the
error function, but now specifying the link function according to (7.2) and (7.4). In the
parlance of generalized linear models, mixing at the binary level changes the link but
not the frequency function or dispersion, whereas mixing at the binomial level
�Nj > 1� changes both the link and the frequency function and introduces over-
dispersion. Caution has to be exercised in using (7.3) with Nj � 1, as the model may
not be identi®able without imposing some unrealistic restrictions on the covariates
(Follman and Lambert76;77 and Wang1).

7.3 Identi®ability
Teicher,59;78 Blischke79 and Margolin et al:80 have given necessary and suf®cient

conditions for the identi®ability of the ®nite binomial mixture

f �y; 			� �
Xg

i�1

�i
N

y

� �
�y

i �1ÿ �i�NÿyIAN
�y� �7:5�

where AN � f0; 1; . . . ; Ng: Their results may be summarized as follows. The g-
component binomial mixture model (7.5) with 0 < �i < 1 �i � 1; . . . ; g� is identi®able
if and only if

g � 1

2
�N � 1�

Wang1 has considered the identi®ability of the collection of logistic regression models

f �yj; 			� �
Xg

i�1

�ij
Nj

yj

� �
�

yj

ij �1ÿ �ij�Njÿyj IAj
�yj�; j � 1; . . . ; n �7:6�

where the �ij and the �ij are speci®ed as functions of the covariates by (5.5) and (7.2),
respectively. In the case where the number of Bernoulli trials Nj are all equal (Nj � N
for all j ), suf®cient conditions for the identi®ability of (7.6) are that g � 1

2 �N � 1� and
that the matrices (xm1; . . . ; xmn� and �x1; . . . ; xn� are each of full rank. In the case of
unequal Nj, the restriction on g in these suf®cient conditions is speci®ed in terms of
the minimum number of trials for all proper subsets of the observations. Previously,
Follman and Lambert76;77 had considered suf®cient conditions for the identi®ability of
(7.6) in the special case where the mixing proportions are not functions of any
covariates and ���1; . . . ; ���g have common elements apart from the the ®rst; that is, the
logistic components differ only in their intercepts. They showed that for a binary
response the number of components g in the mixture must be bounded by a function of
the number of covariate vectors that agree except for one element; and for a binomial
response, g must satisfy the same bound or be bounded by a function of the largest
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number of trials per response. Examples on the ®tting of mixtures of logistic
regressions to biological data may be found in Follman and Lambert77 and Wang,1

while Farewell and Sprott81 gave an example on the ®tting of a mixture of binomial
distributions. Overdispersion in the case of the multinomial distribution has been
considered by Mosiman,82 Paul et al:;83 Kim and Margolin84 and Morel and Nagaraj,85

among others.
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