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1 Clustering of Microarray Data via
Mixture Models

1.1 INTRODUCTION

The widespread use of DNA microarray technology (Eisen and Brown, 1999) to per-

form experiments on thousands of gene fragments in parallelhas led to an explosion

of expression data. A variety of multivariate analysis methods have been used to

explore these data for relationships among the genes and thetissue samples. Cluster

analysis has been one of the most frequently used methods forthese purposes. It is an

exploratory technique that attempts to find groups of observations that have similar

values on a set of variables. Sometimes emphasis is placed onthe distinction between

the search for naturally occurring clusters and the division of the entities into a given

number of groups, where there is no implication that the resulting groups are in any

sense a natural division of the data; see, for example, Hand and Heard (2005). But

often there is no emphasis, particularly as most methods forfinding natural clusters

are also useful for segmenting the data.

Agglomerative hierarchical clustering (encompassing single-, complete-, and

average-linkage variants),k-means clustering, and self-organizing maps (SOM) have

been the most widely used methods. Eisen et al. (1998) was thefirst to apply cluster

analysis to microarray data, using an agglomerative hierarchical method using av-
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2 CLUSTERING OF MICROARRAY DATA VIA MIXTURE MODELS

erage linkage with a correlation-based metric, or equivalently, the Euclidean metric

after standardization of the data.

More recently, increasing attention is being given to model-based methods of

clustering of microarray data (Ghosh and Chinnaiyan, 2002;Yeung et al., 2001;

McLachlan et al., 2002; Medvedovic and Sivaganesan, 2002),among others.

A useful way to think about the different clustering procedures is in terms of

the shape of the clusters produced (Reilly et al., 2005). Many clustering methods

assume that the appropriate distance function (metric) is known (for example, they

may use Euclidean distance). But clearly, it would be more appropriate to use a

metric that depends on the shape of the clusters. As pointed out by Coleman et al.

(1999), the difficulty is that the shape of the clusters is notknown until the clusters

have been found, and the clusters cannot be effectively identified unless the shapes

are known. The majority of the existing clustering methods assume that a similarity

measure or metric is knowna priori; often the Euclidean metric is used. In particular,

k-means effectively uses the Euclidean metric, as it can be viewed as being a “hard”

version of the mixture clustering procedure based on a mixture in equal proportions

of multivariate normal components with a common spherical covariance matrix. In

the absence of any prior knowledge on the metric, it is reasonable to adopt a clustering

procedure that is invariant under affine transformations ofthe data; that is, invariant

under transformations of the datay of the form,

y→ Cy+ a, (1.1)
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whereC is a nonsingular matrix. One attractive feature of adoptingmixture models

with elliptically symmetric components such as the normal or t densities, is that

the implied clustering is invariant under affine transformations of the data (that is,

under operations relating to changes in location, scale, and rotation of the data).

Thus the clustering process does not depend on irrelevant factors such as the units

of measurement or the orientation of the clusters in space. If the clustering of a

procedure is invariant under (1.1) for only diagonalC, then it is invariant under

change of measuring units but not rotations. But as commented upon by Hartigan

(1975), this form of invariance is more compelling than affine invariance.

In this chapter, we shall focus on a model-based approach to the clustering of

microarray data using mixtures of normal distributions, which are commonly used in

statistics; see, for example, Ganesalingam and McLachlan (1978), McLachlan and

Basford (1988), Banfield and Raftery (1993), Fraley and Raftery (1998, 2002), and

McLachlan and Peel (2000). As noted by Aitkin et al. (1981), “Clustering methods

based on such mixture models allow estimation and hypothesis testing within the

framework of standard statistical theory.” Previously, Marriott (1974,p. 70) had noted

that the mixture likelihood-based approach “is about the only clustering technique

that is entirely satisfactory from the mathematical point of view. It assumes a well-

defined mathematical model, investigates it by well-established statistical techniques,

and provides a test of significance for the results.” More recently, Yeung et al. (2001)

noted that “in the absence of a well-grounded statistical model, it seems difficult

to define what is meant by a ‘good’ clustering algorithm or the‘right’ number of

clusters.”
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The normal mixture model-based approach is to be applied here in a nonhierar-

chical manner, as there is no reason why the clusters of tissues or genes should be

hierarchical in nature. It is true that if there is a clear, unequivocal grouping, with

little or no overlap between the groups, any method will reach this grouping. But

as pointed out by Marriott (1974), “hierarchical methods are not primarily adapted

to finding groups.” For instance, if the division intog = 2 groups given by some

hierarchical method is optimum with respect to some criterion, then the subsequent

division intog = 3 groups is unlikely to be so. This is due to the restriction that one

of the groups must be the same in both theg = 2 andg = 3 clusterings. As explained

by Marriott (1974), this restriction is not a natural one to impose if the purpose is to

find a natural grouping of the data. As advocated by Marriott (1974, Page 67), “it is

better to consider the clustering problemab initio, without imposing any conditions.”

Another attractive feature of the use of mixture models for clustering is that the

question of the number of clusters can be can be formulated interms of a criterion or

a test for the smallest number of components in the mixture model compatible with

the data. One such criterion is the Bayesian information criterion (BIC) of Schwarz

(1978), while a test can be carried out on the basis of the likelihood ratio statisticλ.

One potential drawback with the normal mixture model-basedapproach to cluster-

ing is that normality is assumed for the cluster distributions. However, this assumption

would appear to be reasonable for the clustering of microarray data after appropriate

normalization.
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In practice, consideration has to be given to the problem of relatively large local

maxima that occur as a consequence of a fitted component having a very small (but

nonzero) variance for univariate data or generalized variance (the determinant of

the covariance matrix) for multivariate data. Such a component corresponds to a

cluster containing a few data points either relatively close together or almost lying in

a lower-dimensional subspace in the case of multivariate data. There is thus a need

to monitor the relative size of the fitted mixing proportionsand of the component

variances for univariate observations, or of the generalized component variances for

multivariate data, in an attempt to identify these spuriouslocal maximizers. One

situation where an apparent spurious solution would be of practical interest is where

one (or more) of the fitted components correspond to a small number of points that

are distant from the rest of the points.

1.2 CLUSTERING OF MICROARRAY DATA

There are two distinct but related clustering problems withmicroarray data. One

problem concerns the clustering of the tissues on the basis of the genes; the other

concerns the clustering of the genes on the basis of the tissues. This duality is

quite common. One may be interested in grouping tissues (patients) with similar

expression values or in grouping genes on patients with similar types of tumors or

similar survival rates.

In clustering microarray data, the clusters of tissues can play a useful role in the

discovery and understanding of new subclasses of diseases.The clusters of genes
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obtained can be used to search for genetic pathways or groupsof genes that might

be regulated together. Also, in the first problem, we may wishfirst to summarize

the information in the very large number of genes by clustering them into groups

(of hyperspherical shape), which can be represented by somemetagenes, such as the

group-sample means. We can then carry out the clustering of the tissues in terms

of these metagenes. As noted by Pollard and van der Laan (2002), most research

on these two problems has been carried out with them considered separately rather

than simultaneously. They propose a statistical frameworkfor two-way clustering;

see also Getz et al. (2000) and the references therein for earlier approaches on this

problem.

We firstly consider the clustering of tissue samples, using the EMMIX-GENE

procedure of McLachlan et al. (2002). For the clustering of the gene profiles,

we shall describe a mixture model with random effects, EMMIX-WIRE (EM -based

MIX ture analysisWI th RandomEffects), as developed recently by Ng et al. (2006a).

More information about these programs can be found at the webaddresseshttp://

www.maths.uq.edu.au/∼gjm/emmix-gene/ andhttp://www.maths.uq.edu.

au/∼gjm/emmix/emmix.html.

1.3 NOTATION

Although biological experiments vary considerably in their design, the data generated

by microarray experiments can be viewed as a matrix of expression levels. ForM

microarray experiments (corresponding toM tissue samples), where we measure the
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expression levels ofN genes in each experiment, the results can be represented by

theN × M matrix. For each tissue, we can consider the expression levels of theN

genes, called itsexpression signature. Conversely, for each gene, we can consider

its expression levels across the different tissue samples,called itsexpression profile.

TheM tissue samples might correspond to each ofM different patients or, say, to

samples from a single patient taken atM different time points.

The expression levels are taken to be the measured (absolute) intensities for

Affymetrix oligonucleotide arrays, whereas for the spotted arrays (cDNA or oligonu-

cleotide arrays), are taken to be the ratios of sample versuscontrol intensities, repre-

sented by the Cy5-channel (red) and Cy3-channel (green) images (see, for example,

Dudoit et al. 2002). It is assumed that one starts the clustering process with pre-

processed (relative) intensities, such as those produced by RMA (for Affy data),

loess-modified log ratios, or differences of logged/generalized-logged data; see, for

example, Parmigiani et al. (2003), Huber et al. (2003), Irizarry et al. (2003), Rocke

and Durbin (2003), and Speed (2003). TheN ×M matrix is portrayed in Figure 1.1,

where each sample represents a separate microarray experiment and generates a set

of N expression levels, one for each gene.

In the sequel, we shall use the vectoryj to represent the measurement (feature

observation) on thejth entity to be clustered. In the context of the classification of

the tissues on the basis of the gene expressions, we can represent theN × M matrix

A of gene expressions as

A = (y1, . . . , yM ), (1.2)
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Expression Profile
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Sample 1   Sample 2                  ...          Sample M
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Fig. 1.1 Gene expression data fromM microarray experiments represented as a matrix of

expression levels with theN rows corresponding to theN genes and theM columns to the

M tissue samples.

where the feature vectoryj (theexpression signature) contains the expression levels

on theN genes in thejth experiment(j = 1, . . . , M). The latter is a nonstandard

problem in parametric cluster analysis because the dimension of the feature space

(the number of genes) is typically much greater than the number of observations (the

number of tissues).

In the context of the clustering of the genes on the basis of the tissues, we can

represent the transpose of the matrixA in terms of the feature vectors as

AT = (y
1
, . . . , yN ), (1.3)

where the feature vectoryj (theexpression profile) contains the expression levels on

the M tissues on thejth gene(j = 1, . . . , N). For this clustering problem, the

number of observations (the number of genes) is very large relative to the dimension

of the feature space (the number of tissues), and so in this sense it falls in the standard
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framework. However, it is not really a standard problem, as not all the genes are

independently distributed.

1.4 CLUSTERING OF TISSUE SAMPLES

In the standard setting of a model-based cluster analysis, the n observations

y1, . . . , yn to be clustered are taken to be independent realizations where the sample

sizen is much larger than the dimensionp of each vectoryj ,

n >> p. (1.4)

It is also assumed that the sizes of the clusters to be produced are sufficiently large

relative top to avoid computational difficulties with near-singular estimates of the

within-cluster covariance matrices.

In the cluster analysis of theM tissue samples on the basis of theN genes, we

haven = M andp = N . Thus the sample sizen will be typically small relative to

the dimensionp, causing estimation problems under the normal mixture model,

f(y; Ψ) =

g
∑

i=1

φ(y; µi,Σi), (1.5)

whereφ(y; µi,Σi) denotes thep-dimensional normal density function with mean

µi and covariance matrixΣi andΨ is the vector of unknown parameters. This is

because theg-component normal mixture model (1.5) with unrestricted component-

covariance matrices is a highly parameterized model with1

2
p(p + 1) parameters for

each component-covariance matrixΣi (i = 1, . . . , g).
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An obvious way to handle the very large number of genes is to perform a principal

component analysis and carry out the cluster analysis on thebasis of the leading

components. The shortcomings of a PCA in such a context is that the leading

components need not necessarily reflect the direction in thefeature space best for

revealing the group structure of the tissues. This is because it is concerned with the

direction of maximum variance, which is composed of variance within the clusters

and variance between the clusters. If the latter are relatively large, then the leading

components may not be so useful for the purposes of cluster analysis. But with the

analysis of microarray data, this problem is compounded by the very large number

of genes and their associated noise. Thus artificial directions can result from noisy

genes and highly correlated ones. Consequently, a potential problem with a PCA is

the determination of an appropriate number of principal components (PCs) useful for

clustering. A common practice is to choose the first few leading components. But it

may not be clear where to stop and whether some of these components are caused by

some artifact or noises in the data. An excellent account of these problems may be

found in Liu et al. (2003). They have developed a Bayesian approach to model-based

clustering which after an initial PCA simultaneously clusters the observations and

selects “informative” variables or components for the cluster analysis.

1.5 THE EMMIX-GENE CLUSTERING PROCEDURE

The EMMIX-GENE procedure handles the problem of a high-dimensional feature

vector by using mixtures of factor analyzers whereby the component correlations
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between the genes are explained by their conditional lineardependence on a small

numberq of latent or unobservable variables specific to each component. In practice

we may wish to work with a subset of the available genes, particularly as the fitting

of a mixture of factor analyzers will involve a considerableamount of computation

time for an extremely large number of genes. Indeed, the simultaneous use of too

many genes in the cluster analysis may serve only to create noise that masks the

effect of a smaller number of genes. Also, the intent of the cluster analysis may

not be to produce a clustering of the tissues on the basis of all the available genes,

but rather to discover and study different clusterings of the tissues corresponding

to different subsets of the genes; see the recent papers of Pollard and van der Laan

(2002) and Friedman and Meulman (2004) on this point. As explained in Belitskaya-

Levy (2006), the tissues (cell lines or biological samples)may cluster according to

cell or tissue type (for example, cancerous or healthy) or according to cancer type

(for example, breast cancer or melanoma). However, the samesamples may cluster

differently according to other cellular characteristics,such as progression through

the cell cycle, drug metabolism, mutation, growth rate, or interferon response, all of

which have a genetic basis.

Therefore, the EMMIX-GENE procedure has two optional stepsbefore the final

step of clustering the tissues. The first step considers the selection of a subset of

relevant genes from the available set of genes by screening the genes on an individual

basis to eliminate those which are of little use in clustering the tissue samples in

terms of the likelihood ratio test statistic. The second step clusters the retained

genesNo into groups on the basis of Euclidean distance so that highlycorrelated
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genes are clustered into the same group. The third and final step of the EMMIX-

GENE procedure considers the clustering of the tissues by fitting mixtures of normal

distributions or factor analyzers. It can be implemented either by considering the

groups of genes simultaneously on the basis of their means orby considering the

groups individually on the basis of all or a subset of the genes in a given group. We

now describe these three steps in more detail.

1.5.1 Step 1: Screening of Genes

In step 1 of EMMIX-GENE, we screen the genes by attempting to delete those

genes that individually are of little use in clustering the tissue samples into two

groups. This screening is undertaken in the absence of tissue samples that are of

known classification. The relevance of a gene for clusteringthe tissue samples can

be assessed on the basis of the value of−2 logλ, whereλ is the likelihood ratio

statistic for testingg = 1 versusg = 2 components in the mixture model. In order to

reduce the effect of atypically large observations on the value of λ, we fit mixtures

of t components with their degrees of freedom inferred from the data. However, the

use oft components in place of normal components still does not eliminate the effect

of outliers on inference of the number of groups in the tissuesamples. For example,

suppose that for a given gene there is no genuine grouping in the tissues, but that

there are a small number of gross outliers. Then a significantly large value ofλ

might be obtained, with one component representing the mainbody of the data (and

providing robust estimates of their underlying distribution) and the other representing
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the outliers. That is, although thet mixture model may provide robust estimates of

the underlying distribution, it does not provide a robust assessment of the number of

groups in the data.

In light of the above, the EMMIX-GENE software automatically assesses the

relevance of each of theN genes by fitting one- and two-componentt mixture models

to the expression data over theM tissues for each gene considered individually. If

−2 logλ is greater than a specified thresholdb1,

−2 logλ > b1 (1.6)

then the gene is taken to be relevant provided that

smin ≥ b2, (1.7)

wheresmin is the minimum size of the two clusters implied by the two-component

t mixture model andb2 is a specified threshold. If (1.6) holds but (1.7) does not

for a given gene, then the three-componentt mixture model is fitted to the tissue

samples on this gene, and the value of−2 logλ calculated for the test ofg = 2 versus

g = 3. If (1.6) holds for this value of−2 logλ, the gene is selected as being relevant

(provided at least two of the three clusters implied by theg = 3 solution have sizes

not less thanb2). Although the null distribution of−2 logλ for g = 2 versusg = 3 is

not the same as forg = 1 versusg = 2 components, it would appear to be reasonable

here to use the same threshold (1.6). The null distribution of −2 logλ for the test of

the null hypothesisH0 : g = g0 versus the alternative hypothesisH1 : g = g1 is

unknown (for finite sample sizes) for normal ort components (McLachlan and Peel,
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2000, Chapter 6). In our applications of EMMIX-GENE, we havetaken

b1 = b2 = 8. (1.8)

The majority of genes in microarray data sets tend to exhibitnear-constant expres-

sions across samples (Dudoit and Fridlyand, 2002), and so many methods preselect

genes by eliminating those with small variance. For example, the gene shaving

methodology of Hastie et al. (2000) is concerned with the identification of small,

homogeneous subsets of genes that have maximal variance across the tissue samples.

As noted by Pollard and van der Laan (2002), genes with low variance can be equally

interesting biologically, and so their two-way clusteringprocedure using hierarchical

PAM (partitioning around medoids) is aimed at identifying clusters of genes with

both low and high variance across tissues. The gene-selection procedure in EMMIX-

GENE aims to identify genes whose distributions are not consistent with a single

normal distribution, and so it can identify potentially valuable genes for clustering

that can have both small and high variances across the tissues.

1.5.2 Step 2: Clustering of Genes: Formation of Metagenes

Concerning the end problem of clustering the tissue sampleson the basis of the genes

considered simultaneously, we could examine the univariate clusterings provided

by each of the selected genes taken individually. But this would be rather tedious

when a large number of genes have been selected. Thus with theEMMIX-GENE

approach, there is a second (optional) stage for clusteringthe genes into a user-

specified number(No) of groups by fitting a mixture in equal proportions ofg = No
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normal distributions with covariance matrices restrictedto being equal to a multiple

of the(M ×M) identity matrix. That is, if the mixing proportions were fixed at 0.5,

then it would be equivalent to using a soft version ofk-means and grouping the genes

in terms of the Euclidean distance between them. Since the gene-profiles have been

normalized, they lie on the surface of the unit hypersphere.Thus, after each M-step

of the EM algorithm, we normalize the updated estimates of the component means

so that they lie on the surface of the unit hypersphere. More precisely, we could fit

mixtures of von Mises-Fisher distributions as in Banerjee et al. (2006).

Each group (cluster) of genes can be represented by one or moreM -dimensional

profile vectors over theM tissues. We follow Huang (2003) in referring to these

cluster representatives asmetagenes. In EMMIX-GENE, we take the sample mean of

the genes within a cluster to be the metagene representing the cluster. This strategy

of using a linear combination of the genes within a cluster torepresent it and so

thereby reducing the dimension of the feature (gene) space also helps smooth out

gene-specific noise through the aggregation within a cluster.

The groups of genes are ranked in terms of the likelihood ratio statistic calculated

on the basis of the fitted mean of a group over the tissues for the test of a single versus

two t components. This is provided that the minimum cluster size is greater than a

specified threshold. Otherwise, such a group of genes would be put at the end of the

list.

A heat map of genes in a group versus the tissues is provided for each of the

groups where, in each group, the tissues can be left in their original order or rearranged
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according to their cluster membership obtained by fitting a univariatet mixture model

on the basis of the group mean. Alternatively, one could cluster the tissues by fitting

a two-component mixture of factor analyzers on the basis of the genes within the

group. Concerning the use of heat maps, they present a grid ofcolored points where

each color represents a gene expression value for a gene in the tissue sample. They

are used here primarily to exhibit similarities between groups or clusters of the tissue

samples. Thus they are most effective in this role when the tissue samples have been

grouped according to their group (cluster) memberships. Ofcourse the heat maps

are also useful in revealing similarities between the genes.

1.5.3 Step 3: Clustering of Tissues

If a clustering is sought on the basis of the totality of the genes, then it can be obtained

by fitting a mixture model to these group means. However, it may be that the number

of group meansNo is too large to fit a normal mixture model with unrestricted

component-covariancematrices. In this circumstance EMMIX-GENE has the option

on the third step that allows for the fitting of mixtures of factor analyzers. The use

of mixtures of factor analyzers reduces the number of parameters by imposing the

assumption that the correlations between the genes can be expressed in a lower space

by the dependence of the tissues onq (q < N ) unobservable factors. In addition to

clustering the tissues on the basis of all of the genes, theremay be interest in seeing if

the different groups of genes lead to different clusteringsof the tissues when each is
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considered separately. For example, a subset of the genes may be all that is required

to identify certain subtypes of the cancer being studied.

It can be seen from above that with the EMMIX-GENE procedure,the genes

are being treated anonymously. That is, we do not incorporate existing biological

information on the function of genes into the selection procedure. Spang (2003)

infuses some biological context into an otherwise unsupervised learning task. He

structures the feature space by using a functional grid provided by the Gene Ontology

annotations.

1.6 CLUSTERING OF GENE PROFILES

In the remainder of this chapter, we consider the clusteringof gene profiles with

or without replication across some experimental conditions of interest. For this

clustering problem, the number of observationsn to be clustered is the number

of genes(n = N), which will usually be very large relative to the dimensionp

of the feature space(p = M). In this sense it falls in the standard framework.

However, this clustering problem is not straightforward asthe profiles of the genes

are not all independentlydistributed and the expression levels may have been obtained

from an experimental design involving replicated arrays. Thus the standard normal

mixture model (1.5) cannot directly be applied to cluster the gene profiles. This is

because in unmodified form, this approach does not incorporate experimental design

information such as disease status of the tissue samples in which the genes are

measured in cross-sectional studies, covariate information such as the time ordering
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of the gene measurements in time-course studies, or the structure of the replicated

data as in longitudinal studies. Recently, Pan (2006) has proposed to incorporate

known gene functions as prior probabilities in model-basedclustering. But there is a

need to develop further clustering procedures that are applicable to data from a wide

variety of experimental designs. For example, microarray experiments are now being

carried out with replication for capturing either biological or technical variability

in expression levels to improve the quality of inferences made from experimental

studies (Lee et al., 2000 and Pavlidis et al., 2003). Replicated measurements from

each tissue sample (subject) are often interdependent and tend to be more alike in

characteristics than data chosen at random from the population as a whole. Similarly,

in time-course studies (Storey et al., 2005), where expression levels are measured

under various conditions or at different time points, gene expressions obtained from

the same condition (subject) are correlated.

Ng et al. (2006a) have developed a random-effects model thatprovides a unified

approach to the clustering of genes with correlated expression levels measured in a

wide variety of experimental situations. Their model is an extension of the normal

mixture model (1.5) to account for the correlations betweenthe gene profiles and to

enable covariate information to be incorporated into the clustering process. Hence the

model is applicable to longitudinal studies with or withoutreplication, for example,

time-course experiments by using time as a covariate, and tocross-sectional experi-

ments by using categorical covariates to represent the different experimental classes.

Ng et al. (2006a) have shown that their random-effects modelEMMIX-WIRE (EM -

basedMIX ture analysisWI th RandomEffects) can be fitted by maximum likelihood
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via the Expectation–Maximization (EM) algorithm for whichthe E- and M-steps can

be implemented in closed form. Hence their model can be fitteddeterministically

without the need for time-consuming Monte Carlo approximations.

In related work, Ng et al. (2006b) have applied this method ofclustering to two

real time-course datsets from the budding yeast (Saccharomyces cerevisiae) genome.

They showed that the proposed method provided clusters of cell-cycle regulated

genes that are supported by existing gene function annotations, and hence enables

inference on regulatory interactions for the genetic network. Their approach was

to search for regulatory control elements (activators and inhibitors) shared by the

clusters of coexpressed genes, based on time-lagged correlations.

As noted by Bryan (2004) with the clustering of gene profiles,any clustering

structure found may not be directly reflective of biologicalrealities, but might be

more due to the preprocessing of the data, which can create sparsely populated areas

in the profile space as an artifact. In such situations, the clustering may still be of

interest from the point of view of which genes are put together in the same cluster

for various choices of the number of clusters.

1.7 EMMIX-WIRE

The EMMIX-WIRE procedure of Ng et al. (2006a) formulates a (multilevel) linear

mixed-effects model (LMM) for the mixture components in which covariate infor-

mation can be incorporated. It can be used for the clusteringof correlated genes,

based on expression microarray data obtained from various experimental designs
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such as repeated measurement data and time-course data. Their proposed general

random-effects model is formulated by incorporating both “gene” effects and “tis-

sue” effects in the mixture modeling of the microarray data.This is in contrast to

the mixed-effects models approaches in Celeux et al. (2005), Luan and Li (2003),

and McLachlan et al. (2004) that involve only gene-specific random effects. Their

methods thus require the independence assumption for the genes which, however,

will not hold in practice for all pairs of genes (McLachlan etal., 2004).

With the EMMIX-WIRE procedure, it is assumed that the observedM -dimensional

vectorsy1, . . . ,yN are assumed to have come from a mixture of a finite number, say

g, of components in some unknown proportionsπ1, . . . , πg, which sum to one. Con-

ditional on its membership of thehth component of the mixture, the vectoryj for the

jth gene follows the model

yj =Xβh +Ubhj + Vch + ǫhj , (1.9)

where the elements ofβh (an M -dimensional vector) are fixed effects (unknown

constants) modeling the conditional mean ofyj in the hth component,bhj (a qb-

dimensional vector) andch (a qc-dimensional vector) represent the unobservable

gene- and cluster-specific random effects, respectively. The random effectsbhj and

ch, and the measurement error vectorǫhj are assumed to be mutually independent. In

(1.9),X,U, andV are known design matrices of the corresponding fixed or random

effects. The specification of (1.9) covers many general random-effects models for

the clustering of correlated gene expression data arising from various microarray

experiments, including those with replications. For example, let t be the number of
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distinct tissues in the experiment. We are given for thejth gene a feature vector

yj = (yT
1j , . . . , yT

tj)
T , whereylj = (yl1j , . . . , ylrj)

T contains ther replications

on the jth gene from thelth tissue(l = 1, . . . , t). With respect to (1.9),βh

is a M -dimensional vector(M = t) modeling the conditional mean ofyj in the

hth component. Moreover, conditional on membership of thehth component, it

is assumed that the random effects are shared among the repeated measurements

of expression on the same gene from the same tissue (bhj in (1.9) with qb = t),

along with the random effects that are shared among gene expressions from the same

tissue (ch in (1.9) with qc = M = tr). The component-specific effectsch for the

tissues induce dependency among the gene-expression levels of genes from the same

component and from the same tissue (correlated genes). By allowing the expression

levels of the genes in a cluster to have their own and cluster-specific random-effects

terms, there can be greater individual and collective variation, respectively, exhibited

by the genes in the same cluster than otherwise possible under a fixed-effects model

without gene- and cluster-specific random effects.

With the LMM, the distributions ofbhj and ch are taken to be multivariate

normal,Nqb
(0, θbhIqb

) and Nqc
(0, θchIqc

), respectively, whereIqb
and Iqc

are

identity matrices with dimensions being specified by the subscripts. The measurement

error vectorǫhj is also taken to be multivariate normalNM (0,Dh), whereDh =

diag(Wφh) is a diagonal matrix constructed from the vector(Wφh) with φh =

(σ2

h1
, . . . , σ2

hqe
)T andW a knownM × qe zero-one design matrix. That is, we allow

thehth component-variance to be different among theM microarray experiments.
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1.8 ML ESTIMATION VIA THE EM ALGORITHM

We letΨ = (ψT
1 , . . . ,ψT

g , π1, . . . , πg−1)
T be the vector of all the unknown parame-

ters, whereψh is the vector containing the unknown parametersβh, θbh, θch, andφh

of thehth component density(h = 1, . . . , g). Ng et al. (2006a) showed that the esti-

mation ofΨ can be obtained by maximum likelihood (ML) via the EM algorithm of

Dempster et al. (1977). The implementation of the E-step is straightforward for mix-

ture models provided that the data can be treated as being independently distributed.

In their model (1.9), the gene-profile vectorsyj are not all independently distributed

as genes within the same cluster (that is, from the same component in the mixture

model) and are allowed to be dependent due to the presence of the random-effects

termch for thehth component in (1.9). However, this problem can be circumvented

by proceeding conditionally on the random-cluster effectsch, as given these terms,

the gene profile vectorsyj are all conditionally independent. In this way, Ng et

al. (2006a) showed that the E- and M-steps can be carried out in closed form. In

particular, we do not have to approximate the E-step by carrying out time-consuming

Monte Carlo approximations.

Within the EM framework, eachyj is conceptualized to have arisen from one of

theg components. We letz1, . . . , zN denote the unobservable component-indicator

vectors, where thehth elementzhj of zj is taken to be one or zero according asyj

does or does not come from thehth component givenc, wherec = (cT
1
, . . . , cT

g )T .

We let y = (yT
1
, . . . , yT

N )T denote the observed data and, correspondingly, put

zT = (zT
1 , . . . , zT

N ). The ML estimation of the normal mixture of LMMs via the
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EM algorithm can be formulated by treating the unobservablecomponent-indicator

variablesz and the random effectsb = (bT
1
, . . . , bT

g )T andc as missing data in the

EM framework (Ng et al., 2004) wherebh = (bT
h1, . . . , b

T
hN )T for h = 1, . . . , g. Let

ǫh = (ǫT
h1

, . . . , ǫT
hn)T for h = 1, . . . , g. With

(yT , zT , bT , cT )T

taken to be the complete data, it follows that the complete-data log likelihood is

given, apart from an additive constant, by

log Lc(Ψ) =

g
∑

h=1

[

n
∑

j=1

zhj log πh − 1

2

{ n
∑

j=1

zhjqb log θbh+

qc log θch +

n
∑

j=1

zhj log |Ah| +
bT

h bh

θbh

+
cT

h ch

θch

+ ǫT
hΩhǫh

}

]

, (1.10)

where

bT
h bh =

n
∑

j=1

zhjb
T
hjbhj

and

Ωh = In ⊗A−1

h

for h = 1, . . . , g, and hence

ǫT
hΩhǫh =

n
∑

j=1

zhjǫ
T
hjA

−1

h ǫhj .

In the above, the sign⊗ denotes the Kronecker product of two matrices. By consider-

ation of (1.10), Ng et al. (2006a) showed that the E- and M-steps can be implemented

in closed form.
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To effect a probabilistic or an outright clustering of the genes intogcomponents,we

can condition on the cluster random-effects vectorch. As the latter is unobservable,

we use its estimated conditional expectation given the observed data,

ĉh = E
Ψ̂
(ch | y), (1.11)

whereE
Ψ̂

denotes taking expectation using the ML estimateΨ̂ for the vectorΨ of

unknown parameters. Since the genes within a cluster are independently distributed

given ch, it suffices to effect a clustering with each gene consideredindividually

in terms of its estimated posterior probabilities of component membership given its

profile vector andch, for h = 1, . . . , g andj = 1, . . . , n. Using Bayes’ theorem,

the posterior probability that thejth gene belongs to thehth component givenyj and

c, τ(yj, c; Ψ) can be expressed as

τ(yj , c; Ψ) = pr{Zhj = 1 | yj , c}

=
πhf(yj | zhj = 1, ch; ψh)

∑g

i=1
πif(yj | zij = 1, ci; ψi),

(1.12)

wheref(yj | zhj = 1, ch; ψh) denotes thehth component density ofyj given the

random effectch. The log of this density is given by

log f(yj | zhj = 1, ch; ψh) = − 1

2

{

log |Bh| +

(yj −Xβh − Vch)TB−1

h (yj −Xβh − Vch)

}

,

apart from an additive constant, is the log of thehth component density ofyj

conditional onch, whereBh = Ah + θbhUU
T .
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1.9 MODEL SELECTION

The specification of the random-effects components in the model (1.9) needs careful

consideration. An identifiability problem could arise if the random-effects model is

specified so that the design matrixV for the random effectsch is the same as the

X for the fixed effectsβh. In their study, Ng et al. (2006a) were concerned with

situations where the emphasis is on the grouping of the genesrather than on the

number of clusters and their link with externally existing groups. That is, they were

concerned primarily in finding which genes are put together in the same cluster for

plausible choices of the number of componentsg in the mixture model. A guide to

plausible values ofg can be obtained using BIC (the Bayesian information criterion)

of Schwarz (1978), whereby the numberg of components in the mixture model is

taken to minimize−2 logL(Ψ̂) + d log n, andd denotes the number of parameters

in the model. In the EM framework,L(Ψ) is the incomplete-data likelihood function

for Ψ. However, as the gene-profile vectorsyj are not all independently distributed,

this likelihood functionL(Ψ) is unable to be calculated directly by taking the product

of the (marginal) densities of theyj . Ng et al. (2006a) suggested thatL(Ψ) be

approximated by forming it as if all theyj were independent. Another approach

would be to use resampling methods (Efron and Tibshirani, 1993; McLachlan, 1987;

McLachlan and Khan, 2004).
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1.10 EXAMPLE: CLUSTERING OF TIME-COURSE DATA

To illustrate the EMMIX-WIRE approach to the clustering of gene profiles, Ng et

al. (2006a) applied it to three representative data sets, each arising from different

kinds of microarray experiments: time course data as in the yeast cell-cycle study

of Spellman et al. (1988), data with repeated measurements as in the yeast galactose

study of Ideker et al. (2000), and finally cross-sectional data involving two groups of

tissues (tumuor and normal) as in the study of human colorectal carcinomas of Muro

et al. (2003).

We report here their first example. By analyzing cDNA microarrays from yeast

cultures synchronized by three independent methods over approximately two cell-

cycle periods, Spellman et al. (1998) identified 800 yeast genes that meet an objective

minimum criterion for cell cycle regulation. In their study, Ng et al. (2006a) consid-

ered the 18α-factor (pheromone)synchronizationwhere the yeast cellswere sampled

at 7 minute intervals for 119 minutes. They worked with a subset of 612 genes that

had no missing expression data across any of the 18 time points. Their aim was to

cluster the cell cycle-regulated genes based on the microarray expression data matrix

of N = 612 rows (genes) andM = 18 columns (time points). They then analyzed

the clusters so formed for common regulatory elements, as described by Spellman et

al. (1998). With reference to (1.9), they took the design matrix X to be an18 × 2

matrix with the(l + 1)th row (l = 0, . . . , 17)

(cos(2π(7l)/ω + Φ) sin(2π(7l)/ω + Φ)),



EXAMPLE: CLUSTERING OF TIME-COURSE DATA 27

whereω is the period of the cell cycle andΦ is the phase offset. They adopted here

the least squares estimation approach considered by Booth et al. (2004) to obtain the

cell cycle periodω = 53 and the initial phaseΦ = 0 from the data set. For the design

matrices of the random effects parts, they tookU = 118 andV = I18. That is, it is

assumed that there exist random gene effectsbhj with qb = 1 and random temporal

effects(ch1, . . . , chqc
) with qc = m = 18. The latter introduce interdependency

among expression levels within the same cluster obtained from the same time point.

Also, they tookW = 118 andφh = σ2

h (qe = 1) so that the component variances

were common among them = 18 experiments. The mixture model of LMMs was

fitted to the data withg = 4 to g = 15 components. The number of componentsg

was determined using BIC for model selection. It indicated here that there are twelve

clusters.

The clustering results forg = 12 as obtained by Ng et al. (2006a) are given in

Figure 1.2, where the expression profiles for genes in each cluster are presented.

From Figure 1.2, it can be seen that the genes have very similar expression patterns

within each cluster, except in clusters 4 and 7, where there is greater individual

variation in some of the genes. This clustering result is different from Spellman’s

clustering, which was based on time of peak expression only.

For Clusters 1, 3, 10, 11, and 12 that show clear periodic expression patterns,

Ng et al. (2006a) searched through the 700-bp upstream region of the start codon of

each gene for the presence of binding site sequences for any known yeast cell cycle

transcription factors like MBF, SBF, Mcm1p-containing factors, and Swi5p factors.
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Cluster No. of genes Binding site Regulator Peak expression

1 35 ACGCGT MBF, SBF G1

3 40 MCM1 + SFF Mcm1p + SFF G2/M

10 11 ACGCGT MBF, SBF G1

11 48 Unknown Unknown G1

12 17 ATGCGAAR Unknown S

Table 1.1 Promoter elements (Yeast cell-cycle data)

The results are summarized in Table 1. They found that the majority of the genes in

these clusters share common promoter elements, and furthermore, they correspond

to known cell-cycle transcription factor binding sites relevant to the time of peak

expression.

1.11 CONCLUSIONS

As an increasing number and variety of high-throughput datasets become available,

cluster analysis is playing an ever increasing role in the analysis of these biological

data. Hierarchical methods have been the primary clustering tool employed to date.

The hierarchical algorithms have been mainly applied heuristically to these cluster

analysis problems. Also, there is no reason why the clustersof tissues (nor genes)
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should belong to a hierarchy such as in the evolution of species. Further, a major

limitation of these methods is their inability to determinethe number of clusters. Thus

there is a need for a model-based approach to this clusteringproblem. Concerning

the clustering of tissue samples, a clustering of, say, sometumors, for example,

will reveal whether tumors that have traditionally been lumped together as one type

should be divided into a number of distinct subtypes, and whether these subtypes have

different prognoses and respond differently to specific therapies. For this clustering

problem, we have described the EMMIX-GENE procedure, whichis a model-based

approach to the clustering of high-dimensional independent observations.

The EMMIX-GENE procedure fits a mixture of multivariate normals without

regression structure on the component means and without constraints on the covari-

ance matrices that arise in experimental designs with structure, including replications

taken over time. Thus it is not directly applicable to the other clustering problem of

grouping the gene-profile vectors as in longitudinal or cross-sectional studies. This

problem arises where, say, the interest is to study the changes in gene expression

of entire groups of (correlated) genes as a means to finding possible functional re-

lationships among them, the identification of transcription factor binding sites, and

the elucidation of biological pathways. The biological rationale underlying the clus-

tering of the gene profiles is the fact that often many coexpressed genes are also

coregulated, which is supported both by an immense body of empirical observations

and by detailed mechanistic explanation (Boutros and Okey,2005). However, it has

been observed that genes with similar profiles sometimes do not share biological

similarity (Clare and King, 2002; Gibbons and Roth, 2002; DeRisi et al., 1997).
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Thus clustering does not provide proof of relationships between the genes, but it does

provide suggestions that help to direct further research. The idea is we can establish

a guilt by association - that is, genes with similar expression patterns are more likely

to have similar biological function. For this clustering problem, we have described

the EMMIX-WIRE procedure, which provides a unified approachto the clustering of

genes with correlated expression levels measured in a wide variety of experimental

situations. This procedure is applicable to longitudinal studies with or without repli-

cation, for example, time-course experiments by using timeas a covariate, and to

cross-sectional experiments by using categorical covariates to represent the different

experimental classes.

Most clustering algorithms require that one gene be assigned to one cluster, adding

an arbitrary element to the analysis. Mixture modeling provides one way to reduce

this arbitrariness and to handle the clustering of the borderline cases. It gives a

probabilistic or “soft” clustering through the the posterior probabilities of component

membership of each gene. An overlapping clustering can be obtained by making a

hard assignment of each gene to one or more of the components (clusters) using a

threshold on the posterior probabilities of component membership; for example, the

jth gene with profile vectoryj belongs to thehth component if its posterior probability

of membership of thehth component is greater than some specified thresholdc.
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