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1 Clustering of Microarray Data via
Mixture Models

1.1 INTRODUCTION

The widespread use of DNA microarray technology (Eisen amavB, 1999) to per-
form experiments on thousands of gene fragments in pahalteled to an explosion
of expression data. A variety of multivariate analysis methhave been used to
explore these data for relationships among the genes anidshe samples. Cluster
analysis has been one of the most frequently used methotiek® purposes. Itis an
exploratory technique that attempts to find groups of olzerms that have similar
values on a set of variables. Sometimes emphasis is pladeé distinction between
the search for naturally occurring clusters and the divisibthe entities into a given
number of groups, where there is no implication that theltiesugroups are in any
sense a natural division of the data; see, for example, HaddHaard (2005). But
often there is no emphasis, particularly as most methodénfding natural clusters
are also useful for segmenting the data.

Agglomerative hierarchical clustering (encompassinglsi) complete-, and
average-linkage variantd)};means clustering, and self-organizing maps (SOM) have
been the most widely used methods. Eisen et al. (1998) wdssht apply cluster

analysis to microarray data, using an agglomerative rébieal method using av-
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erage linkage with a correlation-based metric, or equintilethe Euclidean metric

after standardization of the data.

More recently, increasing attention is being given to mdzded methods of
clustering of microarray data (Ghosh and Chinnaiyan, 20@2jng et al., 2001;

McLachlan et al., 2002; Medvedovic and Sivaganesan, 2@029ng others.

A useful way to think about the different clustering procestuis in terms of
the shape of the clusters produced (Reilly et al., 2005). ydustering methods
assume that the appropriate distance function (metrich@svk (for example, they
may use Euclidean distance). But clearly, it would be mongrgpriate to use a
metric that depends on the shape of the clusters. As poiniedyoColeman et al.
(1999), the difficulty is that the shape of the clusters iskmmwn until the clusters
have been found, and the clusters cannot be effectiveltifdhunless the shapes
are known. The majority of the existing clustering methosisuane that a similarity
measure or metric is knowapriori; often the Euclidean metric is used. In particular,
k-means effectively uses the Euclidean metric, as it cand®ed as being a “hard”
version of the mixture clustering procedure based on a m&xtuequal proportions
of multivariate normal components with a common spheriocabciance matrix. In
the absence of any prior knowledge on the metric, it is realsiento adopt a clustering
procedure that is invariant under affine transformationthiefdata; that is, invariant

under transformations of the dagaof the form,

y — Cy+ a, (1.2)
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whereC'is a nonsingular matrix. One attractive feature of adoptimgure models
with elliptically symmetric components such as the nornrat densities, is that
the implied clustering is invariant under affine transfotiores of the data (that is,
under operations relating to changes in location, scald,ratation of the data).
Thus the clustering process does not depend on irrelevetar§asuch as the units
of measurement or the orientation of the clusters in spat¢helclustering of a
procedure is invariant under (1.1) for only diago@l then it is invariant under
change of measuring units but not rotations. But as comrdaren by Hartigan

(1975), this form of invariance is more compelling than afinvariance.

In this chapter, we shall focus on a model-based approadhetaltistering of
microarray data using mixtures of normal distributionsjakitare commonly used in
statistics; see, for example, Ganesalingam and McLacHhl8rng), McLachlan and
Basford (1988), Banfield and Raftery (1993), Fraley and &gf1998, 2002), and
McLachlan and Peel (2000). As noted by Aitkin et al. (198 Qlustering methods
based on such mixture models allow estimation and hypathesting within the
framework of standard statistical theory.” Previously rhitgt (1974, p. 70) had noted
that the mixture likelihood-based approach “is about thly ctustering technique
that is entirely satisfactory from the mathematical poiitiew. It assumes a well-
defined mathematical model, investigates it by well-esthbH statistical techniques,
and provides a test of significance for the results.” Morendly, Yeung et al. (2001)
noted that “in the absence of a well-grounded statisticatl@hoit seems difficult
to define what is meant by a ‘good’ clustering algorithm or ‘fight’ number of

clusters.”
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The normal mixture model-based approach is to be applieel inem nonhierar-
chical manner, as there is no reason why the clusters okssugenes should be
hierarchical in nature. It is true that if there is a cleareguivocal grouping, with
little or no overlap between the groups, any method will hetiis grouping. But
as pointed out by Marriott (1974), “hierarchical methods aot primarily adapted
to finding groups.” For instance, if the division ingo= 2 groups given by some
hierarchical method is optimum with respect to some coterthen the subsequent
division intog = 3 groups is unlikely to be so. This is due to the restriction tre
of the groups must be the same in bothghe 2 andg = 3 clusterings. As explained
by Marriott (1974), this restriction is not a natural onengpose if the purpose is to
find a natural grouping of the data. As advocated by Marri87@, Page 67), “it is

better to consider the clustering problaiminitio, without imposing any conditions.
Another attractive feature of the use of mixture models fastering is that the
guestion of the number of clusters can be can be formulatexirims of a criterion or
a test for the smallest number of components in the mixturdehcompatible with
the data. One such criterion is the Bayesian informatiaeioin (BIC) of Schwarz
(1978), while a test can be carried out on the basis of théhiled ratio statistic\.
One potential drawback with the normal mixture model-baggatoach to cluster-
ing is that normality is assumed for the cluster distribagioHowever, this assumption
would appear to be reasonable for the clustering of micayatata after appropriate

normalization.
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In practice, consideration has to be given to the problenelatively large local
maxima that occur as a consequence of a fitted componentghaviary small (but
nonzero) variance for univariate data or generalized madgthe determinant of
the covariance matrix) for multivariate data. Such a congmbrtorresponds to a
cluster containing a few data points either relatively eltisgether or almost lying in
a lower-dimensional subspace in the case of multivariat. déhere is thus a need
to monitor the relative size of the fitted mixing proporticarsd of the component
variances for univariate observations, or of the generdlzomponent variances for
multivariate data, in an attempt to identify these spurilmesil maximizers. One
situation where an apparent spurious solution would beaxdtaral interest is where
one (or more) of the fitted components correspond to a smaibeu of points that

are distant from the rest of the points.

1.2 CLUSTERING OF MICROARRAY DATA

There are two distinct but related clustering problems witloroarray data. One
problem concerns the clustering of the tissues on the basieagenes; the other
concerns the clustering of the genes on the basis of theetissThis duality is
quite common. One may be interested in grouping tissuese(pa} with similar
expression values or in grouping genes on patients withairtyipes of tumors or
similar survival rates.

In clustering microarray data, the clusters of tissues day @ useful role in the

discovery and understanding of new subclasses of dised$esclusters of genes
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obtained can be used to search for genetic pathways or godugenes that might
be regulated together. Also, in the first problem, we may Jiish to summarize
the information in the very large number of genes by clustethem into groups
(of hyperspherical shape), which can be represented by stetegenes, such as the
group-sample means. We can then carry out the clusterinigedfigsues in terms
of these metagenes. As noted by Pollard and van der Laan 2002t research
on these two problems has been carried out with them comsldaparately rather
than simultaneously. They propose a statistical frameviarkwo-way clustering;
see also Getz et al. (2000) and the references therein fiieregpproaches on this
problem.

We firstly consider the clustering of tissue samples, usirgEMMIX-GENE
procedure of McLachlan et al. (2002). For the clustering tid gene profiles,
we shall describe a mixture model with random effects, EMMWXRE (EM -based
MIX ture analysisVI th RandomEffects), as developed recently by Ng et al. (2006a).
More information about these programs can be found at theagdbessekttp: //
www.maths.uq.edu.au/~gjm/emmix-gene/ andhttp: //www.maths.uq.edu.

au/~gjm/emmix/emmix.html.

1.3 NOTATION

Although biological experiments vary considerably in tliksign, the data generated
by microarray experiments can be viewed as a matrix of esedevels. Fo\/

microarray experiments (correspondinglitbtissue samples), where we measure the
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expression levels oV genes in each experiment, the results can be represented by
the N x M matrix. For each tissue, we can consider the expressiotslefthe N
genes, called itexpression signatureConversely, for each gene, we can consider
its expression levels across the different tissue sampédled itsexpression profile
The M tissue samples might correspond to eaclibflifferent patients or, say, to

samples from a single patient taken\dtdifferent time points.

The expression levels are taken to be the measured (absoiteasities for
Affymetrix oligonucleotide arrays, whereas for the spdterays (CDNA or oligonu-
cleotide arrays), are taken to be the ratios of sample vesutsol intensities, repre-
sented by the Cy5-channel (red) and Cy3-channel (greemgdmgee, for example,
Dudoit et al. 2002). It is assumed that one starts the clngtgrocess with pre-
processed (relative) intensities, such as those produgeRIMA (for Affy data),
loess-modified log ratios, or differences of logged/gelierd-logged data; see, for
example, Parmigiani et al. (2003), Huber et al. (2003)alry et al. (2003), Rocke
and Durbin (2003), and Speed (2003). THex M matrix is portrayed in Figure 1.1,
where each sample represents a separate microarray egpedand generates a set
of NV expression levels, one for each gene.

In the sequel, we shall use the veciprto represent the measurement (feature
observation) on thgth entity to be clustered. In the context of the classificatid
the tissues on the basis of the gene expressions, we cagseapteeN x M matrix
A of gene expressions as

A= (Y, - Yu), (1.2)
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Sample 1 Sample 2 Sample !
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Fig. 1.1 Gene expression data frofd microarray experiments represented as a matrix of
expression levels with th& rows corresponding to thd genes and thé/ columns to the

M tissue samples.

where the feature vectgy; (theexpression signatujeontains the expression levels
on theN genes in thegith experiment(j = 1, ..., M). The latter is a nonstandard
problem in parametric cluster analysis because the diroertfithe feature space
(the number of genes) is typically much greater than the rarmobobservations (the
number of tissues).

In the context of the clustering of the genes on the basisetifsues, we can

represent the transpose of the matixn terms of the feature vectors as

AT = (y;, ..., yn), (1.3)

where the feature vectay; (theexpression profilecontains the expression levels on
the M tissues on thgth gene(j = 1, ..., N). For this clustering problem, the
number of observations (the number of genes) is very lalgéve to the dimension

of the feature space (the number of tissues), and so in thsestEfalls in the standard
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framework. However, it is not really a standard problem, asall the genes are

independently distributed.

1.4 CLUSTERING OF TISSUE SAMPLES

In the standard setting of a model-based cluster analybis,nt observations
Y, ..., Y, tobe clustered are taken to be independent realizationsavive sample

sizen is much larger than the dimensiprof each vectoy;,

n >>p. (1.4)

It is also assumed that the sizes of the clusters to be prddaressufficiently large
relative top to avoid computational difficulties with near-singulariesttes of the

within-cluster covariance matrices.

In the cluster analysis of th&/ tissue samples on the basis of tNegenes, we
haven = M andp = N. Thus the sample size will be typically small relative to

the dimensiom, causing estimation problems under the normal mixture mode

g
Fy @) = o(y; py, ), (1.5)
=1
whereg(y; u,, X;) denotes the-dimensional normal density function with mean
w; and covariance matri¥’; and¥ is the vector of unknown parameters. This is
because the-component normal mixture model (1.5) with unrestrictethponent-

covariance matrices is a highly parameterized model \%\ai@p + 1) parameters for

each component-covariancematd (i = 1, ..., g).
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An obvious way to handle the very large number of genes isrfopa a principal
component analysis and carry out the cluster analysis omadkes of the leading
components. The shortcomings of a PCA in such a context istligaleading
components need not necessarily reflect the direction irdetiieire space best for
revealing the group structure of the tissues. This is bex#us concerned with the
direction of maximum variance, which is composed of vareawithin the clusters
and variance between the clusters. If the latter are relgtiarge, then the leading
components may not be so useful for the purposes of clussdysis. But with the
analysis of microarray data, this problem is compoundecbyery large number
of genes and their associated noise. Thus artificial doestcan result from noisy
genes and highly correlated ones. Consequently, a pdtproialem with a PCA is
the determination of an appropriate number of principal gonents (PCs) useful for
clustering. A common practice is to choose the first few legdiomponents. But it
may not be clear where to stop and whether some of these canisoare caused by
some artifact or noises in the data. An excellent accourttedd problems may be
foundin Liu et al. (2003). They have developed a Bayesiamaggh to model-based
clustering which after an initial PCA simultaneously ckrstthe observations and

selects “informative” variables or components for the dugnalysis.

1.5 THE EMMIX-GENE CLUSTERING PROCEDURE

The EMMIX-GENE procedure handles the problem of a high-disienal feature

vector by using mixtures of factor analyzers whereby the mmment correlations
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between the genes are explained by their conditional lidependence on a small
numbery of latent or unobservable variables specific to each compoiepractice
we may wish to work with a subset of the available genes, qdatily as the fitting
of a mixture of factor analyzers will involve a considerateount of computation
time for an extremely large number of genes. Indeed, thelsmeous use of too
many genes in the cluster analysis may serve only to crease mtivat masks the
effect of a smaller number of genes. Also, the intent of thestelr analysis may
not be to produce a clustering of the tissues on the basid tifeabvailable genes,
but rather to discover and study different clusterings ef tissues corresponding
to different subsets of the genes; see the recent paperdlafdPand van der Laan
(2002) and Friedman and Meulman (2004) on this point. Asarptl in Belitskaya-
Levy (2006), the tissues (cell lines or biological samplas)y cluster according to
cell or tissue type (for example, cancerous or healthy) coating to cancer type
(for example, breast cancer or melanoma). However, the sameles may cluster
differently according to other cellular characteristisach as progression through
the cell cycle, drug metabolism, mutation, growth rate nteriferon response, all of
which have a genetic basis.

Therefore, the EMMIX-GENE procedure has two optional stegfre the final
step of clustering the tissues. The first step considersdleet®on of a subset of
relevant genes from the available set of genes by scredmérggeines on an individual
basis to eliminate those which are of little use in clusigtine tissue samples in
terms of the likelihood ratio test statistic. The secong stkisters the retained

genesN, into groups on the basis of Euclidean distance so that higbiyelated
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genes are clustered into the same group. The third and fewlaftthe EMMIX-

GENE procedure considers the clustering of the tissuestmgfinixtures of normal
distributions or factor analyzers. It can be implementedeziby considering the
groups of genes simultaneously on the basis of their meaby opbnsidering the
groups individually on the basis of all or a subset of the gene given group. We

now describe these three steps in more detail.

1.5.1 Step 1: Screening of Genes

In step 1 of EMMIX-GENE, we screen the genes by attempting eleté those
genes that individually are of little use in clustering tlestie samples into two
groups. This screening is undertaken in the absence oktissmples that are of
known classification. The relevance of a gene for clustettiegtissue samples can
be assessed on the basis of the value-Blog A, where\ is the likelihood ratio
statistic for testings = 1 versusy = 2 components in the mixture model. In order to
reduce the effect of atypically large observations on tHaevaf \, we fit mixtures
of t components with their degrees of freedom inferred from @ita.dHowever, the
use oft components in place of normal components still does notietita the effect
of outliers on inference of the number of groups in the tissaraples. For example,
suppose that for a given gene there is no genuine groupingeitigsues, but that
there are a small number of gross outliers. Then a significdntge value of\
might be obtained, with one component representing the by of the data (and

providing robust estimates of their underlying distriloafi and the other representing
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the outliers. That is, although thiemixture model may provide robust estimates of
the underlying distribution, it does not provide a robusessment of the number of
groups in the data.

In light of the above, the EMMIX-GENE software automatigatdissesses the
relevance of each of th¥ genes by fitting one- and two-componentixture models
to the expression data over thé tissues for each gene considered individually. If

—2log A is greater than a specified threshé|d

—2log A > by (1.6)

then the gene is taken to be relevant provided that

Smin Z b2; (17)

wheresy,;, is the minimum size of the two clusters implied by the two-pmment

t mixture model and- is a specified threshold. If (1.6) holds but (1.7) does not
for a given gene, then the three-componentixture model is fitted to the tissue
samples on this gene, and the value-@flog A calculated for the test gf = 2 versus

g = 3. If (1.6) holds for this value of-2 log A, the gene is selected as being relevant
(provided at least two of the three clusters implied byghe 3 solution have sizes
not less tham-). Although the null distribution of-2 log A for g = 2 versugy = 3 is

not the same as fgr= 1 versusy = 2 components, it would appear to be reasonable
here to use the same threshold (1.6). The null distributfonZlog A for the test of
the null hypothesidiy : g = go versus the alternative hypothegis : g = g1 is

unknown (for finite sample sizes) for normaliocomponents (McLachlan and Peel,
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2000, Chapter 6). In our applications of EMMIX-GENE, we haaken

by = by = 8. (1.8)

The majority of genes in microarray data sets tend to exh#ar-constant expres-
sions across samples (Dudoit and Fridlyand, 2002), and sty mathods preselect
genes by eliminating those with small variance. For examible gene shaving
methodology of Hastie et al. (2000) is concerned with thanfifieation of small,
homogeneous subsets of genes that have maximal variamnss #oe tissue samples.
As noted by Pollard and van der Laan (2002), genes with lovamae can be equally
interesting biologically, and so their two-way clusterprgcedure using hierarchical
PAM (partitioning around medoids) is aimed at identifyirigsters of genes with
both low and high variance across tissues. The gene-seignibcedure in EMMIX-
GENE aims to identify genes whose distributions are not isterst with a single
normal distribution, and so it can identify potentially wable genes for clustering

that can have both small and high variances across the gissue

1.5.2 Step 2: Clustering of Genes: Formation of Metagenes

Concerning the end problem of clustering the tissue sangpiéise basis of the genes
considered simultaneously, we could examine the unieatsterings provided
by each of the selected genes taken individually. But thisld/de rather tedious
when a large number of genes have been selected. Thus witBMMIX-GENE

approach, there is a second (optional) stage for clusteéhiaggenes into a user-

specified numbefN,) of groups by fitting a mixture in equal proportionspf N,
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normal distributions with covariance matrices restridtedeing equal to a multiple
of the(M x M) identity matrix. That s, if the mixing proportions were fixat 0.5,
then it would be equivalent to using a soft versiokaheans and grouping the genes
in terms of the Euclidean distance between them. Since the-gefiles have been
normalized, they lie on the surface of the unit hypersph€hets, after each M-step
of the EM algorithm, we normalize the updated estimates efctbmponent means
so that they lie on the surface of the unit hypersphere. Mogeigely, we could fit

mixtures of von Mises-Fisher distributions as in Banerjea .g2006).

Each group (cluster) of genes can be represented by one erMalimensional
profile vectors over thé/ tissues. We follow Huang (2003) in referring to these
cluster representatives amtagenesin EMMIX-GENE, we take the sample mean of
the genes within a cluster to be the metagene representrgubter. This strategy
of using a linear combination of the genes within a clustereforesent it and so
thereby reducing the dimension of the feature (gene) spiacehalps smooth out
gene-specific noise through the aggregation within a aluste

The groups of genes are ranked in terms of the likelihood sdéitistic calculated
on the basis of the fitted mean of a group over the tissuesddett of a single versus
two ¢ components. This is provided that the minimum cluster Szgréater than a
specified threshold. Otherwise, such a group of genes waupdibat the end of the
list.

A heat map of genes in a group versus the tissues is provideelafth of the

groups where, in each group, the tissues can be leftin thginal order or rearranged
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according to their cluster membership obtained by fittingisariatet mixture model
on the basis of the group mean. Alternatively, one couldtehtbe tissues by fitting
a two-component mixture of factor analyzers on the basihiefgenes within the
group. Concerning the use of heat maps, they present a gemlafed points where
each color represents a gene expression value for a gene tisshe sample. They
are used here primarily to exhibit similarities betweerug®or clusters of the tissue
samples. Thus they are most effective in this role when Hseié samples have been
grouped according to their group (cluster) membershipscddfse the heat maps

are also useful in revealing similarities between the genes

1.5.3 Step 3: Clustering of Tissues

If a clustering is sought on the basis of the totality of theege then it can be obtained
by fitting a mixture model to these group means. However, it beathat the number
of group meangy, is too large to fit a normal mixture model with unrestricted
component-covariance matrices. In this circumstance EX¥8ENE has the option
on the third step that allows for the fitting of mixtures ofti@canalyzers. The use
of mixtures of factor analyzers reduces the number of pat@sdy imposing the
assumption that the correlations between the genes carpbessed in a lower space
by the dependence of the tissuesqofy < N) unobservable factors. In addition to
clustering the tissues on the basis of all of the genes, thayebe interest in seeing if

the different groups of genes lead to different clusterimigbe tissues when each is
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considered separately. For example, a subset of the genyesanadl that is required

to identify certain subtypes of the cancer being studied.

It can be seen from above that with the EMMIX-GENE procedtine, genes
are being treated anonymously. That is, we do not incorpagsisting biological
information on the function of genes into the selection pthae. Spang (2003)
infuses some biological context into an otherwise unsupedvlearning task. He
structures the feature space by using a functional gridigeahby the Gene Ontology

annotations.

1.6 CLUSTERING OF GENE PROFILES

In the remainder of this chapter, we consider the clustevingene profiles with
or without replication across some experimental cond#ioh interest. For this
clustering problem, the number of observationso be clustered is the number
of genes(n = N), which will usually be very large relative to the dimensign
of the feature spacé = M). In this sense it falls in the standard framework.
However, this clustering problem is not straightforwardtees profiles of the genes
are notall independently distributed and the expressi@ideanay have been obtained
from an experimental design involving replicated arraybugthe standard normal
mixture model (1.5) cannot directly be applied to cluster ¢fene profiles. This is
because in unmodified form, this approach does not incorpesgerimental design
information such as disease status of the tissue samplesichwhe genes are

measured in cross-sectional studies, covariate infoomatich as the time ordering
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of the gene measurements in time-course studies, or thetstewof the replicated
data as in longitudinal studies. Recently, Pan (2006) hapgsed to incorporate
known gene functions as prior probabilities in model-badasdtering. But there is a
need to develop further clustering procedures that arecgtpé¢ to data from a wide
variety of experimental designs. For example, microarrkggements are now being
carried out with replication for capturing either biologicr technical variability

in expression levels to improve the quality of inferenceslentom experimental

studies (Lee et al., 2000 and Pavlidis et al., 2003). Regéicaneasurements from
each tissue sample (subject) are often interdependeneaddd be more alike in
characteristics than data chosen at random from the popuket a whole. Similarly,

in time-course studies (Storey et al., 2005), where exjfmedsvels are measured
under various conditions or at different time points, gexgressions obtained from

the same condition (subject) are correlated.

Ng et al. (2006a) have developed a random-effects modeptbaides a unified
approach to the clustering of genes with correlated exjmes$svels measured in a
wide variety of experimental situations. Their model is ateasion of the normal
mixture model (1.5) to account for the correlations betwiengene profiles and to
enable covariate information to be incorporated into thstelring process. Hence the
model is applicable to longitudinal studies with or withoeplication, for example,
time-course experiments by using time as a covariate, aom&s-sectional experi-
ments by using categorical covariates to represent therdift experimental classes.
Ng et al. (2006a) have shown that their random-effects mah#IX-WIRE (EM -

basedMIX ture analysisVl th RandomEffects) can be fitted by maximum likelihood
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via the Expectation—Maximization (EM) algorithm for whitthe E- and M-steps can
be implemented in closed form. Hence their model can be fiegdrministically

without the need for time-consuming Monte Carlo approxioret.

In related work, Ng et al. (2006b) have applied this methodlas$tering to two
real time-course datsets from the budding yeast (Saccha@escerevisiae) genome.
They showed that the proposed method provided clusters Ibéyede regulated
genes that are supported by existing gene function anoosgtand hence enables
inference on regulatory interactions for the genetic netwdr heir approach was
to search for regulatory control elements (activators anibitors) shared by the

clusters of coexpressed genes, based on time-laggedatmnsl.

As noted by Bryan (2004) with the clustering of gene profilasy clustering
structure found may not be directly reflective of biologicadlities, but might be
more due to the preprocessing of the data, which can creatsedp populated areas
in the profile space as an artifact. In such situations, thsteting may still be of
interest from the point of view of which genes are put togethehe same cluster

for various choices of the number of clusters.

1.7 EMMIX-WIRE

The EMMIX-WIRE procedure of Ng et al. (2006a) formulates autitevel) linear
mixed-effects model (LMM) for the mixture components in ainicovariate infor-
mation can be incorporated. It can be used for the clusterirgprrelated genes,

based on expression microarray data obtained from varigpsrinental designs
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such as repeated measurement data and time-course data.prbip@sed general
random-effects model is formulated by incorporating bajkrie” effects and “tis-
sue” effects in the mixture modeling of the microarray dafhis is in contrast to
the mixed-effects models approaches in Celeux et al. (20@&n and Li (2003),
and McLachlan et al. (2004) that involve only gene-specditdom effects. Their
methods thus require the independence assumption for thesgehich, however,
will not hold in practice for all pairs of genes (McLachlaragt 2004).

With the EMMIX-WIRE procedure, itis assumed that the obsei/ -dimensional
vectorsy,, . ..,y are assumed to have come from a mixture of a finite number, say
g, of components in some unknown proportiens. . ., 74, which sum to one. Con-
ditional on its membership of theth component of the mixture, the vectgy for the

jth gene follows the model

Y; = Xﬁh =+ Ubhj + Ve, + €hj, (19)

where the elements g8, (an M-dimensional vector) are fixed effects (unknown
constants) modeling the conditional meamyfin the hth componentby; (a g»-
dimensional vector) and;, (a ¢.-dimensional vector) represent the unobservable
gene- and cluster-specific random effects, respectiveig rindom effectd;,; and

cn, and the measurement error veatgy are assumed to be mutually independent. In
(1.9), X, U, andV are known design matrices of the corresponding fixed or nando
effects. The specification of (1.9) covers many general gaméffects models for
the clustering of correlated gene expression data arisimg #arious microarray

experiments, including those with replications. For exmiett be the number of
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distinct tissues in the experiment. We are given for ftilegene a feature vector
y; = (i), .., y;)", wherey,; = (yuj, ..., yir;)” contains the- replications
on the jth gene from thdth tissue(l = 1,...,t). With respect to (1.9)3,

is a M-dimensional vecto(M = t) modeling the conditional mean af; in the
hth component. Moreover, conditional on membership of itle component, it
is assumed that the random effects are shared among thdagpeaasurements
of expression on the same gene from the same tidsyeirf (1.9) with ¢, = ¢),
along with the random effects that are shared among genessipns from the same
tissue ¢, in (1.9) withg. = M = tr). The component-specific effeatg for the
tissues induce dependency among the gene-expressiondégeines from the same
component and from the same tissue (correlated genes) |d®yitad) the expression
levels of the genes in a cluster to have their own and clisgtecific random-effects
terms, there can be greater individual and collective Vianarespectively, exhibited
by the genes in the same cluster than otherwise possible arfitked-effects model
without gene- and cluster-specific random effects.

With the LMM, the distributions ofb,; and ¢;, are taken to be multivariate
normal, Ny, (0, Opnlg,) and Ny, (0, 0cnlg, ), respectively, wherd,, andI,, are
identity matrices with dimensions being specified by thesstipts. The measurement
error vectorey; is also taken to be multivariate normah, (0, Dy ), whereD);, =
diagWe,,) is a diagonal matrix constructed from the vect®¢, ) with ¢, =
(031, 0%, )" @andWaknownM x ¢. zero-one design matrix. That s, we allow

the hth component-variance to be different among Mienicroarray experiments.
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1.8 ML ESTIMATION VIA THE EM ALGORITHM

We let® = (v, ..., 4} m1,...,m—1)" be the vector of all the unknown parame-
ters, wherap, is the vector containing the unknown paramef#ystyp, 0.1, ande;,,

of thehth componentdensitih = 1,...,¢g). Ng et al. (2006a) showed that the esti-
mation of® can be obtained by maximum likelihood (ML) via the EM algbnit of
Dempster et al. (1977). The implementation of the E-stefyasghtforward for mix-
ture models provided that the data can be treated as beiagéndently distributed.
In their model (1.9), the gene-profile vectaysare not all independently distributed
as genes within the same cluster (that is, from the same coempdn the mixture
model) and are allowed to be dependent due to the presenhe chnndom-effects
termey, for the hth componentin (1.9). However, this problem can be circumee
by proceeding conditionally on the random-cluster effegtsas given these terms,
the gene profile vectorg; are all conditionally independent. In this way, Ng et
al. (2006a) showed that the E- and M-steps can be carriechatlosed form. In
particular, we do not have to approximate the E-step by oagryut time-consuming

Monte Carlo approximations.

Within the EM framework, eacly; is conceptualized to have arisen from one of
theg components. We lety, ..., zy denote the unobservable component-indicator
vectors, where théth element;,; of z; is taken to be one or zero accordingias

does or does not come from théh component giver, wherec = (cf , ..., cl)7.

We lety = (y7, ..., y%)T denote the observed data and, correspondingly, put

2T = (... 2%). The ML estimation of the normal mixture of LMMs via the
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EM algorithm can be formulated by treating the unobservablaponent-indicator
variablesz and the random effects= (b7, ..., bg)T andc as missing data in the
EM framework (Ng et al., 2004) whetg, = (b, ..., biy) " forh =1,...,g. Let

en=(€,,....,eL YT forh=1,...,g. With

(,yT7 ZT7 ij CT)T

taken to be the complete data, it follows that the completiexdbg likelihood is

given, apart from an additive constant, by

n

g9 n
log L.(¥) = Z lZzhj log 7y, — %{ Zzhjqb log Opn+
h=1

Jj=1 Jj=1

bzbh + cgch

ge loglOcn +> znjlog|An| + +€£Qh€h}1a (1.10)

= Obn Ocn
where
biby =Y 2n;by b,
j=1
and
2, =1, A;"
forh=1,...,9,and hence

n
T T 41
€, 2nen, = g zhjethh €hj-

j=1
Inthe above, the sigR denotes the Kronecker product of two matrices. By consider-
ation of (1.10), Ng et al. (2006a) showed that the E- and Ndsstan be implemented

in closed form.
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To effecta probabilistic or an outright clustering of thegeintagycomponents, we
can condition on the cluster random-effects veeiarAs the latter is unobservable,

we use its estimated conditional expectation given therobgalata,
en = Eg(en | y), (1.11)

where E;, denotes taking expectation using the ML estimétéor the vectorn? of
unknown parameters. Since the genes within a cluster aepéntiently distributed
given ¢y, it suffices to effect a clustering with each gene considandividually
in terms of its estimated posterior probabilities of comgrrmembership given its
profile vector anay,, forh =1, ..., gandj = 1, ..., n. Using Bayes’ theorem,
the posterior probability that thgh gene belongs to theth component givep; and

¢, 7(y,, c; ¥) can be expressed as

T(yjac; W) pI‘{Zhj =1 | yjac}

_ gﬂ'hf(yj | znj = 1, ¢n; y,) (1.12)
Yoima mif (Y |z =1, ez ),

wheref(y; | zn; = 1, cn; 1)) denotes théith component density @j; given the

random effect;. The log of this density is given by

log /(4 | 21y = Lcus ) = —%{1og|Bh| "

(y; — XB, — Ver)" By (y; — XB, - Vch>},

apart from an additive constant, is the log of thén component density of;

conditional onc,,, whereB;, = A, + 0,,UU" .
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1.9 MODEL SELECTION

The specification of the random-effects components in theeihd..9) needs careful
consideration. An identifiability problem could arise iethandom-effects model is
specified so that the design matfikfor the random effectg,, is the same as the
X for the fixed effects3;,. In their study, Ng et al. (2006a) were concerned with
situations where the emphasis is on the grouping of the geatber than on the
number of clusters and their link with externally existimpgps. That is, they were
concerned primarily in finding which genes are put togethghé same cluster for
plausible choices of the number of componenis the mixture model. A guide to
plausible values of can be obtained using BIC (the Bayesian information coteri

of Schwarz (1978), whereby the numbheof components in the mixture model is
taken to minimize-2 log L(!i") + dlogn, andd denotes the number of parameters
in the model. In the EM frameworl,(¥) is the incomplete-data likelihood function
for ¥. However, as the gene-profile vectarsare not all independently distributed,
this likelihood functionZ (%) is unable to be calculated directly by taking the product
of the (marginal) densities of thg,. Ng et al. (2006a) suggested that¥) be
approximated by forming it as if all thg,; were independent. Another approach
would be to use resampling methods (Efron and Tibshira®i31®cLachlan, 1987;

McLachlan and Khan, 2004).



26 CLUSTERING OF MICROARRAY DATA VIA MIXTURE MODELS

1.10 EXAMPLE: CLUSTERING OF TIME-COURSE DATA

To illustrate the EMMIX-WIRE approach to the clustering adfrge profiles, Ng et
al. (2006a) applied it to three representative data sets) adsing from different
kinds of microarray experiments: time course data as in dastycell-cycle study
of Spellman et al. (1988), data with repeated measuremsritstae yeast galactose
study of Ideker et al. (2000), and finally cross-section&daolving two groups of
tissues (tumuor and normal) as in the study of human colalreatcinomas of Muro

et al. (2003).

We report here their first example. By analyzing cDNA micrags from yeast
cultures synchronized by three independent methods oyepxzimately two cell-
cycle periods, Spellman et al. (1998) identified 800 yeaség¢hat meet an objective
minimum criterion for cell cycle regulation. In their studyg et al. (2006a) consid-
ered the 18-factor (pheromone) synchronization where the yeast agte sampled
at 7 minute intervals for 119 minutes. They worked with a stilo$ 612 genes that
had no missing expression data across any of the 18 timespdiiheir aim was to
cluster the cell cycle-regulated genes based on the mrapeaxpression data matrix
of N = 612 rows (genes) and/ = 18 columns (time points). They then analyzed
the clusters so formed for common regulatory elements, sitbed by Spellman et
al. (1998). With reference to (1.9), they took the designrimaX to be anl8 x 2

matrix with the(l 4+ 1)throw (I = 0,...,17)

(cos(2m(71)/w + @) sin(27(71)/w + D)),
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wherew is the period of the cell cycle ardl is the phase offset. They adopted here
the least squares estimation approach considered by Boalth(2004) to obtain the
cell cycle periodv = 53 and the initial phas@ = 0 from the data set. For the design
matrices of the random effects parts, they téddk= 1,5 andV = I;5. Thatis, itis
assumed that there exist random gene effgtsvith ¢, = 1 and random temporal
effects(cp1, .. ., chq.) With . = m = 18. The latter introduce interdependency
among expression levels within the same cluster obtairoed the same time point.
Also, they tookW = 1,5 and¢,, = o}, (¢. = 1) so that the component variances
were common among the = 18 experiments. The mixture model of LMMs was
fitted to the data witly = 4 to ¢ = 15 components. The number of componefts
was determined using BIC for model selection. It indicaterktihat there are twelve

clusters.

The clustering results foy = 12 as obtained by Ng et al. (2006a) are given in
Figure 1.2, where the expression profiles for genes in eadterl are presented.
From Figure 1.2, it can be seen that the genes have very siexitgiession patterns
within each cluster, except in clusters 4 and 7, where themgreater individual
variation in some of the genes. This clustering result ifedéht from Spellman’s
clustering, which was based on time of peak expression only.

For Clusters 1, 3, 10, 11, and 12 that show clear periodicesgion patterns,
Ng et al. (2006a) searched through the 700-bp upstreamrrefithe start codon of
each gene for the presence of binding site sequences fomenynkyeast cell cycle

transcription factors like MBF, SBF, Mcm1p-containingtiars, and SwiSp factors.
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Cluster | No. of genes| Binding site | Regulator Peak expression
1 35 ACGCGT MBF, SBF Gl

3 40 MCM1 + SFF | Mcm1p + SFF| G2/M

10 11 ACGCGT MBF, SBF Gl

11 48 Unknown Unknown Gl

12 17 ATGCGAAR | Unknown S

Table 1.1 Promoter elements (Yeast cell-cycle data)

The results are summarized in Table 1. They found that thenityapf the genes in
these clusters share common promoter elements, and fumtheyrthey correspond
to known cell-cycle transcription factor binding sitesennt to the time of peak

expression.

1.11 CONCLUSIONS

As an increasing number and variety of high-throughput date become available,
cluster analysis is playing an ever increasing role in tredyams of these biological
data. Hierarchical methods have been the primary clugt¢oiol employed to date.
The hierarchical algorithms have been mainly applied Istigélly to these cluster

analysis problems. Also, there is no reason why the clustetissues (nor genes)
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should belong to a hierarchy such as in the evolution of ggeckurther, a major
limitation of these methods is their inability to determihe number of clusters. Thus
there is a need for a model-based approach to this clustprotgem. Concerning
the clustering of tissue samples, a clustering of, say, stumers, for example,
will reveal whether tumors that have traditionally been &t together as one type
should be divided into a number of distinct subtypes, andidréhese subtypes have
different prognoses and respond differently to specificapies. For this clustering
problem, we have described the EMMIX-GENE procedure, wischmodel-based

approach to the clustering of high-dimensional indepetdeservations.

The EMMIX-GENE procedure fits a mixture of multivariate nais without
regression structure on the component means and withogatredmts on the covari-
ance matrices that arise in experimental designs withtsireiancluding replications
taken over time. Thus it is not directly applicable to thesstblustering problem of
grouping the gene-profile vectors as in longitudinal or sfesctional studies. This
problem arises where, say, the interest is to study the @saimggene expression
of entire groups of (correlated) genes as a means to findiegilge functional re-
lationships among them, the identification of transcripfiactor binding sites, and
the elucidation of biological pathways. The biological@atle underlying the clus-
tering of the gene profiles is the fact that often many coesgme genes are also
coregulated, which is supported both by an immense body pfraral observations
and by detailed mechanistic explanation (Boutros and GX&g5). However, it has
been observed that genes with similar profiles sometimesotichrare biological

similarity (Clare and King, 2002; Gibbons and Roth, 2002Ri>¢ et al., 1997).
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Thus clustering does not provide proof of relationshipsieen the genes, but it does
provide suggestions that help to direct further researtie. idlea is we can establish
a guilt by association - that is, genes with similar expi@sgiatterns are more likely
to have similar biological function. For this clusteringpptem, we have described
the EMMIX-WIRE procedure, which provides a unified approtxthe clustering of
genes with correlated expression levels measured in a veidety of experimental
situations. This procedure is applicable to longitudinadiges with or without repli-
cation, for example, time-course experiments by using e covariate, and to
cross-sectional experiments by using categorical coemta represent the different

experimental classes.

Most clustering algorithms require that one gene be asdignene cluster, adding
an arbitrary element to the analysis. Mixture modeling pfes one way to reduce
this arbitrariness and to handle the clustering of the Intirdecases. It gives a
probabilistic or “soft” clustering through the the postenprobabilities of component
membership of each gene. An overlapping clustering can beraa by making a
hard assignment of each gene to one or more of the comporotussefs) using a
threshold on the posterior probabilities of component mensitip; for example, the
Jthgene with profile vectay; belongs to théth component if its posterior probability

of membership of théth component is greater than some specified threshold
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