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Cluster analysis via a finite mixture model approach is considered. With this approach to clustering, the
data can be partitioned into a specified number of clusters g by first fitting a mixture model with g
components. An outright clustering of the data is then obtained by assigning an observation to
the component to which it has the highest estimated posterior probability of belonging; that is, the ith
cluster consists of those observations assigned to the ith component (i ¼ 1, . . . , g). The focus is on the use
of mixtures of normal components for the cluster analysis of data that can be regarded as being continuous.
But attention is also given to the case of mixed data, where the observations consist of both continuous and
discrete variables.

1 Introduction

Finite mixture models are being widely used in medical and other applications to model
the distributions of a wide variety of random phenomena and to cluster data sets.
Examples may be found in the recent monograph of McLachlan and Peel.1 Here we
focus on applications of mixture models where the clustering of the data at hand is the
primary aim of the analysis. In this case, the mixture model is being used purely as a
device for exposing any grouping that may underlie the data. McLachlan and Basford2

have highlighted the usefulness of mixture models as a way of providing an effective
clustering of various data sets under a variety of experimental designs.

With a mixture model based approach to clustering, it is assumed that the data to be
clustered are from a mixture of an initially specified number g of groups in various
proportions. That is, each data point yj is taken to be a realization of the mixture
density

f (yj) ¼
Xg

i¼1

pi fi(yj) (1)

where the g components correspond to the g groups. In Equation (1), the fi(yj) & are
densities and the pi & are non-negative quantities (the mixing proportions) that sum to
1. The fi(yj) are called the component densities of the mixture.
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On specifying a parametric form fi(yj; hi) for each component density, we can fit this
parametric mixture model

f (yj; C) ¼
Xg

i¼1

pifi(yj; hi) (2)

by maximum likelihood (ML) via the expectation maximization (EM) algorithm of
Dempster et al.3 (refer to McLachlan and Krishnan4). Here C ¼ (nT, p1, . . . , pg�1)T is
the vector of unknown parameters, where n consists of the elements of hi known a
priori to be distinct. Once the mixture model has been fitted, a probabilistic clustering
of the data into g clusters can be obtained in terms of the fitted posterior probabilities of
component membership for the data. An outright assignment of the data into g clusters
is achieved by assigning each data point to the component to which it has the highest
estimated posterior probability of belonging. Although these estimated posterior
probabilities may have limited reliability in small samples, they may well give a
satisfactory outright assignment of the data. The choice of the number of components
g in the mixture model can be considered on the basis of the likelihood, which is
discussed in Section 4.

In the earlier case, there is a one to one correspondence between the mixture
components and the groups. For multivariate data of a continuous nature, attention
has been concentrated on the use of multivariate normal components because of their
computational convenience. In those cases where the underlying population consists of
g groups in each of which the feature vector is able to be modelled by a single normal
distribution, the number of components g in the fitted normal mixture model corre-
sponds to the number of groups. However, when the distribution of a group is unable
to be modelled adequately by a single normal distribution but rather needs a normal
mixture distribution, the components in the fitted g component normal mixture model
and in the consequent clusters will correspond to g subgroups rather than to the smaller
number of actual groups represented in the data.

It can be seen that this mixture likelihood based approach to clustering is model
based in that the form of each component density of an observation has to be specified
in advance. Hawkins et al.5 commented that most writers on cluster analysis ‘lay more
stress on algorithms and criteria in the belief that intuitively reasonable criteria should
produce good results over a wide range of possible (and generally unstated) models’.
For example, the trace W criterion, where W is the pooled within-cluster sums of
squares and products matrix, is predicated on normal groups with (equal) spherical
covariance matrices; but as they pointed out, many users apply this criterion even in the
face of evidence of nonspherical clusters or, equivalently, would use Euclidean distance
as a metric. They strongly supported the increasing emphasis on a model based
approach to clustering. Indeed, as remarked by Aitkin et al.6 in the reply to the
discussion of their paper, ‘when clustering samples from a population, no cluster
method is a priori believable without a statistical model’. Concerning the use of mixture
models to represent nonhomogeneous populations, they noted in their paper that
‘Clustering methods based on such mixture models allow estimation and hypothesis
testing within the framework of standard statistical theory’. Previously, Marriott7 had
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noted that the mixture likelihood based approach ‘is about the only clustering technique
that is entirely satisfactory from the mathematical point of view. It assumes a well
defined mathematical model, investigates it by well established statistical techniques and
provides a test of significance for the results’.

We shall focus here on normal mixture models for the clustering of continuous data,
where the ith component density for the jth observation yj is specified as

fi(yj; hi) ¼ f(yj; li, Ri) (3)

and f(yj; li, Ri) denotes the p variate normal density function with mean li and
covariance matrix Ri(i ¼ 1, . . . , g).

A robust version is presented too by using the t distribution in place of the normal
in the specification of the component distributions in the mixture model. We also
consider the case of high dimensional data, where the number of parameters is large
relative to the number of observations, we consider the use of mixtures of factor
analysers. This approach enables a normal mixture model to be fitted to a sample of n
data points of dimension p, where p is large relative to n. The number of free
parameters is controlled through the dimension of the latent factor space. By working
in this reduced space, it allows a model for each component covariance matrix with
complexity lying between that of the isotropic and full covariance structure models. The
extension of the normal mixture model to handle the clustering of data with mixed
variables (continuous and mixed features) is covered.

2 ML estimation

The ML estimate of C is obtained as an appropriate root of the likelihood equation

q log L(C)

qC
¼ 0 (4)

where L(C) denotes the likelihood function for C formed from the observed random
sample y1, . . . , yn. Solutions of Equation (4) corresponding to local maxima can be
found by application of the EM algorithm. The EM algorithm is applied in
the framework where an observation yj is conceptualized to have arisen from one of
the components and the indicator vector zj denoting its component of origin is taken to
be missing, where zij ¼ (zj)i is defined to be one or zero, according as to whether yj did
or did not arise from the ith component of the mixture (i ¼ 1, . . . , g; j ¼ 1, . . . , n): The
complete data vector is therefore declared to be

yc ¼ (yT, zT)T (5)

where

y ¼ (yT
1 , . . . , yT

n )T (6)
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contains the observed data and

z ¼ (zT
1 , . . . , zT

n )T (7)

contains the unobservable component indicator variables.
The complete data log likelihood for C, log Lc(C), is given by

log Lc(C) ¼
Xg

i¼1

Xn

j¼1

zij{ log pi þ log fi(yj; hi)} (8)

The E step of the EM algorithm requires averaging the complete data log likelihood
log Lc(C) over the conditional distribution of z given the observed data vector y, using
the current fit for the vector of unknown parameters C. As log Lc(C) is linear in
the unobservable data zij, the E step [on the (k þ 1)th iteration] simply requires
the calculation of the current conditional expectation of Zij given the observed data
y, where Zij is the random variable corresponding to zij. This yields the Q function
given by

Q(C; C(k)) ¼
Xg

i¼1

Xn

j¼1

ti(yj; C
(k)){ logpi þ log fi(yj; hi)} (9)

where

ti(yj; C
(k)) ¼ EC(k) (Zij j y)

¼ prC(k) {Zij ¼ 1 j yj}

¼
p(k)

i fi(yj; h
(k)
i )

f (yj; C
(k))

(10)

is the posterior probability that the jth observation yj belongs to the ith component
(i ¼ 1, . . . , g; j ¼ 1, . . . , n). In Equation (10), EC(k) and prC(k) denote expectation and
probability, respectively, using the current value C(k) for C.

The M step on the (k þ 1)th iteration requires the global maximization of
Q(C; C(k)) with respect to C over the parameter space O to give the updated estimate
C(kþ1). The updated estimate of the ith mixing proportion pi is given then by

p(kþ1)
i ¼

Xn

j¼1

ti(yj; C
(k))

n
, i ¼ 1, . . . , g (11)
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The updated estimate of the vector n containing the distinct parameters in the component
densities satisfies the equation

Xg

i¼1

Xn

j¼1

tij(yj; C
(k))

q log fi(yj; yi)

qn
¼ 0 (12)

For normal component densities, the estimates of the component means li and
covariance matrices Ri are given in closed form, namely

l
(kþ1)
i ¼

Pn
j¼1 t

(k)
ij yj

Pn
j¼1 t

(k)
ij

(13)

and

R
(kþ1)
i ¼

Pn
j¼1 t

(k)
ij (yj � l

(kþ1)
i )(yj � l

(kþ1)
i )T

Pn
j¼1 t

(k)
ij

(14)

for i ¼ 1, . . . , g, where t(k)
ij ¼ ti(yj; C

(k)).
The E and M steps are alternated repeatedly until the difference

L(C(kþ1))� L(C(k))

changes by an arbitrarily small amount in the case of convergence of the sequence
of likelihood values {L(C(k))}. Dempster et al.3 showed that the (incomplete data)
likelihood function L(C) is not decreased after an EM iteration, that is,

L(C(kþ1))�L(C(k)) (15)

for k ¼ 0, 1, 2, . . .. Hence, convergence must be obtained with a sequence of likelihood
values that are bounded above. Recently, Ng and McLachlan8 have investigated the
speeding up the fitting of normal mixtures by the use of the incremental EM algorithm
and variants whereby the available observations are divided into B (B� n) blocks and
the E step is implemented for only a block of observations at a time before the next M
step is performed.

As the likelihood equation (4) tends to have multiple roots corresponding to local
maxima, the EM algorithm needs to be started from a variety of initial values for
the parameter vector C or for a variety of initial partitions of the data into g
groups. The latter can be obtained by randomly dividing the data into g groups
corresponding to the g components of the mixture model. With random starts, the
effect of the central limit theorem tends to have the component parameters initially
being similar at least in large samples. One way to reduce this effect is to first select a
small random subsample from the data, which is then randomly assigned to the g
components. The first M step is then performed on the basis of the subsample. The
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subsample has to be sufficiently large to ensure that the first M step is able to produce
a nondegenerate estimate of the parameter vector C. Coleman et al.9 have considered
using a combinatorial search for a good starting point to apply the EM algorithm.
They compared two local searches with a hierarchical agglomerative approach where
the objective function to be minimized was taken to be the determinant of the pooled
within-cluster covariance matrix W .10

The choice of root of the likelihood equation in the case of homoscedastic
components is straightforward in the sense that the ML estimate exists as the global
maximizer of the likelihood function. The situation is less straightforward in the case of
heteroscedastic components as the likelihood function is unbounded. In practice,
consideration has to be given to the problem of relatively large local maxima that
occur as a consequence of a fitted component having a very small (but non-zero)
variance for univariate data or generalized variance (the determinant of the covariance
matrix) for multivariate data. Such a component corresponds to a cluster containing a
few data points either relatively close together or almost lying in a lower dimensional
subspace in the case of multivariate data. There is thus a need to monitor the relative
size of the fitted mixing proportions and of the component variances for univariate
observations, or of the generalized component variances for multivariate data, in an
attempt to identify these spurious local maximizers.

The reader is referred to the appendix in McLachlan and Peel1 for the availability of
software for the fitting of normal mixture models, including the EMMIX programme of
McLachlan et al.11 The current version of EMMIX is available from http:==www.
maths.uq.edu.au=˜ gjm=emmix=emmix.html. Concerning the availability of mixture
modelling facilities in general purpose statistical packages, there is the MCLUST
software package of Fraley and Raftery,12 which is interfaced to the S-PLUS commer-
cial software.

3 Classi¢cation likelihood approach

Another likelihood based approach to clustering is what is sometimes called the
classification likelihood approach, whereby C and z are chosen to maximize the
complete data log likelihood log Lc(C). That is, z1, . . . , zn are treated as unknown
parameters to be estimated along with C. This procedure has been considered by
several authors, Hartley and Rao,13 John14 and Scott and Symons,15 among others.
This maximization can be approached iteratively, using the EM equations16 in
which the current estimate ti(yj; C

(k)) of the posterior probability of ith component
membership of the mixture model is replaced by z(k)

ij , which is equal to one if

i ¼ arg max
h

th(yj; C
(k))

and is zero otherwise. Unfortunately, with this procedure, the zj increases in number
with the number of observations, and under such conditions, the ML estimate of
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C need not be consistent.17 Under the assumption of equal mixing proportions and
equal spherical component covariance matrices

Ri ¼ s2Ip, i ¼ 1, . . . , g (16)

where Ip is the p� p identity matrix, the classification ML approach leads to clustering
via the trace W criterion18 or, equivalently, k means. If the sphericity assumption (16) is
relaxed to equal component covariance matrices of arbitrary shape, then the classifica-
tion ML approach is equivalent to the det W criterion, as originally suggested by
Friedman and Rubin.19

4 Choice of the number of components

With a mixture model based approach to clustering, the question of how many clusters
there are can be considered in terms of the number of components of the mixture model
being used. It is sensible in practice to approach the latter question of the number of
components g in a mixture model in terms of an assessment of the smallest number of
components compatible with the data. A guide to the final choice of g can be obtained
from monitoring the increase in the log likelihood as g is increased from a single
component. Unfortunately, it is difficult to carry out formal tests at any stage of this
sequential process for the need of an additional component, since, as is well known,
regularity conditions fail to hold for the likelihood ratio statistic l to have its usual
asymptotic null distribution of chi square with degrees of freedom equal to the
difference between the number of parameters under the null and alternative hypotheses.

A formal test of the null hypothesis H0: g ¼ g0 versus the alternative H1: g ¼
g1(g1 > g0) can be undertaken using a resampling method, as described by
McLachlan.20 Bootstrap samples are generated from the mixture model fitted under
the null hypothesis of g0 components. That is, the bootstrap samples are generated from
the g0 component mixture model with the vector C of unknown parameters replaced by
its ML estimate ĈCg0

computed by consideration of the log likelihood formed from the
original data under H0. The value of �2 log l is computed for each bootstrap sample
after fitting mixture models for g ¼ g0 and g1 in turn to it. The process is repeated
independently a number of times (B), and the replicated values of �2 log l formed from
the successive bootstrap samples provide an assessment of the bootstrap, and hence of
the true, null distribution of �2 log l. It enables an approximation to be made to the
achieved level of significance P corresponding to the value of �2 log l evaluated from
the original sample. The rth order statistic of the B bootstrap replications can be used to
estimate the quantile of order r=(Bþ 1). A preferable alternative would be to use the rth
order statistic as an estimate of the quantile of order (3r� 1)=(3Bþ 1).

A commonly used method of testing the above hypotheses is to adopt the BIC
criterion of Schwarz,21 which, when applied in the present context, leads to H0 being
rejected if twice the increase in the log likelihood (i.e., �2 log l) is greater than d log n,
where d denotes the difference between the number of parameters under the two
hypotheses. Further information based criteria for tests on the number of components
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in a mixture model have been considered, including the integrated classification
likelihood criterion, as proposed by Biernacki et al.22

5 Mixtures of t distributions

For many applied problems, the tails of the normal distribution are often shorter than
appropriate. Also, the estimates of the component means and covariance matrices can
be affected by observations that are atypical of the components in the normal mixture
model being fitted. McLachlan and Peel23 and Peel and McLachlan24 have considered
the fitting of mixtures of (multivariate) t distributions. The t distribution provides a
longer tailed alternative to the normal distribution. Hence it provides a more robust
approach to the fitting of normal mixture models, as observations that are atypical of a
normal component are given reduced weight in the calculation of its parameters.

The t density with location parameter li, positive definite matrix Ri and ni degrees of
freedom is given by

ft(yj; li, Ri, ni) ¼
G((ni þ p)=2)jRij

�1=2

(pni)
(1=2)pG(ni=2){1þ d(yj, li; Ri)=ni}

(1=2)(niþp)
(17)

where

d(yj, li; Ri) ¼ (yj � li)
T

R
�1
i (yj � li) (18)

denotes the Mahalanobis squared distance between yj and li (with Ri as the covariance
matrix). If ni > 1, li is the mean of Y j, and if ni > 2, ni(ni � 2)�1

Ri is its covariance
matrix. As ni tends to infinity, Y j becomes marginally multivariate normal with mean li
and covariance matrix Ri. Hence this parameter ni may be viewed as a robustness
tuning parameter. It can be fixed in advance or it can be inferred from the data for each
component, thereby providing an adaptive robust procedure.1

The t distribution does not have substantially better breakdown behaviour than the
normal. The advantage of the t mixture model is that, although the number of outliers
needed for breakdown is almost the same as with the normal mixture model, the
outliers have to be much larger. This point is made more precise in Hennig25 who has
provided an excellent account of breakdown points for the ML estimation of location
scale mixtures with a fixed number of components g.

6 Reduction in dimension of parameter vector

For the parametric mixture model (2), the vector C of unknown parameters consists of
the distinct elements in the component parameter vectors hi, along with the mixing
proportions. In practice, it is important that the dimension of C is not large relative to
the sample size n.
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The g component normal mixture model with unrestricted component covariance
matrices is a highly parameterized model with (1=2)p(pþ 1) parameters for each
component covariance matrix Ri(i ¼ 1, . . . , g). Banfield and Raftery26 introduced a
parameterization of the component covariance matrix Ri based on a variant of the
standard spectral decomposition of Ri,

Ri ¼
Xp

v¼1

livaivaT
iv (19)

where ai1, . . . , aip denote the eigenvectors corresponding to the eigenvalues
li1� li2� � � � lip > 0 of Ri(i ¼ 1, . . . , g). They expressed Ri further as

Ri ¼ liAiLiA
T
i (20)

where Ai ¼ (ai1, . . . , aip) is the (orthogonal) matrix of the eigenvectors of Ri. Conven-
tions for normalizing li and Li include taking li ¼ li1 (the largest eigenvalue of Ri) for
which then

Li ¼ diag 1,
li2

li1

, . . . ,
lip

li1

� �
(21)

Another requirement is jKij ¼ 1 for which li¼jRij
1=p and

Li ¼ diag
li1

li

, . . . ,
lip

li

� �

The parameter li controls the volume of the cluster corresponding to the ith
component, Li its shape and Ai its orientation. A reduction in the number of parameters
is achieved by imposing various constraints on Ai, Li and li. For example, the
constraint Ai ¼ A(i ¼ 1, . . . , g) imposes the same orientation on the g clusters. Applica-
tions of mixture models under the model (20) for the component covariance matrices
have been considered by Bensmail et al.27 and Fraley and Raftery,12 among others.

A common approach to reducing the number of dimensions is to perform a principal
component analysis (PCA) and then to perform the cluster analysis on the basis of the
first few leading principal components. But as is well known, projections of the feature
data yj onto the first few principal axes are not always useful in portraying the group
structure [refer to McLachlan and Peel1 (p. 239) for for an illustrative example of this].

7 Mixtures of factor analysers

One approach for reducing the number of unknown parameters in the forms
for the component covariance matrices Ri is to adopt the mixtures of factor analysers
model, as considered by McLachlan and Peel.1,28,29 This model was originally proposed
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by Ghahramani and Hinton30 for the purposes of visualizing high dimensional data in a
lower dimensional space to explore for group structure; refer to Tipping and Bishop31

who considered the related model of mixtures of principal component analysers for the
same purpose. With the mixture of factor analysers model, the ith component
covariance matrix Ri has the form

Ri ¼ BiB
T
i þDi, i ¼ 1, . . . , g (22)

where Bi is a p� q matrix of factor loadings and Di is a diagonal matrix. It assumes that
the component correlations between the observations can be explained by the condi-
tional linear dependence of the latter on q latent or unobservable variables specific to
the given component. Unlike the PCA model, the factor analysis model (22) enjoys a
powerful invariance property: changes in the scales of the feature variables in yj appear
only as scale changes in the appropriate rows of the matrix Bi of factor loadings.

If the number of factors q is chosen sufficiently smaller than p, the representation (22)
imposes some constraints on the component covariance matrix Ri and thus reduces the
number of free parameters to be estimated. Note that in the case of q > 1, there is an
infinity of choices for Bi, since Equation (22) is still satisfied if Bi is replaced by BiCi,
where Ci is any orthogonal matrix of order q. One (arbitrary) way of uniquely
specifying Bi is to choose the orthogonal matrix Ci so that BT

i D�1
i Bi is diagonal (with

its diagonal elements arranged in decreasing order). Assuming that the eigenvalues of
BiB

T
i are positive and distinct, the condition that BT

i D�1
i Bi is diagonal as mentioned

above imposes (1=2)q(q� 1) constraints on the parameters. Hence then the number of
free parameters for each component covariance matrix is

pqþ p� (1=2)q(q� 1)

With the factor analysis model, we avoid to compute the inverses of iterates of the
estimated p� p covariance matrix Ri that may be singular for large p relative to n. This
is because the inversion of the current value of the p� p matrix (BiB

T
i þDi) on each

iteration can be undertaken using the result that

(BiB
T
i þDi)

�1
¼ D�1

i �D�1
i Bi(Iq þ BT

i D�1
i Bi)

�1BT
i D�1

i (23)

where the right hand side of Equation (23) involves only the inverses of q� q matrices,
since Di is a diagonal matrix. The determinant of (BiB

T
i þDi) can then be calculated as

jBiB
T
i þDij ¼

jDi j

jIq � BT
i (BiB

T
i þDi)

�1Bij

Direct differentiation of the log likelihood function shows that the ML estimate of the
diagonal matrix Di satisfies

D̂Di ¼ diag(V̂V i � B̂BiB̂B
T

i ) (24)
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where

V̂V i ¼

Pn
j¼1 ti(yj; ĈC)(yj � l̂li)(yj � l̂li)

T

Pn
j¼1 ti(yj; ĈC)

(25)

It can be seen from Equation (24) that some of the estimates of the elements of the
diagonal matrix Di (the uniqueness) will be close to zero if effectively not more than q
observations are unequivocally assigned to the ith component of the mixture in terms of
the fitted posterior probabilities of component membership. This will lead to spikes or
near singularities in the likelihood. One way to avoid this is to impose the condition of a
common value D for the Di,

Di ¼ D, i ¼ 1, . . . , g (26)

The mixture of probabilistic component analysers (PCAs) model, as proposed by
Tipping and Bishop,31 has the form (22) with each Di now having the isotropic
structure

Di ¼ s2
i Ip, i ¼ 1, . . . , g (27)

Under this isotropic restriction (27) the iterative updating of Bi and Di is not
necessary since given the component membership of the mixture of PCAs, B(kþ1)

i

and s(kþ1)2

i are given explicitly by an eigenvalue decomposition of the current value
of V i.

The mixtures of factor analysers model can be fitted by using the alternating
expectation conditional maximization algorithm.32 We can make use of the link
of factor analysis with the probabilistic PCA model (27) to specify an initial value
C(0) for C.29

8 Mixed feature data

We consider the case where some of the feature variables are discrete. That is, the
observation vector yj on the jth entity to be clustered consists of m discrete variables
in the vector y1j in addition to p continuous variables now represented by the vector
y2j(j ¼ 1, . . . , n). The ith component density of the jth observation

yj ¼ (yT
1j, yT

2j)
T

can then be written as

fi(yj) ¼ fi(y1j)fi(y2j j y1j) (28)

The symbol fi is being used generically here to denote a density where, for discrete
random variables, the density is really a probability function.
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In discriminant and cluster analyses, it has been found that it is reasonable to proceed
by treating the discrete variables as if they are independently distributed within a class
or cluster. This is known as the NAIVE assumption.33,34 Under this assumption, the ith
component conditional density of the vector y2j of discrete features is given by

fi(y1j) ¼
Ym

v¼1

fiv(y1vj) (29)

where fiv(y1vj) denotes the ith component conditional density of the vth discrete feature
variable y1vj in y1j.

If y1v denotes one of the distinct values taken on by the discrete variable y1vj, then
under Equation (29) the (k þ 1)th update of fiv(y1v) is

f (kþ1)
iv (y1v) ¼

Pn
j¼1 ti(yj; C

(k)) d[y1vj, y1v]þ c1
Pn

j¼1 ti(yj; C
(k))þ c2

(30)

where d[y1vj, y1v] ¼ 1 if y1vj ¼ y1v and is zero otherwise, and C(k) is the current estimate
of the vector of all the unknown parameters that now include the probabilities for the
discrete variables. In Equation (30), the constants c1 and c2, which are both equal to
zero for the ML estimate, can be chosen to limit the effect of zero estimates of fiv(y1v) for
rare values y1v. One choice is c2 ¼ 1 and c1 ¼ 1=dv, where dv is the number of distinct
values in the support of y1vj.

33

We can allow for some dependence between the vector y2j of continuous variables
and the discrete data vector y1j by adopting the location model as, for example, in Hunt
and Jorgensen.35 With the location model, fi(y2j jy1j) is taken to be multivariate normal
with a mean that is allowed to be different for some or all of the different levels of y1j.

As an alternative to the use of the full mixture model, we may proceed conditionally
on the realized values of the discrete feature vector y1j. This leads to the use of the
conditional mixture model for the continuous feature vector y2j,

f (y2j jy1j) ¼
Xg

i¼1

pi(y1j) fi(y2j j y1j) (31)

where pi(y1j) denotes the conditional probability of ith component membership of the
mixture given the discrete data in y1j. A common model for pi(y1j) is the logistic model
under which

pi(y1j) ¼
exp (bi0 þ b

T
i y1j)

1þ
Pg�1

h¼1 exp (bh0 þ b
T
h y1j)

(32)
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where bi ¼ (bi1, , bip1
)T for i ¼ 1, . . . , g� 1, and

pg(y1j) ¼ 1�
Xg�1

h¼1

ph(y1j)

9 Example

We consider the clustering of patients on the basis of pretrial covariates alone for the
prostate cancer clinical trial data of Byar and Green.36 The data are analysed in the
form used by Hunt and Jorgensen.35 There are n ¼ 475 patients on which 12 pretrial
variates are measured. Eight are taken to be continuous (age, weight index, systolic and
diastolic blood pressure, serum haemoglobin, size of primary tumour, index of tumour
stage histolic grade, serum prostatic acid phosphatase) and four to be discrete
(performance rating, cardiovascular disease history, electrocardiogram code and bone
metastases). The number of levels of these latter four categorical variates as analysed
was 3, 2, 7 and 2, respectively.

We fitted a two component mixture model to these mixed feature data to compare
the two clusters obtained with the clinical stage (3 or 4) and trial outcomes of the
patients, who are stratified according to their treatment status (‘treated’ or ‘untreated’).
In Table 1, we present the results for the NAIVE model for the component probability
functions for the discrete variates and the normal model (with unrestricted covariance
matrices) for the component densities for the continuous variates, which are taken to be
independent of the discrete features. We also relaxed the latter assumption by adopting
a location model for the continuous variates with respect to the discrete feature variate
of bone metastases. But it led to very similar results, as did other variants of the mixture
model that involved using the logistic model (32).

It can be seen in Table 1 that cluster 1 membership and clinical Stage 3 status are
associated with a better chance of survival. The patterns of outcomes for the 42 patients
whose model and clinical classifications conflict suggest that the mixture model based
classifications are better indicators of prognosis than the clinical criteria used.

Table 1 Clusters and outcomes for treated and untreated patients

Patient group Outcome

Alive Prostate death Cardio death Other death

Untreated patients
Cluster 1 Stage 3 39 17 37 32

Stage 4 3 4 3 2
Cluster 2 Stage 3 1 5 2 4

Stage 4 14 49 18 7
Treated patients
Cluster 1 Stage 3 50 4 53 20

Stage 4 4 0 2 6
Cluster 2 Stage 3 1 5 1 9

Stage 4 25 37 23 11
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