Package ‘EMMIXmcfa’

October 18, 2017

Type Package

Title Mixture of Factor Analyzers with Common Factor Loadings

Version 2.0.8

Date 2017-10-18

Author Suren Rathnayake, Geoff McLachlan, Jungsun Baek

Maintainer Geoff McLachlan <g.mclachlan@uq.edu.au>

Description Fits a mixture of factor analyzers with a common component matrix for the factor loadings before the transformation of the latent factors to be white noise. It is designed specifically for the task of displaying the observed data points in a lower (q-dimensional) space, where q is the number of factors adopted in the factor-analytic representation of the observed vector.

License GPL (>= 2)

Suggests EMMIX, mvtnorm, GGally, ggplot2

NeedsCompilation no

R topics documented:

EMMIXmcfa-package ... 1
ari ... 3
err ... 4
factor_scores ... 5
mcfa ... 6
plot_factors ... 9
rmix .. 10

Index 12

EMMIXmcfa-package Mixture Models with Common Factor Loadings
Description

Fits a mixture of factor analyzers with a common component matrix for the factor loadings before the transformation of the latent factors to be white noise. It is designed specifically for the task of displaying the observed data points in a lower (q-dimensional) space, where q is the number of factors adopted in the factor-analytic representation of the observed vector.

It also provides a greater reduction in the number of parameters in the model. Component distributions can either be from the family of multivariate normals or from the family of multivariate t-distributions. Maximum likelihood estimators of model parameters are obtained using the Expectation-Maximization algorithm.

Details

Package: EMMIXmcfa
Type: Package
Version: 2.0.8
Date: 2017-10-18
License: GPL

Author(s)

Suren Rathnayake, Jangsun Baek, Geoffrey McLachlan

References

See Also

mcfa

Examples

```r
## Not run:
set.seed(1)
Y <- scale(iris[, -5])
mcfa_model <- mcfa(Y, g = 3, q = 3)
mctfa_model <- mctfa(Y, g = 3, q = 3)
## End(Not run)
```
Computes adjusted Rand Index

Description

Computes adjusted Rand Index.

Usage

ari(cls, hat_cls)

Arguments

cls Vector containing labels or classes.
hat_cls Vector of labels same length as cls.

Details

Measures the agreement between two set of partitions. The upper bound 1 implies perfect agree-
ment. Expected value is zero if the partitions are random.

Value

Scaler specifying how closely two partitions agree.

References

See Also

err

Examples

Not run:
set.seed(1984)
Y <- scale(iris[, -5])
model <- mcfa(Y, g = 3, q = 3, nkmeans = 1, nrandom = 0)
ari(model$clust, iris[, 5])
err(model$clust, iris[, 5])
End(Not run)
Minimum Number of Mis-Allocations.

Description

Given two vectors each corresponding to a set of categories, this function finds the minimum number of mis-allocations by rotating the categories.

Usage

```
err(cls, hat_cls)
```

Arguments

- `cls` Vector of labels.
- `hat_cls` Vector of labels same length as `cls`.

Details

Rotates the categories for all possible permutations, and returns the minimum number of mis-allocations. The number of categories in each set of labels does not need to be the same. It may take several minutes to compute when the number of categories is large.

Value

Integer specifying the minimum number of mis-allocations.

Author(s)

Suren Rathnayake

See Also

- `ari`

Examples

```r
## Not run:
set.seed(1984)
Y <- scale(iris[, -5])
model <- mcfa(Y, g = 3, q = 3, nkmeans = 1, nrandom = 0)
# ari(model$clust, iris[, 5])
# err(model$clust, iris[, 5])
## End(Not run)
```
factor_scores

Computes Factor Scores.

Description

This function computes factor scores given a data set and an EMMIXmcfa model.

Usage

factor_scores(Y, model, tau = NULL, clust = NULL, ...)

Arguments

model
Model of class "mcfa", "mctfa", "mfa", or "mtfa".

Y
Data matrix with variables in columns in the same order as used in model estimation.

tau
Optional. Posterior probabilities of belonging to the components in the mixture model. If not provided, they will be estimated.

clust
Optional. Indicators of belonging to the components. If not provided, will be estimated using tau.

...
Not used.

Details

Factor scores can be used in visualization of the data in the factor space.

Value

U
Estimated conditional expected component scores of the unobservable factors given the data and the component membership. Size is \(n \times q \times g \), where \(n \) is the number of sample, \(q \) is the number of factors and \(g \) is the number components.

Fmat
Means of the estimated conditional expected factors scores over estimated posterior distributions. Size \(n \times q \).

UC
Alternative estimate of Fmat where the posterior probabilities for each sample are replaced by component indicator vectors which contain one in the element corresponding to the highest posterior probability while others zero. Size \(n \times q \).

Author(s)

Geoffrey McLachlan, Suren Rathnayake, Jungsun Baek

References

Examples

Fit a MCFA model to a subset
set.seed(1)
samp_size <- dim(iris)[1]
sel_subset <- sample(1 : samp_size, 75)
model <- mcfa(iris[sel_subset, -5], g=3, q=2, nkmeans=1, nrandom=0)

plot the data points in the factor space
plot(model)

Allocating new samples to the clusters
Y <- iris[-c(sel_subset), -5]
Y <- as.matrix(Y)
clust <- predict(model, Y)
factor_scores <- factor_scores(Y, model)

Visualizing new data in factor space
plot_factors(factor_scores, type="Fmat", clust=clust)

mcfa

Mixture of Common Factor Analyzers

Description

Functions for fitting of Mixtures Common Factor Analyzers (MCFA) and Mixtures of Common t-Factor Analyzers (MCtFA). Maximum Likelihood estimates of the model parameters are obtained using the Expectation–Maximization algorithm.

MCFA adds the following restrictions to,

$$\Sigma_i = A \Omega_i A^T + D \quad (i = 1, \ldots, g),$$

and

$$\mu_i = A\xi_i \quad (i = 1, \ldots, g)$$

where A is a $p \times q$ matrix, ξ_i is a q-dimensional vector, Ω_i is a $q \times q$ positive definite symmetric matrix, and D is a diagonal $p \times p$ matrix.

With this representation, the component distribution of Y_j is modeled as

$$Y_j = A U_{ij} + e_{ij}$$

with prob. $\pi_i (i = 1, \ldots, g)$ for $j = 1, \ldots, n$, where the (unobservable) factors U_{i1}, \ldots, U_{in} are distributed independently $N(\xi_i, \Omega_i)$, independently of the e_{ij}, which are distributed independently $N(0, D)$, where D is a diagonal matrix, $(i = 1, \ldots, g)$.

Usage

mcfa(Y, g, q, ...)
mctfa(Y, g, q, ...)

Default S3 method:
mcfa(Y, g, q, itmax = 500, nkmeans = 20, nrandom = 20,
tol = 1.e-5, init_clust = NULL, init_para = NULL,
Arguments

- **Y**: A matrix or a data frame of which rows correspond to observations and columns to variables.
- **x, object**: An object of class mcfa or mctfa.
- **g**: Number of components.
- **q**: Number of factors.
- **itmax**: Maximum number of EM iterations.
- **nkmeans**: The number of times the k-means algorithm to be used in partition the data into g groups. These groupings are then used in initializing the parameters for the EM algorithm.
- **nrandom**: The number of random g-group partitions for the data to be used initializing the EM algorithm.
- **tol**: The EM algorithm terminates if the measure of convergence falls below this value.
- **init_clust**: A vector or matrix consisting of partition of samples to be used in the EM algorithm. For matrix of partitions, columns must corresponds individual partitions of the data. Optional.
- **init_para**: A list containing model parameters to be used as initial parameter estimates for the EM algorithm. Optional.
- **init_method**: To determine how the initial parameter values are computed. See Details.
- **conv_measure**: The default 'diff' stops the EM iterations if |l(k+1) - l(k)| < tol where l(k) is the log-likelihood at the kth EM iteration. If 'ratio', then the convergence of the EM steps is measured using the |(l(k+1) - l(k))/l(k+1)|.
- **df_init**: Initial values of the degree of freedom parameters for mctfa.
- **df_update**: If df_update = TRUE (default), then the degree of freedom parameters values will be updated during the EM iterations. Otherwise, if df_update = FALSE, they will be fixed at the initial values specified in df_init.
- **warn_messages**: If warn_messages = TRUE (default), the output would include error messages for instances, if any, where the model fitting function failed to provide estimates of parameters. Otherwise the messages will not be stored.
- **...**: Not used.
Details

With the default init_method = "rand-A", initialization of the parameters is done by using the procedure in Baek et al. (2010) where initial values for elements of A are drawn from the $N(0,1)$ distribution. This method is appropriate when the columns of the data are on the same scale. The init_method = "eigen-A" takes the first q eigen vectors of Y as the loading matrix A.

Value

Object of class c("emmixmcfa", "mcfa") or c("emmixmcfa","mctfa") containing the fitted model parameters is returned. Details of the components are as fellows:

- g: Number of mixture components.
- q: Number of factors.
- pivec: Mixing proportions of the components.
- A: Loading matrix. Size $p \times q$.
- xi: Matrix containing factor means for components in columns. Size $q \times g$.
- omega: Array containing factor covariance matrices for components. Size $q \times q \times g$.
- D: Error covariance matrix. Size $p \times p$.
- U: Estimated conditional expected component scores of the unobservable factors given the data and the component membership. Size is $Size n \times q \times g$.
- Fmat: Means of the estimated conditional expected factors scores over estimated posterior distributions. Size $n \times q$.
- UC: Alternative estimate of Fmat where the posterior probabilities for each sample are replaced by component indicator vectors which contain one in the element corresponding to the highest posterior probability while others zero. Size $n \times q$.
- clust: Cluster labels.
- tau: Posterior probabilities.
- logL: Log-likelihood of the model.
- BIC: Bayesian Information Criteria.
- warn_msg: Description of error messages, if any.

Author(s)

Suren Rathnayake, Jangsun Baek, Geoffrey McLachlan

References

Examples

```r
mcfa_fit <- mcfa(iris[, -5], g = 3, q = 3,
                 itmax = 250, nkmeans = 5, nrandom = 5, tol = 1.e-5)
plot(mcfa_fit)
```

Plot Function for Factor Scores.

Description
Plot function for factor scores given factor score matrix of fitted model.

Usage

```r
plot_factors(scores, type = "Fmat",
             clust = if (exists('clust', where = scores)) scores$clust else NULL,
             limx = NULL, limy = NULL)
```

Arguments
- `scores`: A list containing factor scores specified by Fmat, UC or U, or a model of class mcfa, mctfa, mfa, or mtfa.
- `type`: What type of factor scores are to be plotted. See Details.
- `clust`: Indicators of belonging to components. If available, they will be portrayed in plots. If not provided, looks for clust in scores, and sets to NULL if still not available.
- `limx`: Numeric vector. Values in limx will only be used in setting the x-axis range for 1-D and 2-D plots.
- `limy`: Numeric vector. Values in limy will only be used in setting the y-axis range for 1-D and 2-D plots.

Details
The type should either be "U", "UC" or the default "Fmat". If type = "U", then the estimated conditional expected component scores of the unobservable factors given the data and the component membership are plotted. If type = "Fmat", then the means of the estimated conditional expected factors scores over estimated posterior distributions are plotted. If type = "UC", then an alternative estimate of "Fmat", where the posterior probabilities are replaced by component indicator vector, is plotted.

Author(s)
Geoffrey McLachlan, Suren Rathnayake, Jungsun Baek

References
Examples

```r
# Visualizing data used in model estimation
set.seed(1)
inds <- dim(iris)[1]
indSample <- sample(1:inds, 75)
model <- mcfa(iris[indSample, -5], g = 3, q = 2, nkmeans = 1, nrandom = 0)
err(model$clust, iris[indSample, 5])
# same as plot_factors(model, tyep = "Fmat", clust = model$clust)
plot(model)
# can provide alternative groupings of samples via plot_factors
plot_factors(model, clust = iris[indSample, 5])
# same as plot_factors(model, type = "UC")
plot(model, type = "UC")
Y <- iris[-c(indSample), -5]
Y <- as.matrix(Y)
clust <- predict(model, Y)
err(clust, iris[-c(indSample), 5])
fac_scores <- factor_scores(Y, model)
plot_factors(fac_scores, type="Fmat", clust = clust)
plot_factors(fac_scores, type="Fmat", clust = iris[-c(indSample), 5])
```

rmix

Random Deviates from EMMIXmcfa Models

Description

Random number generator for EMMIXmcfa models.

Usage

```r
rmix(n, model, ...)
```

Arguments

- `model` Model of class `mcfa`, `mctfa`, `mfa`, or `mtfa`.
- `n` Number of sample to generate.
- `...` Not used.

Details

This function uses the `rdemmix2` function in the EMMIX package to generate samples from the mixture components.

Algorithm works by first drawing a component based on the mixture proportion in the model, and then drawing a sample from the component distribution.
Value

```
dat  # Matrix with samples drawn in rows.
```

Author(s)

Geoffrey McLachlan, Suren Rathnayake

References

Examples

```r
## Not run:
set.seed(1)
model <- mcfa(iris[, -5], g=3, q=2, nkmeans=1, nrandom=1)
dat <- rmix(n = 10, model = model)

## End(Not run)
```
Index

*Topic clustering
 EMMIXmcfa-package, 1
*Topic cluster
 ari, 3
 err, 4
 factor_scores, 5
 mcfa, 6
 plot_factors, 9
 rmix, 10
*Topic models
 factor_scores, 5
 mcfa, 6
 plot_factors, 9
 rmix, 10
*Topic model
 EMMIXmcfa-package, 1
*Topic multivariate
 EMMIXmcfa-package, 1
 factor_scores, 5
 mcfa, 6
 plot_factors, 9
 rmix, 10
*Topic package
 EMMIXmcfa-package, 1
ari, 3, 4
EMMIXmcfa (EMMIXmcfa-package), 1
emmixmcfa (EMMIXmcfa-package), 1
EMMIXmcfa-package, 1
emmixmcfa-package (EMMIXmcfa-package), 1
err, 3, 4
factor_scores, 5
mcfa, 6
mctfa (mcfa), 6
plot.emmixmcfa (mcfa), 6
plot_factors, 9
predict.emmixmcfa (mcfa), 6
print.emmixmcfa (mcfa), 6
rmix, 10

summary.emmixmcfa (mcfa), 6