
STATISTICS IN MEDICINE

Statist. Med. 19, 83–98 (2000)

PATIENT-SPECIFIC ANALYSIS OF SEQUENTIAL
HAEMATOLOGICAL DATA BY MULTIPLE LINEAR

REGRESSION AND MIXTURE DISTRIBUTION MODELLING

C. E. McLAREN 1∗, E. L. KAMBOUR 2, G. J. McLACHLAN 3, H. C. LUKASKI 4, X. LI 5,
G. M. BRITTENHAM6 AND G. D. McLAREN7;8

1 Division of Epidemiology; Department of Medicine and Chao Family Comprehensive Cancer Center;
University of California; Irvine; CA 92697; U.S.A.

2Department of Statistics; Texas A&M University; College Station; TX 77840; U.S.A.
3Department of Mathematics; The University of Queensland; Brisbane; Qld 4072; Australia

4USDA; ARS; Grand Forks Human Nutrition Research Center; Grand Forks; ND 58202; U.S.A.
5University of North Dakota School of Medicine and Department of Veterans A�airs Medical Center; Fargo;

ND 58102; U.S.A.
6 Columbia University College of Physicians and Surgeons; New York; NY 10032; U.S.A.

7Division of Hematology=Oncology; Department of Medicine and Chao Family Comprehensive Cancer Center;
University of California; Irvine; CA; U.S.A.

8Department of Veterans A�airs Medical Center; Long Beach; CA 90822; U.S.A.

SUMMARY

Automated storage and analysis of the results of serial haematologic studies are now technically feasible with
present-day laboratory instruments and devices for data storage and processing. In current practice, physicians
mentally compare a laboratory result with previous values and use their clinical judgement to determine the
signi�cance of any change. To provide a statistical basis for this process, we describe a new approach for the
detection of changes in patient-speci�c sequential measurements of standard haematologic laboratory tests.
These methods include hierarchical multiple regression modelling, with a weighted minimum risk criteria
for model selection, to choose models indicating changes in mean values over time. This study is the �rst
to analyse sequential patient-speci�c distributions of laboratory measurements, utilizing mixture distribution
modelling with systematic selection of starting values for the EM algorithm. To evaluate these statistical
methods under controlled conditions, we studied 11 healthy human volunteers who were depleted of iron by
serial phlebotomy to iron-de�ciency anaemia, then treated with oral iron supplements to replete iron stores and
correct the anaemia. Application of sequential patient-speci�c analyses of haemoglobin, haematocrit, and mean
cell volume showed that signi�cant departures from past values could be identi�ed, in many cases, even when
values were still within the population reference ranges. Additionally, for all subjects sequential alterations in
red blood cell volume distributions during development of iron-de�ciency anaemia could be characterized and
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quanti�ed. These methods promise to provide more sensitive techniques for improved diagnostic evaluation
of developing anaemia and serial monitoring of response to therapy. Copyright ? 2000 John Wiley & Sons,
Ltd.

1. INTRODUCTION

Currently physicians compare individual blood test values with population-based reference ranges
to assist in the evaluation and management of common haematologic (blood) disorders such as
anaemia. There is considerable evidence, however, that for many blood constituents, the average
amount of within-person variation over time (excluding measurement error) is much less than the
between-person variation.1–3 Thus, when analytic variation is reduced, the magnitude of variation
in haematologic parameters measured in healthy individuals over time will be small in comparison
to the reference ranges in use. An observation that is within the population-based reference range
may represent a clinically signi�cant deviation from one subject’s usual condition, whereas another
result, outside population-based limits, may just represent expected random variation for another
subject.
With these considerations in mind, a subject’s own prior laboratory record may be a better guide

to proper assessment of current �ndings in monitoring abnormalities or the e�ects of therapy. Ross
et al.4 examined intra-individual versus inter-individual variation (variation among individuals) of
haematologic parameters in healthy individuals over a period of nine years. They demonstrated
that the haematologic parameters measured as part of an automated complete blood count (CBC)
and di�erential are quite stable despite instrumentation changes during the study. They concluded
that, for some parameters, comparison with reference values derived from previous data would be
a more sensitive detector of abnormality than comparison of a single value with a normal popu-
lation range. Examination of red blood cell volume distributions has shown that for distributions
measured using aperture impedance technology, variability between samples drawn from di�erent
individuals exceeded variability between samples measured from the same individual.5; 6 This evi-
dence suggests the need for statistical methods that provide comparison to reference values speci�c
to the individual for sequential monitoring.
While computer technology is now available for the storage and analysis of vast amounts of

data from patients, to date no statistical methods for evaluation of serial haematologic measure-
ments have been established for the evaluation of patients in situations with anaemia when few,
if any, initial steady-state observations may be available for an individual patient. The speci�c
hypothesis underlying this project was that patient-speci�c examination of serial haematologic
measurements would provide a sensitive method for the early detection and diagnosis of develop-
ing iron-de�ciency anaemia. This provided rationale for the development of statistical techniques
for sequential analysis of longitudinal data collected from a single individual. For this purpose
we analysed blood test values collected over time by hierarchical multiple regression modelling
to estimate changes in the mean response. We also discuss methods for sequential analysis of
serial red blood cell volume distributions. By application of these methods to data obtained from
volunteers during iron depletion, we demonstrate detection of patient-speci�c signi�cant changes
in haematologic measurements.
Although a variety of theoretical approaches have been published for analysis of shifts in the

mean of longitudinal data values, some methods were designed to detect only a single shift in
the mean response7–10 and others lack speci�c application to current problems in medicine and
applied sciences.11; 12 In this paper, we demonstrate by application to real data the advantages
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of the statistical procedures that we describe. For example, we illustrate that changes can be
identi�ed during the development of iron-de�ciency anaemia even when values are still within
population reference ranges. We also describe a valid clinical application of sequential analysis of
red blood cell volume distributions. This study is the �rst to use mixture distribution modelling
with systematic selection of starting values for the EM algorithm to quantify sequential changes
in red blood cell volume distributions during the development of iron-de�ciency anaemia. On
a daily basis, physicians face the problem of analysing an accumulated wealth of information
on individual patients and they must make clinical decisions based upon comparison of serial
laboratory test values. We suggest that the methods we describe provide e�ective statistical tools
for this clinical decision-making process. A major advantage is that the techniques could readily
be applied in the clinical setting to provide a statistical basis for computerized review of laboratory
data to assist in diagnosis of disease and monitoring of response to therapy.

2. METHODS

2.1. Multiple regression modelling with longitudinal data

Our major goal was to develop statistical methods to detect sequential changes in the mean response
for laboratory blood tests. Consider the multiple regression model

Yi = �0 + �1X1i + �2X2i + · · ·+ �pXn−1; i + �i (1)

where �i is i.i.d. N(0; �2) (i = 1; : : : ; n). Here �2 represents the true variance in the response Y
about the regression and is assumed to be the same for any given blood sample if the model is
correct. For n sequential blood samples collected from the same individual let Yi represent the
response for sample i and let X1i ; X2i ; : : : ; Xn−1; i be indicator variables where Xpi = 0 for i6p and
Xpi = 1 for i¿p (p = 1; : : : ; n− 1). Stating the model as

Y = X� + � (2)

where the �rst column of matrix X consists of n 1’s, the least square estimator of � is then given
by b = (X ′X )−1X ′Y , where b = (b0; b1; : : : ; bp).
For subsets of indicator variables, multiple regression models were formed in a hierarchial

stepdown fashion. All possible subsets of k indicator variables, (k = n − 2; n − 3; : : : ; 1), were
considered using the method known as leaps and bounds.13 A restriction on the analysis was that
the full model with p= n−1 indicator variables was never considered since the degrees of freedom
for error for the regression MSE would be zero, where

MSE = (Y ′Y − b′X ′Y )=(n− [p+ 1]): (3)

This statistical restriction does not preclude application of the technique because in laboratory
medicine it is a rare event to observe a medically meaningful change at every sequential observation
of a laboratory blood test for a single individual.

2.1.1. Minimum Risk

Criteria such as R2, or the adjusted R2, when used as model selection criteria will be biased toward
larger models, thus our criterion for �nal model selection was based on the minimum risk (that
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is, expected loss). The loss is a function of the (squared) bias and variance of the estimator of
the mean response. As shown by Eubanks (1988),14 an unbiased estimator of risk, is

P̂ =
SSE
n
+
2�2k
n
: (4)

Eubanks notes that P̂ is closely related to the general criterion for model selection, Mallows Cp.
One possible estimator for �2 would be the regression MSE = SSE

n . However, this estimator will
be di�erent for each model, while the variance of Yi is assumed to be the same for each model.
It would be preferable to have an estimator of �2 that would not be model dependent. A strongly
consistent estimator of �2 that does not depend on the model is that proposed by Gasser, Sroka
and Jenner-Steinmetz15 �2GSJS where

�̂2GSJS =
2

3(n− 2)
n−1∑
i=2
”̃i
2 (5)

and

”̃i = Yi − Yi−1 + Yi+1
2

: (6)

For our modelling, we used �̂2GSJS to estimate the true variance of the response Y , about the
regression.

2.1.2. Model selection

The estimated risk was computed for each model selected by the leaps and bounds method and
compared to that of the null model (no changes in the mean response). Initially, we considered
selecting the ‘optimal’ model, as the model with the minimum unbiased risk. However, by sim-
ulation, we found that the rate of rejection under the null model was high and increased rapidly
as the length of the sequence increased. Thus to reduce the type I error rate, we multiplied the
unbiased risk for each model, selected by the leaps and bounds method, by a weight � raised to
the power k, where k was the number of model indicator variables, that is, potential changes in
the mean response. As motivation for our choice of the weight �, assume that there is a constant
probability, p, that a patient will have a change in a given blood test value. The probability associ-
ated with a particular model with n blood test values and k changes in the mean response, will be
(pk)(1− p)n−k : When the number of changes considered is increased by one (for example, con-
sidering a model with two changes in the mean response compared to a model with three changes)
then this probability decreases by a factor of p=(1 − p) and when a model with no changes is
compared to a model with k changes, this probability decreases by a factor of (p=(1−p))k : Thus
to take a conservative approach to model selection, we multiplied the estimated unbiased risk for
a given model by �k with �k representing ((1− p)=p)k .
The estimated weights � were found using simulations with an iterative search for the sample-

size dependent value of � that corresponded to a speci�ed type I error rate. Note that when models
with the same sequence length were compared, those with more predictors would be penalized.
Values for � are given Table I for sequences of length 3 to 15, typical sequence lengths for our
studies. For example, for a sequence of length 5 and a desired signi�cance level of 0·05; the
estimated risk for the one-change model selected by the leaps and bounds method was multiplied
by 3·68.1 Similarly, the estimated risk for the two-change model selected by the leaps and bounds
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Table I. Values of the weight � for selected empirical signi�cance levels

Sequence length Signi�cance level
0·25 0·10 0·05 0·01

3 1·57 5·14 7·92 8·50
4 1·48 3·78 5·80 8·18
5 1·39 2·41 3·68 7·85
6 1·36 2·17 3·14 6·27
7 1·33 1·93 2·60 4·68
8 1·32 1·83 2·38 4·18
9 1·30 1·72 2·16 3·61
10 1·29 1·67 2·05 3·29
11 1·27 1·62 1·94 2·97
12 1·26 1·57 1·85 2·70
13 1·24 1·51 1·76 2·43
14 1·23 1·48 1·71 2·35
15 1·22 1·45 1·66 2·26

method was multiplied by 3·682. The weighted risk estimates were then compared to the estimated
risk for the null (no-change) model and the ‘optimal’ model was chosen as the one with the
smallest weighted estimated risk.

2.2. Model diagnostics

The regression methods for detecting sequential changes in the mean assume independent errors
over time, normality and constant variance on the error structure. Since in haematologic studies,
typically few observations would be available (for example, 10 to 12 at most), these assumptions
are di�cult to test rigorously. However, to check the �t of the selected optimal model and to look
for patterns in the residuals, we examined plots of the residuals over time, plots of the residuals
versus the �tted values, and normal probability plots of the residuals and the Studentized residuals.
To take into account the autocorrelation in the time-series data, transformations of the response
vector TY and the corresponding predictor matrix TX were made and the hierarchical regression
method was applied. Note that the resulting regression coe�cients from analysis of the transformed
data, represent the same characteristics as those in the untransformed model, since the same linear
transformation was applied to both the predictors and the response.
The correlation matrix, R, for a sequence of �rst-order autocorrelated data is

R =




1 � �2 : : : �n−1

� 1 �
. . .

...

�2 � 1
. . . �2

...
. . .

. . .
. . . �

�n−1 : : : �2 � 1



:
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Let � be the Cholesky root of R, that is, ��′ = R, and let T = �−1. T is the transformation
matrix such that the elements of TY will be uncorrelated. That is

var(TY) = Tvar(Y)T′ = T�2RT′ = �2�−1��′(�−1)′ = �2I:

Since � is unknown, it is estimated using the sample �rst-order autocorrelation, r.

2.3. Haematologic methods

In order to evaluate these methods under controlled conditions, we studied seven female and four
male healthy human volunteer subjects who were depleted of iron by serial phlebotomy to iron-
de�ciency anaemia, then treated with oral iron supplements to replete iron stores and correct the
anaemia. The study was conducted with the approval of the University of North Dakota Institutional
Review Board and the U.S. Department of Agriculture Human Study Committee. Written, informed
consent was obtained from each volunteer before participation in any testing. At weekly intervals
during the study, a blood sample of 5·0 ml was drawn from each volunteer and two types of data
were collected: (i) serial measurements of individual laboratory tests including haemoglobin (Hb),
haematocrit (Hct), and mean cell volume (MCV); (ii) serial red blood cell volume distributions.
Complete blood count values were determined using a Coulter particle counter model S-Plus VI
(Coulter Electronics, Inc., Hialeah, Fla.). Body iron status was evaluated by serum ferritin. From
each volunteer, an average volume (+1 SD) of 1455+883 ml of blood was removed over 36
+ 18·6 days, accompanied by a decrease in haemoglobin from 14·3 + 1·2 g=dl to 11·5 + 1·2 g=dl
and a post-phlebotomy serum ferritin of 6·9 + 2·3 �g=l.
Blood samples (5·0 ml) were also drawn from 11 additional healthy adult volunteers (four

females and seven males) and serial measurements of the haematocrit were performed over a two-
week period. These individuals were not depleted of iron by serial phlebotomy, thus they formed
a reference sample group for the analysis of serial measurements of Hct under haematologically
normal conditions. The study was conducted using a protocol approved by the Institutional Review
Boards of the University of North Dakota and the Veterans A�airs Medical Center. Reference
ranges for the laboratory were as follows: Hb 13·5−17·5 g=dl (males), 12–16 g=dl (females); Hct
42–52 (per cent) (males), 37–47 (per cent) (females); MCV 80–100 
.

2.4. Simulation

An increase or decrease of at least 1 gm=dl in haemoglobin is considered to have clinical signi�-
cance. This represents a change of 2·0 standard deviations in the mean haemoglobin.16 Considering
three scenarios, we designed a simulation to evaluate the conditions under which sequential changes
in the mean haemoglobin could be detected with the proposed statistical procedure. For each sce-
nario, 10,000 sequences of length 3; 5; 7; : : : ; 15 were generated. The simulated scenarios were as
follows: (i) a shift in the mean of 1 standard deviation occurred at the middle value in the se-
quence. For each sequence, values were generated in which all data prior to the middle value were
N(0,1) and data at or after the middle value were N(1; 1); (ii) a shift in the mean of 2 standard
deviations occurred at the middle value in the sequence. Values were generated in which all data
prior to the middle value were N(0,1) and data at or after the middle value were N(2; 1); (iii) a
shift in the mean of 3 standard deviations occurred at the middle value in the sequence. Values
were generated in which all data prior to the middle value were N(0,1) and data at or after the
middle value were N(3; 1).
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For each sequence, we recorded the number of simulations (out of 10,000) in which a shift
in the mean was detected using the weighted unbiased risk approach at signi�cance levels of
0·25; 0·10; 0·05 and 0·01.

2.5. Red blood cell volume distributions

Automated haematology analysers now determine the volume of red blood cells and routinely
provide the distribution of red blood cell volumes. To promote methodological uniformity in cell
size studies, the Expert Panel on Cell Cytometry of the International Council for Standardization
in Haematology (ICSH) has made recommendations of general principles for the analysis of cell
volume data.17; 18 These recommendations include �tting an observed cell volume distribution to a
reference log-normal distribution using the expectation-maximization (EM) algorithm for parameter
estimation as described by McLaren and colleagues.5; 19 Distributions showing a poor �t to a single
log-normal model should be examined for the presence of more than one population of cells.
To study patient-speci�c sequential changes in red blood cell volume distributions during iron

depletion, red blood cell volume determinations were performed for each blood sample using a
Coulter particle counter model S-Plus VI as described by McLaren et al.19 For each sample,
frequency counts for 256 cell volume intervals of length 1·3125 
 with range 24 to 360 
 were
measured in duplicate. Artefactual frequency counts occur in the upper ranges of cell volume for
particle counts resulting from cell coincidence, doublets, triplets, and agglutinated cells, and, in the
lower ranges, for counts resulting from platelet clumps, large platelets, and electrical interference.
To eliminate artefactual frequency counts, each distribution was doubly truncated using a truncation
algorithm developed speci�cally for red blood cell volume distributions.5

2.6. Parameter estimation and starting values for the EM algorithm

After truncation, each distribution was tested for best �t to a single log-normal distribution or a
mixture of two log-normal distributions. McLachlan and Basford20 and McLaren et al.21 discuss
iterative computation of the maximum likelihood estimates for mixture models via the EM al-
gorithm of Dempster et al.22 To avoid problems with convergence of the EM algorithm due to
poor choice of starting values or multiple roots of the likelihood equation, a systematic procedure
permitting selection of multiple starting values for the parameters was devised.23 A subroutine
provided by Jones and McLachlan24 for �tting by maximum likelihood a g-component normal
mixture was modi�ed to �t a mixture of g log-normal components for g=1 and g=2 in turn,
without need to specify the starting value for the vector of unknown parameters.

2.7. Likelihood ratio test, resampling, and goodness-of-�t

A resampling approach was applied to assess the P-value of the likelihood ratio statistic −2 log �
for the test of g=1 versus g=2 components in the log-normal mixture.25 For a signi�cance test
with approximate size �=0·05, 1000 independent bootstrap samples were generated under the null
hypothesis of a single log-normal distribution. Then replications of −2 log � were obtained. The
null hypothesis of a single log-normal model was rejected if the value of −2 log � obtained from
the real data was greater than the 950th largest of the bootstrap replications.
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Table II. Per cent of samples out of 10,000 in which a shift in the mean of � standard
deviations was detected at speci�ed empirical signi�cance levels

� Sequence length Signi�cance level
0·25 0·10 0·05 0·01

1 3 27·9 11·6 5·7 1·5
5 35·4 15·9 8·4 2·1
7 40·8 20·9 11·4 3·2
9 46·7 26·4 15·6 4·5
11 51·0 29·4 18·6 5·4
13 54·3 33·3 22·0 7·8
15 58·9 38·2 25·0 8·8

2 3 32·6 12·6 6·2 1·5
5 54·3 27·8 16·9 5·0
7 69·3 44·6 29·0 10·5
9 80·0 59·0 42·4 16·6
11 86·9 69·1 53·6 24·2
13 91·5 78·6 65·2 37·5
15 94·3 84·8 74·3 51·4

3 3 34·5 12·6 6·2 2·5
5 70·0 36·9 22·9 7·4
7 88·7 66·5 46·4 19·8
9 96·0 84·9 70·0 34·9
11 98·8 93·5 85·0 53·9
13 99·4 97·4 93·4 75·3
15 99·9 98·9 96·9 85·9

3. RESULTS

3.1. Simulation

Simulation results are shown in Table II. For models with a single change in the mean from
N(0; 1), as the sequence length increased, the proportion of sequences in which a change was
detected also increased. As expected, there was low power for detection of a shift in the mean
of 1 standard deviation. However, the power improved for detection of a shift of 2 standard
deviations. For example, with 15 observations, the change was detected 85 per cent of the time
at the 10 per cent level, and 74 per cent of the time at the 5 per cent signi�cance level. With as
few as 11 values, shifts of 3·0 standard deviations in the mean were detected for 85 per cent of
the simulated sequences at the 5 per cent signi�cance level.

3.2. Multiple regression modelling with longitudinal data

The haematological data from a representative female subject are shown in Table III. A total of
10 blood samples were obtained from this subject, over an 11 week period, at which time a state
of iron-de�ciency anaemia was established and oral iron replacement therapy was begun. The
10 test days are given as −77;−62; : : : ; 0, representing days before iron repletion therapy began.
Graphical representations of the results of two separate analyses of sequential laboratory test values
are shown in Figures 1 and 2. The test day is shown on the horizontal axis and corresponding
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Table III. Haematological data for a representative female subject

Sample Test day Hb Hct MCV

1 −77 13·2 38·3 89·4
2 −62 12·2 36·7 89·2
3 −56 12·7 38·7 89·5
4 −49 11·4 34·3 88·9
5 −41 11·4 34·6 89·0
6 −35 11·0 33·3 89·5
7 −28 11·7 35·5 88·7
8 −21 11·0 34·0 87·4
9 −14 10·2 30·7 86·4
10 0 10·7 33·0 84·1

laboratory test values are shown on the vertical axis. The solid arrows show test days at which
changes in mean test values were detected. The tip of each arrow indicates the mean laboratory
test value estimated using multiple regression modelling.

3.2.1. Haemoglobin and mean cell volume

In Figure 1(a), analysis of the �rst seven haemoglobin values, from test days −77;−62;−56; : : : ;
−28, shows that by the fourth week (test day −49) the mean haemoglobin had decreased sig-
ni�cantly from an estimated mean of 12·6 g=dl (95 per cent con�dence interval: 12·4 g=dl, 12·9
g=dl) to an estimated mean of 11·3 g=dl (11·0 g=dl, 11·7 g=dl) at test day −49. The raw unbiased
risk estimate was P̂=0·426 compared to P̂=1·248 for the null model. For empirical signi�cance
levels of 0·05 and 0·01, the corresponding weighted unbiased risks were 1·11 and 1·99, respec-
tively, giving an empirical p-value for the procedure of 0·05¡p¡0·01. The individual t-statistic
for this model was t= −7·84; d:f :=5; (p=0·0005) for the regression parameter representing test
day −49.
From the �nal analysis of 10 data points, a further signi�cant decrease in the mean was observed

at the ninth week (test day −14; Figure 1(b)). The best regression model with adjustment for
�rst-order autocorrelation between values, identi�ed by the weighted minimum risk, considering
data from 10 test days, con�rmed a decrease from the initial estimated mean of 12·6 g=dl (12·4
g=dl, 12·9 g=dl) to an estimated mean of 11·7 g=dl (11·3 g=dl, 12·1 g=dl) at test day −49, with
a further decrease to an estimated mean of 10·5 g=dl (9·8 g=dl, 11·0 g=dl) at test day −14.
The raw unbiased risk estimate was P̂=0·399 compared to P̂=1·785 for the null model. For
empirical signi�cance levels of 0·05 and 0·01, the corresponding weighted unbiased risks were
1·676 and 4·318, respectively, giving an empirical p-value for the procedure of 0·05¡p¡0·01.
The individual t-statistics for this model were t=−4·74; d:f :=7; (p=0·002) for the regression
parameter representing test day −49 and t=−8·45 (p=0·0001), for the regression parameter
representing test day −14. A clinical interpretation of the coe�cient of determination of 99·9
per cent would be that with this model, after taking into account the autocorrelation between the
values, virtually all of the variation in serial haemoglobin values was due to development of iron
de�ciency.
As shown in Table III and in Figure 2, the MCV for this subject remained within the reference

range throughout the study, however, changes in the mean were identi�ed statistically. Analysis
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Figure 1. Sequential multiple regression analyses for haemoglobin. Arrows indicate a signi�cant decrease in the mean
haemoglobin value. Dashed lines indicate the current estimated mean haemoglobin based upon signi�cant indicator variables
for the regression model. For purposes of illustration the distance between sequential test days are shown as being equal

although the actual times between sequential test days may di�er

of data at the eighth week showed an initial decrease from an estimated mean of 89·2 
 (89·0

, 89·4 
) to 87·3 
 (86·7 
, 87·9 
) at test day −21, still well within the reference range
for healthy individuals. The unbiased risk estimate was P̂=0·167 compared to P̂=0·532 for
the null model. For empirical signi�cance levels of 0·05 and 0·01, the corresponding weighted
unbiased risks were 2·38 and 4·18, respectively, giving an empirical p-value for the procedure of
0·05¡p¡0·01. The individual t-statistic for this model was t= −6·15; d:f :=6; (p=0·0008), for
the regression parameter representing test day −21.
Further decreases were detected by the tenth week of the study, although the �nal observed and

estimated mean values were still within the reference ranges for females (Table III, Figure 2(b)).
The best regression model identi�ed by the weighted minimum risk criteria, con�rmed a signi�cant
decrease from an estimated mean of 89·2 
 (89·0 
, 89·4 
) to 86·9 
 (86·4 
, 87·3 
) at test
day −21, and a further decrease to 84·0 (83·2 
, 84·8 
), still well within the reference range for
healthy individuals. The unbiased risk estimate was P̂=0·219 compared to P̂=3·807 for the null
model. For empirical signi�cance levels of 0·01, the corresponding weighted unbiased risks was
2·37 with an empirical p-value for the procedure of p¡0·01 The individual t-statistics for this
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Figure 2. Sequential multiple regression analyses for mean corpuscular volume. Arrows indicate a signi�cant decrease in
the mean MCV value. Dashed lines indicate the estimated mean MCV based upon signi�cant indicator variables for the
regression model. For purposes of illustration the distance between sequential test days are shown as being equal although

the actual times between sequential test days may di�er

model were t=−9·76; d:f :=7; (p¡0·0001), for the regression parameter representing test day
−21 and t=−6·71; d:f :=7; (p=0·0003) for the regression parameter representing test day 0.

3.2.2. Overall assessment

To make an overall assessment haematologically, we examined the �nal analysis of each of the
three laboratory tests (Hb, Hct, MCV) for the 11 volunteers. On the basis of the weighted unbiased
risk, signi�cant changes were observed at the 0·05 per cent signi�cance level in Hb, Hct, or MCV
for 9 of 11 subjects.
Analysis of Hb: the distribution of empirical p-values for the best �tting models was 0·10¡p¡

0·25 (n=2); 0·05¡p¡0·10 (n=2), and 0·01¡p¡0·05 (n=7). The median number of changes
observed at a signi�cance level of 0·05 was 2, with an average magnitude of 1·5 g=dl or ap-
proximately 3 standard deviations in haemoglobin. In this subgroup of 9 volunteers, the minimum
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Figure 3. Distribution of red blood cell volumes plotted on a natural logarithm scale. Solid lines represent the �tted
mixture distribution for two log-normal subpopulations. The relative frequency is calculated as 100 per cent (frequency

count=maximum frequency count)

and maximum estimated decreases in mean haemoglobin were 0·6 
 and 3·5 g=dl, respectively.
For 2 of these 9 subjects (22 per cent), changes were identi�ed in Hb even though the values
were still within the population reference ranges. Thus the sequential analysis procedure provided
comparison of individual values to reference values derived from previous data and gave a sensi-
tive detector of abnormality. The information gained is more informative than that of comparison
to a normal population range. The �t of separate models was also assessed by examining the
residuals, that is, the di�erence between each observed haemoglobin value and the corresponding
predicted mean value. For example, residuals were examined for the �ve (independent) comparable
models in which two sequential changes in the mean haemoglobin concentration were detected.
The sample size (sequence of haemoglobin values) from an individual subject was small for a
full residual analysis, but residuals plotted against predicted mean haemoglobin concentration were
evenly distributed around zero without discernible patterns.
Analysis of Hct: the distribution of empirical p-values for the best �tting models was 0·10¡p¡

0·25 (n=4); 0·05¡p¡0·10 (n=1); 0·01¡p¡0·05 (n=2), and p¡0·01 (n=4). The median
number of changes observed for a signi�cance level of 0·05 was 1, with an average magnitude of
4·5 per cent. The minimum and maximum estimated decreases in haematocrit for this subgroup
of 6 volunteers were 1·8 per cent and 5·7 per cent, respectively. For 2 of these 6 subjects (33
per cent), changes were identi�ed in Hct even though the values were still within the population
reference ranges.
Analysis of MCV: we examined models of weekly sequential changes in average MCV for

all subjects, considering data from the �rst to the last study week, where from 5 to 12 obser-
vations were analysed. The distribution of empirical p-values for the best �tting models was
p¿0·25 (n=2); 0·1¡p¡0·25 (n=1); 0·05¡p¡0·10 (n=3); 0·01¡p¡0·05 (n=4), and p¡
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0·01 (n=1). Of the �ve subjects with signi�cant changes in the mean MCV, using a signi�cance
level of 0·05, the average absolute magnitude of change in the mean MCV was 3·05 
, with
minimum and maximum of 1·5 
 and 5·3 
. For each of these 5 subjects changes were iden-
ti�ed while values for MCV remained within the population reference ranges, clearly indicating
a subject-speci�c response to the iron depletion. No discernible patterns were found for residual
analyses of the three comparable models in which two sequential changes in the average MCV
were detected.
These procedures were also applied to data from a reference sample group of 11 healthy

adult volunteers to study the analysis of serial measurements of haematocrit under haematologi-
cally normal conditions. We tested baseline and two subsequent weekly values for each subject.
As expected, for each volunteer no changes were observed in Hct over time with an empiri-
cally determined p-value ¿0·25 for all. In contrast, the distribution of empirical p-values for
the analysis of values drawn on the �rst three test days from volunteers depleted of iron was
p¿0·25 (n=3); 0·1¡p¡0·25 (n=5); 0·05¡p¡0·10 (n=1); 0·01¡p¡0·05 (n=2).

3.3. Red blood cell volume distributions

Sequential changes in red blood cell volume distribution were observed during the study period in
all subjects. For example, for the subject whose individual haematological test results are shown
in Table III and discussed above, the red blood cell volume distribution from the �rst test day
(−77) was observed to �t a single log-normal distribution quite well (likelihood ratio statistic:
−2 log �=0·73, bootstrap p=0·937; goodness-of-�t �2 = 33·6; d:f :=35; p=0·54) with e�=94·6,
which is within the reference range for healthy individuals reported by McLaren et al. At the 5th
week of the study, that is, test day −41, the distribution of red blood cell volumes was altered in
response to phlebotomies and could be seen to �t two log-normal distributions (Figure 3; likelihood
ratio statistic −2 log �=11·59; bootstrap p=0·012; goodness-of-�t �2 = 43·7; d:f :=38; p=0·24).
One of these subpopulations had an estimated median cell volume of e�=93·7, whereas the second
subpopulation had an estimated median cell volume of e�=97·5, perhaps re
ecting the appearance
of reticulocytes in response to developing anaemia, as indicated by the decrease in haemoglobin
detected one week earlier, since reticulocytes (young red blood cells) have a relatively increased
volume in comparison with older red blood cells. As shown in Figures 1 and 2, a decrease in
the mean haemoglobin, detected at the fourth week of the study, preceded the �rst sequential
change in MCV (week 8). This phenomenon was observed in 8 of 11 patients and is consistent
with our previous clinical observations. However, for this subject the change in the red blood cell
volume distribution, detected at week 5, also occurred before the �rst signi�cant decrease in the
MCV, shown at week 8. In 6 of 11 subjects, the demonstration of multiple populations of cells in
the distribution of red blood cell volume preceded detected changes in the MCV. This is a new
observation resulting from this study.

4. DISCUSSION

The need for statistical surveillance of individuals in various areas of medicine has been described
by Frisen.26 Two general approaches to statistical surveillance, in situations where the number
of observations is successively increasing and successive decisions are required, include the areas
of quality control charts and change point analysis. General descriptions of relevant theory and
methodology related to these two approaches may be reviewed in Wetherill and Brown27 and
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Zacks.28 Some speci�c methods for testing a sequence of observations for a single shift in location
are given by Hawkins,7; 8 James et al.9 and Hinkley and Schechtman.10 These methods are not
appropriate, however, for analysis of sequential blood test values when multiple shifts in the
mean can occur. Yin11 gives an algorithm for estimation of the number, locations, and magnitudes
of jumps in a stochastic process, and Hawkins12 describes a statistical approach to retrospective
testing for parameter shifts in a linear model and explores the power for the single-shift alternative.
Although these papers may have potential applications, they do not evaluate sequential application
to real data with limited observations for detection of multiple shifts in location, as is the case in
our study. Thompson29 describes application of forward stepwise multiple regression techniques
to population data to detect time trends in a measure of platelet aggregation. The data arose
from a prospective study of the role of the haemostatic system in ischaemic heart disease. To
estimate change points, they evaluate successive multiple regression models that include subsets
of qualitative (dummy) variables representing a change in the mean at speci�ed dates. Their
stopping criteria was based upon the overall F-statistic. Weisberg30 recommends criteria-based
subset selection and notes that the model selected in a stepwise fashion may not optimize suitable
criterion functions and may overstate signi�cance of results. To avoid these di�culties, we used an
all-possible-subsets approach by leaps and bounds with the weighted minimum risk criteria used for
�nal model selection. We found that this method for statistical surveillance could detect sequential
changes in the mean for individual laboratory tests throughout the development of iron-de�ciency
anaemia.
For individual blood samples, current haematology analysers are capable of performing haema-

tological measurements such as haemoglobin, haematocrit, and mean cell volume. In addition,
the distribution of the volume of red blood cells often is derived, providing the red cell volume
distribution width (RDW), a calculated value that approximates the coe�cient of variation of the
distribution. In established iron-de�ciency anaemia, characteristic changes in tests such as the MCV
and RDW are helpful in suggesting the diagnosis, but the �rst detectable change after iron stores
have become exhausted is a decrease in Hb or Hct. Decreases in serum ferritin and transferrin
saturation, indicators of iron stores, are useful in the early detection of developing iron de�ciency,
but these tests are not performed routinely in the absence of anaemia. In the current study, we
found that a statistically signi�cant decrease in the Hb or Hct could be detected before changes
in the MCV or RDW.
Statistical methods developed for analysis of the distribution of red blood cell volumes have

demonstrated that in healthy individuals a log-normally distributed population of cells is present.
In some patients with severe iron-de�ciency anaemia, a single log-normal population of cells is
also present but with decreased mean and increased standard deviation when compared to refer-
ence values from healthy individuals.5; 19 After iron therapy, a new subpopulation of cells within
the range for normals appears and the volume distributions eventually become bimodal, �tting a
mixture of two log-normal distributions.21 The importance of the current study is that it is the �rst
to use distribution modelling to quantify sequential changes in red blood cell volume distributions
during the development of iron-de�ciency anaemia. We found that, for 6 of 11 subjects, alterations
in the red cell volume distribution preceded alterations in the mean corpuscular volume, suggesting
that this approach may provide an ‘early warning’ of changes in red cell production, destruction,
or loss.
The development of statistical methods for deriving patient-speci�c reference values makes pos-

sible automated examination of laboratory data, with rapid and reliable identi�cation of patients
whose haematologic measurements have signi�cantly changed from past values. Sequential analysis
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of the red cell volume distributions may provide an early and sensitive indication of microcytic
or macrocytic erythropoiesis. The methods are of general applicability to analysis of serial data
from patients with other types of anaemia. By providing the statistical foundation for the auto-
mated review of laboratory data using patient-speci�c reference values, evaluation of test results
by physicians should be facilitated through early, sensitive and reliable identi�cation of signi�cant
changes from past values in each patient.
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