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Abstract

In the context of medically relevant artificial intelligence, many real-world prob-
lems involve both continuous and categorical feature variables. When the data are
mixed mode, the assumption of multivariate Gaussian distributions for the gating net-
work of normalized Gaussian (NG) expert networks, such as NG mixture of experts
(NGME), becomes invalid. An independence model has been studied to handle mixed
feature data within the framework of NG expert networks. This method is based on the
NAIVE assumption that the categorical variables are independent of each other and of
the continuous variables. While this method performs surprisingly well in practice as a
way of handling problems with mixed feature variables, the independence assumption
is likely to be unrealistic for many practical problems.

In this chapter, we investigate a dependence model which allows for some de-
pendence between the categorical and continuous variables by adopting a location
modeling approach. We show how the expectation-maximization (EM) algorithm can
still be adopted to train the location NG expert networks via the maximum likelihood
(ML) approach. With the location model, the categorical variables are uniquely trans-
formed to a single multinomial random variable with cells of distinct patterns (loca-
tions). Any associations between the original categorical variables are then converted
into relationships among the resulting multinomial cell probabilities. In practice, the
dependence model approach becomes intractable when the multinomial distribution
replacing the categorical variables has many cells and/or there are many continuous
feature variables. An efficient procedure is developed to determine the correlation
structure between the categorical and continuous variables in order to minimize the
number of parameters in the dependence model. The method is applied to classify
cancer patients on the basis of continuous gene-expression-profile vector of tumour
samples and categorical variables of patient’s clinical characteristics. The proposed



methodologies would have wide application in various scientific fields such as econ-
omy, biomedical and health sciences, and many others, where data with mixed feature
variables are collected. Further extensions of the methodologies to other NG networks
and/or to other members of the exponential family of densities for the local output
density are discussed.

1 INTRODUCTION

Among the various kinds of expert networks, NG expert networks are of much interest due
to their wide applicability [1-3] and the advantage of fast learning via the EM algorithm of
Dempster et al. [4] without the requirement of a carefully selected learning rate in the inner
loop of the EM algorithm [1, 5-6]. Normalized Gaussian expert networks softly partition
the input space into, sayM , regions by NG functions (the gating network)

Nh(x) =
πhfh(x)∑M
l=1 πlfl(x)

(h = 1, . . . ,M), (1)

whereπh > 0,
∑M

h=1 πh = 1, andfh(x) = φh(x; µh,Σh) denotes the multivariate Gaus-
sian function for input vectorx, with meanµh and covariance matrixΣh. Each local unit
(expert) approximates the output within the partition and the final output of the NG network
is given by the summation of these local outputs weighted by the normalized Gaussian func-
tionsNh(x) (h = 1, . . . ,M). The architecture is thus based on the divide-and-conquer
principle where a complex task is broken up into simpler and smaller subtasks and their
solutions can be combined to yield a solution to the complex problem [6]; see, for exam-
ple, [7].

In the context of medically relevant artificial intelligence, many real-world problems
involve both continuous and categorical feature variables. These include learning problems
in wide areas of biomedical and health sciences. An example in the context of cancer re-
search is to classify patients based on continuous measurements such as size of primary
tumour, as well as categorical variables such as cardiovascular disease history and bone
metastases. Precisely, the input vectorxj on thej-th entity consists ofq categorical vari-
ables in the vectorx1j in addition top continuous variables represented by the vectorx2j

for j = 1, . . . , n, wheren is the total number of observations. When the data are mixed
mode, the assumption of multivariate Gaussian distributions for the gating network (1) be-
comes invalid. An attempt has been studied by Everitt [8] in which the categorical variables
x1j are assumed to have arisen through thresholding of unobservable continuous variables.
The thresholds that define the categories are treated as extra parameters. The unobserved
and observed continuous variables are assumed to be jointly multivariate Gaussian. In prac-
tice, the method is limited to one or two categorical variables [9] because the log likelihood
containsq-dimensional integrals and is therefore numerically intractable for largeq [10].
Recently, an independence model has been studied by Ng and McLachlan [3] to handle
mixed feature data within the framework of NG expert networks. This method is based on
the NAIVE assumption that the categorical variables are independent of each other and of
the continuous variables. Under this independence assumption,fh(x) in (1) can be written
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as

fh(x) = fh(x1)fh(x2|x1) =
q∏

i=1

fhi(x1i)φh(x2; µh,Σh), (2)

wherefhi(x1i) denotes theh-th conditional density of thei-th categorical variablex1i in
x1 for i = 1, . . . , q. In (2), the symbolfh is being used generically to denote a density
where, for categorical random variables, the density is really a probability function. While
this independence assumption approach performs surprisingly well in practice as a way of
handling problems with mixed feature variables [3, 11], the independence assumption is
likely to be unrealistic for many practical problems.

In this chapter, we investigate a model which allows for some dependence between
the categorical variables (vectorx1j) and the continuous variables (vectorx2j) by adopt-
ing a location modeling approach, used in discriminant analysis and graphical modeling
of mixed variables [9, 12]. With the location model, the categorical variables are uniquely
transformed to a single multinomial random variable with cells of distinct patterns (loca-
tions). The conditional distribution of the continuous variables,fh(x2|x1) in (2), is taken to
be multivariate Gaussian with a meanµh that is allowed to be different for some or all of the
distinct patterns of the categorical variablesx1. Our aims are to create alternative method-
ologies in tackling problems with mixed feature data and, in particular, a wider applicability
of NG expert networks by incorporating the location model within networks modeling. The
rest of the chapter is organized as follows: Section 2 introduces the extension of the NG gat-
ing network using the NAIVE independence and location models for problems with mixed
feature data. In Section 3, we describe the generalized NGME network and show how the
EM algorithm can still be adopted to train the generalized NGME networks via the ML
approach. In practice, the location model approach becomes intractable when the multino-
mial distribution replacing the categorical variables has many cells and/or there are many
continuous feature variables. In Section 4, an efficient procedure is developed to determine
the correlation structure between the categorical and continuous variables in order to min-
imize the number of parameters in the dependence model. The proposed methodologies
are illustrated in Section 5 using a real example of classifying cancer patients on the basis
of continuous gene-expression-profile vector of tumor samples and categorical variables of
patient’s clinical characteristics. Section 6 ends the paper with some discussion and con-
clusions.

2 INDEPENDENCE AND LOCATION MODELS

For problems with both categorical and continuous feature variables, we letxj =
(xT

1j , x
T
2j)

T denote the feature vector on thej-th entity, wherex2j contains the continuous
features andx1j = (x11j , . . . , x1qj)T contains theq categorical variables. Herex1ij is the
value of thei-th categorical variable on thej-th entity(i = 1, . . . , q; j = 1, . . . , n), taking
on ni distinct values, and the superscriptT denotes vector transpose. Theh-th conditional
density of thei-th categorical variable is given by a multinomial distribution consisting of
one draw onni values with probabilitiesλhi1, . . . , λhini , whereλhini = 1 − ∑ni−1

l=1 λhil.
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That is, we have

fhi(x1ij) =
ni∏

v=1

λ
δ(x1ij ,v)
hiv , (3)

whereδ(x1ij , v) = 1 if x1ij = v and is zero otherwise(v = 1, . . . , ni). Under the NAIVE
independence assumption for theq categorical variables, it follows from (2) and (3) that

fh(xj) =
q∏

i=1

ni∏

v=1

λ
δ(x1ij ,v)
hiv φh(x2j ;µh,Σh). (4)

Although the independence assumption is likely to be unrealistic for many problems, it
often performs surprisingly well in practice as a way of handling problems with mixed
feature data [3, 11, 13]. One important reason is that the NAIVE method usually requires
fewer parameters to be estimated than more complicated alternative methods that try to
model interactions between the categorical and continuous variables. The independence
model will therefore tend to have a lower variance for the estimates and compensate for any
increase in the estimation bias [11]. For problems where the minimization of estimation
bias is not the main objective, such as in the cluster analysis, the independence model may
provide a better classification result when small sample sizes are involved [11].

The NAIVE model can be modified to allow for some dependence betweenx1 and
the vectorx2 of continuous variables by adopting the location model as, for example,
in [9, 14]. With the location model, theq categorical variables are uniquely transformed
to a single multinomial random variableU with S cells, whereS =

∏q
i=1 ni is the number

of distinct patterns (locations) of theq categorical variables. We denote(uj)s the label
for the s-th location of thej-th entity (s = 1, . . . , S; j = 1, . . . , n) and (uj)s = 1 if
theq categorical variables inx1j correspond to thes-th pattern. Any associations between
the original categorical variables are then converted into relationships among the result-
ing multinomial cell probabilities. The location model assumes further that conditional on
(uj)s = 1, the conditional distribution of thep continuous variablesx2j is Gaussian with
meanµhs and covariance matrixΣh; that is,φh(x2j ; µhs,Σh), where the covariance ma-
trix is the same for allS cells. Letphs be the probability that(U j)s = 1 for theh-th experts
(h = 1, . . . , M ; s = 1, . . . , S). The density functionfh(xj) in (2) is replaced by

fh(xj) =
S∏

s=1

[phsφh(x2j ; µhs,Σh)]δ(j,s) , (5)

whereδ(j, s) = 1 if x1j corresponds to thes-th pattern; that is,(uj)s = 1, and is zero
otherwise. In contrast to the thresholding approach considered by Everitt [8], the location
model does not impose any orders of the categories in each categorical variable and any
structure on the conditional means [10].

3 GENERALIZED NGME NETWORKS

As shown in Figure 1, the (generalized) NGME architecture is comprised ofM expert
networks. These expert networks approximate the distribution of the outputyj within each
region of the input space. The expert network maps its inputxj to a local output, the
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Figure 1: The (generalized) normalized Gaussian mixture of experts

densityfh(yj |xj ; θh), whereθh is a vector of unknown parameters for theh-th expert
network(h = 1, . . . , M). It is assumed that different experts are appropriate in different
regions of the input space. The gating network modeled by NG functionsNh(x) in (1)
provides a set of scalar coefficients that weight the contributions of the various experts.
These NG functions are now denoted byNh(xj ; π,α), whereπ is the symbol for the
collection ofπ1, . . . , πM−1 andα denotes a vector of unknown parameters in the density
functionsfh(x) (h = 1, . . . , M) in (1). The final output of the NGME neural network is a
weighted sum of all the local output vectors produced by expert networks:

f(yj |xj ; Ψ) =
M∑

h=1

Nh(xj ;π, α)fh(yj |xj ; θh), (6)

where Ψ is the vector of all the unknown parameters. The local output densities
fh(y|x;θh) (h = 1, . . . ,M) can be generally assumed to belong to the exponential fam-
ily of densities, such as the Gaussian and the Bernoulli distributions, respectively, for re-
gression and binary classification problems [6]. The unknown parameter vectorΨ can be
estimated by the ML approach via the EM algorithm [1, 15]. In contrast to the ME net-
works [16], the learning of NGME networks do not require both the selection of a learning
rate and the iterative inner loop in the EM algorithm [1,5,6].

To apply the EM algorithm to the generalized NGME networks, we introduce the indi-
cator variableszhj , wherezhj is one or zero according to whetheryj belongs or does not
belong to thehth expert [5,17]. We let the missing dataz be the vector containing all these
indicator variables. Based on an asymmetrical representation for the joint densityf(y, x) =
f(y|x;Ψ)f(x; π, α) described in [1, 18], wheref(x;π, α) =

∑M
h=1 πhfh(x; αh), the

complete-data log likelihood forΨ is given by

log Lc(Ψ) =
n∑

j=1

M∑

h=1

zhj{log πh + log fh(xj ; αh) + log fh(yj |xj ; θh)}. (7)
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It follows on application of the EM algorithm in training generalized NGME networks that
on the(k + 1)th iteration, the E-step calculates theQ-function as

Q(Ψ; Ψ(k)) = EΨ(k){log Lc(Ψ)|y, x}

=
n∑

j=1

M∑

h=1

EΨ(k)(Zhj |y, x){log πh + log fh(xj ; αh)

+ log fh(yj |xj ; θh)}. (8)

It can be seen that the complete-data log likelihood (8) is linear inz. Thus, the E-step just
replaceszhj in (7) by its current conditional expectationτ (k)

hj givenyj , xj , and the current

estimateΨ(k) for Ψ, where

τ
(k)
hj = prΨ(k){Zhj = 1|yj , xj}

=
π

(k)
h fh(xj ; α

(k)
h )fh(yj |xj ;θ

(k)
h )

∑M
l=1 π

(k)
l fl(xj ;α

(k)
l )fl(yj |xj ; θ

(k)
l )

(9)

for h = 1, . . . , M . From (8), it can be seen that theQ-function can be decomposed into
three terms with respect toπh, αh, andθh (h = 1, . . . , M), respectively. That is,

Qπ =
n∑

j=1

M∑

h=1

τ
(k)
hj log πh, (10)

Qα =
n∑

j=1

M∑

h=1

τ
(k)
hj log fh(xj ; αh), (11)

and

Qθ =
n∑

j=1

M∑

h=1

τ
(k)
hj log fh(yj |xj ; θh). (12)

The decomposition of theQ-function implies that the updated estimates ofπ, α, andθ
can be obtained in the M-step by maximizing the corresponding decomposedQ-functions
separately.

3.1 Learning algorithm for the independence model

With the independence model described in Section 2, the vector of unknown parameters
αh for fh(x) in (4) consists ofλhiv (i = 1, . . . , q; v = 1, . . . , ni − 1), and the elements

of µh andΣh (h = 1, . . . ,M). The E-step involves the calculation ofτ
(k)
hj in (9) with

fh(xj ;α
(k)
h ) replaced by (4) based on the current estimateα

(k)
h . In the M-step,π(k+1)

h is
obtained by maximizingQπ in (10) as

π
(k+1)
h =

n∑

j=1

τ
(k)
hj /n. (13)
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Similarly, α(k+1)
h is obtained by maximizingQα in (11). Based on (4), we have

λ
(k+1)
hiv =

∑n
j=1 τ

(k)
hj δ(x1ij , v)

∑n
j=1 τ

(k)
hj

. (14)

It is noted that (14) can be modified slightly to limit the effect of zero estimates ofλhiv for
rare valuesv as

λ
(k+1)
hiv =

∑n
j=1 τ

(k)
hj δ(x1ij , v) + 1/ni

∑n
j=1 τ

(k)
hj + 1

, (15)

by taking into account the number of possible categoriesni in thei-th categorical variable
x1i (i = 1, . . . , q); see [11, 13]. From (4) and (11), the updates of the meansµh and
covariance matricesΣh for h = 1, . . . , M are given by

µ
(k+1)
h =

∑n
j=1 τ

(k)
hj x2j

∑n
j=1 τ

(k)
hj

(16)

and

Σ(k+1)
h =

∑n
j=1 τ

(k)
hj (x2j − µ

(k+1)
h )(x2j − µ

(k+1)
h )T

∑n
j=1 τ

(k)
hj

. (17)

Depending on the local output densities specified forfh(y|x; θh), the updated estimate

of θ
(k+1)
h is obtained by solving

n∑

j=1

τ
(k)
hj ∂ log fh(yj |xj ; θh)/∂θh = 0 (18)

for eachh (h = 1, . . . , M). For example,fh(yj |xj ;θh) are assumed to be Gaussian as

fh(yj |xj ;θh) =
1√

(2πσ2
h)

exp{−1
2(yj −wT

h xj)2/σ2
h}, (19)

wherewh andσ2
h are, respectively, the weight vector and the variance (dispersion parame-

ter) of theh-th expert network. For notational convenience, we still present the mixed-mode
input vector asxj in (19). Indeed, the categorical variables are replaced byni − 1 dummy
variables and contribute to the local output via the linear predictorηhj = wT

h xj ; see [5].
From (18), the updates ofθT

h = (wT
h , σ2

h) for h = 1, . . . , M are given by

w
(k+1)
h =




n∑

j=1

τ
(k)
hj xjx

T
j



−1

n∑

j=1

τ
(k)
hj yjxj (20)

and

σ
(k+1)
h =

∑n
j=1 τ

(k)
hj (yj −w

(k+1)
h

T
xj)2

∑n
j=1 τ

(k)
hj

. (21)
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For binary classification problems, the local densitiesfh(yj |xj ;θh) are assumed to be
Bernoulli distribution of possible binary outcomes of “failure” and “success” [6]. That is,

fh(yj |xj ; θh) =

(
exp(wT

h xj)
1 + exp(wT

h xj)

)yj
(

1
1 + exp(wT

h xj)

)1−yj

, (22)

whereθh = wh. In this case, equation (18) becomes

n∑

j=1

τ
(k)
hj

(
yj − exp(wT

h xj)
1 + exp(wT

h xj)

)
xj = 0 (23)

for h = 1, . . . ,M , which areM sets of nonlinear equations each with unknown parameter
vectorwh [3,5].

3.2 Learning algorithm for the location model

With the location model described in Section 2, the vector of unknown parametersαh

for fh(x) in (5) consists ofphs, and the elements ofµhs andΣh (h = 1, . . . , M ; s =
1, . . . , S). The E-step involves the calculation ofτ

(k)
hj in (9) with fh(xj ; α

(k)
h ) replaced by

(5) based on the current estimateα
(k)
h . In the M-step, bothπ(k+1)

h andθ
(k+1)
h are obtained

according to (13) and (18) in Section 3.1, respectively. For the updated estimate ofα
(k+1)
h ,

we have, from (5) and (11),

p
(k+1)
hs =

∑n
j=1 τ

(k)
hj δ(j, s)

∑n
j=1 τ

(k)
hj

, (24)

µ
(k+1)
hs =

∑n
j=1 τ

(k)
hj δ(j, s)x2j

∑n
j=1 τ

(k)
hj δ(j, s)

, (25)

and

Σ(k+1)
h =

∑n
j=1 τ

(k)
hj

∑S
s=1 δ(j, s)(x2j − µ

(k+1)
hs )(x2j − µ

(k+1)
hs )T

∑n
j=1 τ

(k)
hj

. (26)

for h = 1, . . . , M ands = 1, . . . , S.

4 CORRELATION STRUCTURE BETWEEN CATEGORI-
CAL AND CONTINUOUS VARIABLES

In practice, the number of parameters with the location model approach can be large if
the mulitnomial distribution replacing the categorical variables has many cells and there
are several continuous feature variables. Thus, to implement the location model on NG
networks, the intent is to examine preliminary fits (such as correlations, scatter plots, and
two-way tables). If strong associations between two categorical variables are detected from
preliminary fits, then the two variables may be combined into a single multinomial variable
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Table 1: Original coding of the binary variables (breast cancer data)

Variable Value=0 Value=1

tumor grade (GR) grades 1 or 2 grade 3
oestrogen receptor status (ER) ≤10 >10
progesteron receptor status (PR) ≤10 >10
tumor size (SZ) ≤20mm >20mm
patient age (AG) ≤40 >40
angioinvasion (AN) no yes

with a cell for each category of the two-way table (or fewer, if some categories are pooled);
see, for example, [14]. The correlation between continuous variables can also be examined
to detect the existence of any relationship among the continuous variables. If the depen-
dency among covariates is weak, then a diagonal covariance matrix forΣh may be adopted
to reduce the number of unknown parameters for the location model [14].

The simplest location model is the NAIVE-location model, wherefh(x2|x1) in (2) is
taken to be multivariate Gaussian with a mean that depends only on one of theq categor-
ical variables. This categorical variable can be determined based on the significance of
testing the difference in the continuous variables between different categories of the cate-
gorical variable. A high level of significance justifies the interaction between the categorical
variable and the vectorx2 of continuous variables for the location model. Alternatively, ad-
ditional local associations between the variables, categorical or continuous or both, can be
included to expand the NAIVE-location model on the basis of the likelihood ratio test that
measures the change in the log likelihood.

5 ILLUSTRATION: CLASSIFICATION OF BREAST CAN-
CER PATIENTS

We illustrate the proposed methodologies using a real example of classifying breast cancer
patients on the basis of the gene expression-profile vector of tumor samples and categor-
ical variables of patient’s clinical characterisitcs. The original data set [19] consists of
5000 gene expression profiles and 6 binary variables of clinical indicators from 78 sporadic
lymph-node-negative breast cancer patients. With these patients, 44 remained metastasis
free after a period of more than 5 years (good prognosis) and 34 patients had developed
distant metastases within 5 years (poor prognosis). Based only on the 5000 gene expression
profiles, van’t Veer et al. [19] identified 70 genes that are associated with disease outcome
(distant metastases within 5 years) of cancer patients. Alternatively, the clustering of genes
on the basis of gene expression profiles can be employed to form a smaller number of sub-
groups of genes [20, 21]. Each subgroup of genes is then represented by a single vector (a
“metagene”) for the subsequent clustering of the tissue samples [22] and the identification
of biological “markers” for disease outcome [23].

In this study, we work on the data set with 6 binary variables of clinical indicators and
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Table 2: Model selection (breast cancer data)

Number of experts Worth indices

2 (0.78, 0.22)∗

3 (0.73, 0.18, 0.09)
∗ The number of experts selected.

5 continuous variables representing the top 5 metagenes ranked in terms of the likelihood
ratio statistic described in [22]; see also [3]. Table 1 displays the original coding of the 6
binary clinical indicators given in the Supplementary Information of [19]. We first apply
the NGME network of [1] on the continuous variables to classify the patients into good and
poor prognosis subgroups; see equation (22). This preliminary analysis provides the initial
estimates and the determination of the number of expertsM for the generalized NGME net-
work. In addition, the improvement of the generalized NGME network by using additional
binary clinical indicators can be assessed. Such evaluation is based on the misclassification
error rate using the “leave-one-out” method for cross-validation. The number of expertsM
is determined based on a frequentist analog of the “worth index” on model selection. The
worth index for theh-th expert, based on the indicator variableszhj over the data, is given
in [24] as

Ih =
n∑

j=1

zhj/n (h = 1, . . . , M).

Here, we consider a frequentist analog wherezhj is replaced by its estimated conditional
expectation̂τhj . The number of experts is chosen to be the minimum value ofM with the
largest worth indices for which the sum of their worth indices exceeds 0.8; see [24,25]. Ta-
ble 2 displays the results for the model selection. A NGME network withM = 2 experts is
selected. The leave-one-out error rate is provided in Table 3. We then apply the generalized
NGME networks to classify the patients into good and poor prognosis subgroups, using the
independence and location models, on the mixed feature data. The results for these two
methods are displayed in Table 3. With the independence model, the results using (14) and
(15) for the update ofλ(k+1)

hiv are the same. With the location model, we consider a NAIVE-
location model described in Section 4 where the conditional means are specified to each
level (location) of the combined variable of the oestrogen receptor (ER) and progesteron
receptor (PR) status, as a very strong association between these two categorical variables is
detected; see Table 4. It is also observed that there is highly significant difference (p-value
< 0.0005) in all continuous variables between different categories of this combined vari-
able{ER, PR}. This indicates a significant interaction between{ER, PR} and the vector of
continuous variables for the NAIVE-location model.

From Table 3, it can be seen that the generalized NGME networks significantly reduce
the error rate by using additional binary clinical indicators. There is, however, little dif-
ference between the independence and location models for the binary classification of this
breast cancer data. The allocation of two patients out of 78 is corrected using the location
model. Although there are significant correlations between categorical variables and inter-
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Table 3: Leave-one-out error rates (breast cancer data)

Method Error rate

NGME network on continuous variables 29.5%
Independence model on mixed variables 19.2%
Location model on mixed variables 16.7%

Table 4: Association between categorical variables (breast cancer data): Chi-square statistic
with the p-value in brackets

Variables ER PR SZ AG AN

GR 9.6 (0.002) 11.8 (0.001) 9.7 (0.002) 3.5 (0.060) 2.3 (0.129)
ER 39.7 (0.000) 6.7 (0.009) 0.0 (0.965) 0.5 (0.500)
PR 7.0 (0.002) 0.0 (0.937) 0.1 (0.765)
SZ 0.7 (0.418) 1.2 (0.282)
AG 0.4 (0.541)

actions between categorical and continuous variables, the performance of the independence
model is comparable to that of the location model for the binary classification of the breast
cancer data. As presented in Section 2, the independence model tends to have a lower vari-
ance for the estimates and compensates for any increase in the estimation bias, especially
when the sample size is small.

6 CONCLUSION

Many kinds of data collected in wide areas of machine learning applications involve both
categorical and continuous feature variables. With the mixed feature data, the assump-
tion of multivariate Gaussian becomes invalid with NG expert networks. In this chapter,
we have extended the NGME network to incorporate the independence and location mod-
els for tackling problems with mixed feature data. The independence model assumes that
the categorical variables are independent of each other and of the continuous variables.
The location model extends the independence model by allowing the possibility of within-
expert associations between categorical and continuous variables. These methodologies
provide alternative methods in networks modeling within the framework of NG networks
with mixed feature data.

Normalized Gaussian ME networks with NG gating networks have the advantage of
efficient learning via the EM algorithm [1,18], which has a number of desirable properties
including its numerically stability and reliable convergence [17]. This is in contrast to the
ME networks [6,16], where the nonlinearity of thesoftmaxgating network [26] implies that
an iterative reweighted least squares (IRLS) algorithm with a carefully selected learning
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rate is required in the inner loop of the EM algorithm [5, 6]. We show in Section 3 that the
desirable property of fast learning via the EM algorithm is preserved within the generalized
NGME networks incorporating the independence and location models for problems with
mixed feature data. In practice, the location modeling approach becomes intractable when
the multinomial distribution replacing the categorical variables has many cells and/or there
are many continuous feature variables. We have developed an efficient procedure in Section
4 to determine the correlation structure between the categorical and continuous variables in
order to minimize the number of parameters in the location model.

In Section 5, the proposed methods are illustrated using a real example in the context
of bioinformatics. From Table 3, it can be seen that significant improvement is achieved by
using additional categorical variables via the independence or location models. The error
rates in Table 3 have been considered here in a relative sense. However, caution should be
exercised in interpreting these rates in an absolute sense. This is because the metagenes in
the data set are determined using the expression profiles from the 78 cancer patients. Thus,
the misclassification error rate is calculated without allowance for the selection bias, which
is present because each “leave-one-out” test sample was also used in the gene-selection
process [3,27]. The error rates given in Table 3 should therefore be interpreted as apparent
error rates. An “external” cross-validation can be adopted to correct for the bias in estimat-
ing the error of a prediction rule, where gene-selection procedure is performed at each stage
of the cross-validation process on the remaining samples; see [20,27].

The proposed methodologies would have wide application in various scientific fields
such as economy, biomedical and health sciences, and many others, where data with mixed
feature variables are collected. Although the focus of the chapter is on the NGME net-
work, the methodologies can be readily applied to the NG radial basis function (NGRBF)
networks [28, 29], based on the connection between the NGME and NGRBF networks de-
scribed in [2]. In addition, other members of the exponential family of densities can be
adopted for the specification of the local output densityfh(y|x; θh); see [6]. Jiang and
Tanner [30] have obtained conditions for the identifiability of the ME network, which they
showed held for some commonly used expert networks such as Poisson, gamma, Gaussian,
and Bernoulli experts.
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