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Summary

Objective: For many applied problems in the context of medically relevant artificial
intelligence, the data collected exhibit a hierarchical or clustered structure. Ignoring
the interdependence between hierarchical data can result in misleading classifica-
tion. In this paper, we extend themechanism for mixture-of-experts (ME) networks for
binary classification of hierarchical data. Another extension is to quantify cluster-
specific information on data hierarchy by random effects via the generalized linear
mixed-effects model (GLMM).
Methods and material: The extension of ME networks is implemented by allowing for
correlation in the hierarchical data in both the gating and expert networks via the
GLMM. The proposed model is illustrated using a real thyroid disease data set. In our
study, we consider 7652 thyroid diagnosis records from 1984 to early 1987 with
complete information on 20 attribute values. We obtain 10 independent random splits
of the data into a training set and a test set in the proportions 85% and 15%. The test
sets are used to assess the generalization performance of the proposed model, based
on the percentage of misclassifications. For comparison, the results obtained from the
ME network with independence assumption are also included.
Results: With the thyroid disease data, the misclassification rate on test sets for the
extended ME network is 8.9%, compared to 13.9% for the ME network. In addition,
based on model selection methods described in Section 2, a network with two experts
is selected. These two expert networks can be considered as modeling two groups of
patients with high and low incidence rates. Significant variation among the predicted
cluster-specific random effects is detected in the patient group with low incidence
rate.
Conclusions: It is shown that the extended ME network outperforms the ME network
for binary classification of hierarchical data. With the thyroid disease data, useful
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information on the relative log odds of patients with diagnosed conditions at different
periods can be evaluated. This information can be taken into consideration for the
assessment of treatment planning of the disease. The proposed extended ME network
thus facilitates a more general approach to incorporate data hierarchy mechanism in
network modeling.
# 2007 Elsevier B.V. All rights reserved.

1 This diagram looks somewhat different from the representa-
tion in the existing literature so as to contrast with the learning
mechanism for extended ME networks in Fig. 1(b).
1. Introduction

In the context of medically relevant artificial intel-
ligence, many real-world problems involve data that
exhibit a hierarchical or clustered structure. These
include learning problems in wide areas of biome-
trical and medical sciences, where a data hierarchy
is formed due to the relatedness between multiple
tasks. For example, related multiple tasks occur in
the prediction of the survival of patients from dif-
ferent hospitals [1]. With these problems, data
collected from the same cluster are often interde-
pendent and tend to be more alike in characteristics
than data chosen at random from the population as a
whole. Ignoring the dependence between hierarch-
ical data can result in overlooking the importance of
certain cluster-specific effects and lead to spurious
learning or misleading classification [2,3].

Among the various kinds of modular networks,
mixtures-of-experts [4] and hierarchical mixtures-
of-experts [5] are of much interest due to their wide
applicability [6—8] and the advantage of fast learn-
ing via the expectation—maximization (EM) algo-
rithm of Dempster et al. [9]; see, for example,
[10,11]. The mixture-of-experts (ME) architecture
is based on the divide-and-conquer principle where
a complex problem is broken up into simpler and
smaller problems and their solutions can be com-
bined to yield a solution to the complex problem.
Such a strategy can be a powerful tool for modeling
mixed tasks with different local rules [5].

In this paper, we extend the mechanism for ME
networks for binary classification of hierarchical data
via a supervised learning approach. The extension is
implemented by allowing both the gating and expert
networks with correlations within clusters. Another
extension is to quantify cluster-specific information
on data hierarchy by random effects via the general-
ized linear mixed-effects model (GLMM), which is
commonly used in the context of statistical multi-
level analysis [1,3,12,13]. The predicted cluster-spe-
cific random effects provide insights on the
comparison between related multiple tasks; for
examples, the comparison of the performance of
hospitals based on the estimated cluster-specific
effects [1]. The proposed model mimics the perfor-
mance of the human system in that human learning
frequently involves approaching several related
learning tasks simultaneously and takes advantage
of the opportunity to compare and contrast similar
multiple tasks in learning for improving generaliza-
tion accuracy [2]. The remainder of the paper is
organized as follows: Section 2 describes the exten-
sion of ME networks for binary classification problems
with hierarchically structured data via the GLMM. In
Section 3, we show how a fast (multitask) learning of
the extended ME network can be achieved via the EM
algorithm based on a residual maximum likelihood
(REML) approach. The proposed model is illustrated
in Section 4, using a real thyroid disease data set in
the context of binary classification problems. In Sec-
tion 5, a second example is presented. Related work
is discussed in Section 6. Section 7 presents some
concluding remarks.
2. Extension of mixture-of-experts for
binary classification via GLMM

As shown in Fig. 1(a), the ME architecture is com-
prisedofMexpertnetworks.1 Forbinaryclassification
problems, we assume that the output y is a discrete
binary indicator variable having possible outcomes of
‘‘success’’ and ‘‘failure’’ [5]. The expert networks
approximate the distribution of the output y within
each region of the input space. The expert network
maps its input x to a local output, the density
fhðyjx; uhÞ, where uh is a vector of unknown para-
meters for the h th expert network ðh ¼ 1; . . . ;MÞ. It
is assumed that different experts are appropriate in
different regions of the input space. The gating net-
work provides a set of scalar coefficientsphðx;aÞ that
weight the contributions of the various experts,
where a is a vector of unknown parameters in the
gating network. Therefore, the final output of theME
neural network is a weighted sum of all the local
output vectors produced by expert networks:

fðyjx; CÞ ¼
XM
h¼1

phðx;aÞ fhðyjx; uhÞ; (1)
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Figure 1 (a) Mixture-of-experts; (b) extended mixture-of-experts with K level-two units. (Here, in contrast to solid
lines, dashed lines are used to represent unobservable random effects. The cluster-specific random effects a�h and b�h are

generated from Nð0;LÞ and Nð0;FÞ for the gating and expert networks, respectively, where a�h ¼ ðAh1; . . . ;AhKÞT and

b�h ¼ ðBh1; . . . ;BhKÞT .)
where C is the vector of all the unknown parameters
[7]. The output of the gating network is modeled by
the softmax function as

phðx;aÞ ¼ exp ðvT
hxÞXM

l¼1
exp ðvT

l xÞ
ðh ¼ 1; . . . ;MÞ; (2)

where vh is theweight vector of theh th expert in the
gating network and vM ¼ 0. It is implicitly assumed
that the first element of x is one, to account for an
intercept term [5]. In (2), the superscript T denotes
vector transpose and a contains the elements in
vhðh ¼ 1; . . . ;M� 1Þ. The unknown parameter vec-
tor C can be estimated by the maximum likelihood
(ML) approach via the EM algorithm [5,10] or the
expectation—conditional maximization (ECM) algo-
rithm [11,14]. With the ME networks, a frequentist
analog of the worth index approach [6] may be
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adopted to select the number of expert networks M;
see [7]. The identifiability of ME networks has been
studied by Jiang and Tanner [15]. They showed that
conditions for identifiability generally hold for some
commonly used expert networks such as Poisson,
gamma, Gaussian and Bernoulli experts.

For learning problems with hierarchical data
structure as mentioned in Section 1, we are given,
say for each ith cluster ði ¼ 1; . . . ;KÞ, a data set
Di ¼ fxi1; yi1; . . . ;xini ; yinig, where ni is the number
of examples for the ith cluster, and K is the total
number of clusters. Here, we assume that the input
xi j is an p-dimensional vector ði ¼ 1; . . . ;K;
j ¼ 1; . . . ; niÞ. The complete data set is then given
by D ¼ fDig with the total number of examples
N ¼

PK
i¼1 ni. In the context of statistical multilevel

analysis, this setting corresponds to a two-level
hierarchical structure, where the N examples are
considered as level-one units and the K clusters as
level-two units [3]. The interdependency between
hierarchical data from the K clusters (level-two
units) can be taken into account by incorporating
random effects into the model via the GLMM [12].
That is, we assume that there exists cluster-specific
(random) effects, which in turn introduce interde-
pendency among data obtained from the same clus-
ter. This approach has been adopted for the analysis
of survival data and regression problems [1,13].
With extended ME networks, we allow both the
gating and expert networks to incorporate the data
hierarchy via the GLMM (Fig. 1(b)). With the GLMM,
the output of the gating network is represented by

phðxi j;a;a;LÞ ¼
exp ðvT

hxi j þ AhiÞ

1þ
XM�1
l¼1

exp ðvT
l xi j þ AliÞ

ðh ¼ 1; . . . ;M� 1Þ;

pMðxi j;a;a;LÞ ¼
1

1þ
XM�1
l¼1

exp ðvT
l xi j þ AliÞ

:

(3)

In the terminology of GLMM, elements of a (or vh)
are fixed effects (unknown constants) that are
shared among all clusters, while Ahiðh ¼ 1; . . . ;M�
1Þ represent the unobservable cluster-specific ran-
dom effects from the ith cluster ði ¼ 1; . . . ;KÞ; see,
for example, [13]. Letting a ¼ ðaT

1 ; . . . ;aT
KÞ

T
and

ai ¼ ðA1i; . . . ;AðM�1ÞiÞT, we assume that a follows a
multivariate normal distribution with zero mean
vector and covariance matrix L:

L ¼

L1 0 � � � 0
0 L2 � � � 0

..

. ..
.
� � � ..

.

0 0 � � � LK

2
6664

3
7775; (4)
with Li ¼ diagðl1; . . . ; lM�1Þ for i ¼ 1; . . . ;K, where
lhðh ¼ 1; . . . ;M� 1Þ are known as the variance com-
ponents in the context of GLMM and assumed to be
distinct for different experts.

The inclusion of random effects in expert net-
works can be handled via the linear predictor in a
similar way above. For the h th expert
ðh ¼ 1; . . . ;MÞ, we let the linear predictor hhi j be

hhi j ¼ wT
hxi j þ Bhi; (5)

where wh is the weight vector of the h th expert
network and Bhiðh ¼ 1; . . . ;MÞ are the unobservable
cluster-specific random effects from the ith cluster
ði ¼ 1; . . . ;KÞ. Letting b ¼ ðbT

1 ; . . . ;bT
KÞ

T
and

bi ¼ ðB1i; . . . ;BMiÞT, it is assumed that b follows a
multivariate normal distribution with zero mean
vector and covariance matrix F:

F ¼

F1 0 � � � 0
0 F2 � � � 0

..

. ..
.
� � � ..

.

0 0 � � � FK

2
6664

3
7775; (6)

where Fi ¼ diagðf1; . . . ;fMÞ for i ¼ 1; . . . ;K, where
the variance components fhðh ¼ 1; . . . ;MÞ are
assumed to be different for the M experts. The
expected value of the local output is then obtained
by passing the linear predictor through the link
function gð�Þ as

mhi j ¼ gðhhi jÞ: (7)

For binary classification problems, the local den-
sity fhðyi jjxi j; uh;b;FÞ for i ¼ 1; . . . ;K and j ¼
1; . . . ; ni is generally assumed to be the Bernoulli
distribution and gð�Þ is the logistic function; see [5].
That is,

fhðyi jjxi j; uh;b;FÞ ¼
exp ðwT

hxi j þ BhiÞ
1þ exp ðwT

hxi j þ BhiÞ

 !yi j

� 1

1þ exp ðwT
hxi j þ BhiÞ

 !1�yi j

;

(8)

where the vector of unknown parameters for the h
th expert network is equal to the weight vector
(uh ¼ wh). These fixed effects are shared among
all cluster (Fig. 1(b)).

An advantage of the use of the GLMM is that the
predicted cluster-specific random effects have a
meaningful interpretation. For example, the esti-
mates of random effects aiði ¼ 1; . . . ;KÞ in the
gating network (3) quantify the extent of cluster-
specific effect from the ith cluster on the weights of
the contributions from various experts. Similarly,
the estimates of random effects biði ¼ 1; . . . ;KÞ in
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expert networks (5) provide useful information as to
whether there is a significant difference in local
outputs from each expert network among data from
different clusters. These quantified cluster-specific
information can be used to draw insights on the
comparison between different clusters; see, for
example, [1]. We shall illustrate this issue further
in Section 4.
3. Learning via the ECM algorithm

With the extended ME network for hierarchical
data,we letCT ¼ ðCT

1 ;C
T
2 Þbethevectorofunknown

parameters, where CT
1 ¼ ðaT;aT; uT1 ; . . . ; uTM;b

TÞ
consists of the fixed and the unobservable random
effects, and C2 contains the variance components
lhðh ¼ 1; . . . ;M� 1Þ andfhðh ¼ 1; . . . ;MÞ inL andF,
respectively, for the gating and expert networks. The
supervised learning of the unknown parameters C

within the extended ME network is implemented
via the REML approach of McGilchrist [12] and its
extension for normal mixture models [13]. For given
initial values of L and F, the best linear unbiased
prediction (BLUP) estimators of C1 maximize the
t
ðcÞ
hi j ¼ prfZhi j ¼ 1jyi j;xi j;C

ðcÞ
1 ;C

ðcÞ
2 g

¼
phðxi j;a

ðcÞ;aðcÞ;LðcÞÞðððexp ðwðcÞ
T

h xi j þ B
ðcÞ
hi ÞÞ

yi j
Þ=ð1þ exp ðwðcÞ

T

h xi j þ B
ðcÞ
hi ÞÞÞPM

l¼1plðxi j;aðcÞ;aðcÞ;L
ðcÞÞðððexp ðwðcÞ

T

l xi j þ BðcÞli ÞÞ
yi j
Þ=ð1þ exp ðwðcÞ

T

l xi j þ BðcÞli ÞÞÞ
(11)
function2L ¼ L1 þ L2, where

L1 ¼ log likelihood formed from outputYi j with
a andb conditionally fixed;

L2 ¼ logarithm of the joint probability density
function of a andb; witha andb taken to be
independent: (9)

The BLUP estimators are then used to obtain
approximate REML estimators of the parameters
C2 for the variance components [12,16]. The BLUP
estimate of C1 is obtained as a solution of the
equation @L=@C1 ¼ 0, which can be solved via the
ECM algorithm [11,14,17]. The ECM algorithm is a
broadly applicable technique that provides an itera-
tive procedure for computing ML estimates in a
variety of incomplete-data problems such as the
learning of ME networks [11].

In order to pose the learning for the extended ME
network as an incomplete-data problem, we intro-
duce the indicator variables zhi j, where zhi j is one or
2 The function L is not a log likelihood in the conventional sense
because it is based on the unobservable random effects a and b.
zero according to whether yi j belongs or does not
belong to the h th expert ðh ¼ 1; . . . ;MÞ. For the
joint log likelihood L ¼ L1 þ L2 in (9), the BLUP
estimate of C1 can be found iteratively using the
ECM algorithm as detailed in [11]. Given the current
estimates of C

ðcÞ
1 and C

ðcÞ
2 , the expectation (E) step

on the ðcþ 1Þ th iteration involves the computation
of the Q-function which is given by the expected
value of the complete-data log likelihood condi-
tional on the observed data and the current model.
That is, with reference to (8):

QðC1; C
ðcÞ
1 ;C

ðcÞ
2 Þ

¼
XK
i¼1

Xni
j¼1

XM
h¼1

t
ðcÞ
hi jflogphðxi j;a;a;L

ðcÞÞ

þ yi jðwT
hxi j þ B

ðcÞ
hi Þ

� log ð1þ exp ðwT
hxi j þ BðcÞhi ÞÞg

� 1

2
flog jLðcÞj þ aTLðcÞ

�1
ag

� 1

2
flog jFðcÞj þ bT

FðcÞ
�1
bg � C; (10)

where C ¼ K log ð2pÞ is a constant and
is the current estimated posterior probability that
yi j belongs to the h th expert ðh ¼ 1; . . . ;MÞ. For
Bernoulli distributions (8), it can be seen from (10)
that theQ-function can be gathered into a termwith
respect to the gating network and M terms corre-
sponding for each expert of the expert network; see
the discussion in [11].

The updated estimates C
ðcþ1Þ
1 are obtained in the

M-step by maximizing the Q-function (10) over the
parameter space. As the Q-function can be decom-
posed into separate terms corresponding to the
gating and each expert network, it implies that
separate maximizations can be performed indepen-
dently and fast learning can be achieved. The
detailed description of the M-step for Bernoulli
models is presented in Appendix A.

Given the updated BLUP estimates C
ðcþ1Þ
1 , the

approximate REML estimates C
ðcþ1Þ
2 of the variance

components L and F are obtained based on the
procedure described in [12,16]. Asymptotic var-
iances of the estimators Ĉ2 of the variance compo-
nents can be obtained from the inverse of the
REML information matrix [16], which are used to
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Table 2 Classification results for the thyroid disease
data

Model No. misclassified
on test setsa

Percentage of
misclassification
assess if clusters differ significantly in the weighting
of experts and the mean of local outputs.
Appendix B outlines the REML procedure for C2 with
the extended ME network.
on test setsa

ME network 159�14 13.9�1.3
Extended ME

network
102�15 8.9�1.3

a Mean � standard deviation.
4. An example of thyroid disease data

In this section, the extended ME network is applied
to a real thyroid disease data set. The data set
‘‘thyroid0387.data’’ is available from the UCI Repo-
sitory of machine learning databases [18], consisting
of 9172 thyroid diagnosis records from 1984 to early
1987. Each record has 29 attribute values and a
thyroid diagnosis. The diagnosis covers 20 classes,
but here we consider a binary outcome variable that
indicates the presence or the absence of diagnosed
conditions. There are plenty of missing values (5.3%)
in the original data set. In our study, we consider
7652 records with complete information on 20 attri-
bute values (15 binary variables and five continuous
variables). Based on the record identification num-
ber, we create a hierarchical data structure with
K ¼ 26 level-two units. These level-two units (clus-
ters) thus represent diagnosis records from different
periods between 1984 and early 1987. The values of
each continuous attribute are scaled to have zero
mean and unit variance.

Based on themodel selectionmethod described in
[7], the number of experts is chosen to be the mini-
mumnumberofexpertswiththe largestworth indices
forwhich thesumof theirworth indicesexceeds some
critical value k, says, k ¼ 0:8 [6]. With the ME net-
works, result of applying thismodel selectionmethod
to the thyroid diseasedata is presented inTable 1. For
comparison, we include also the model selection
approachbasedon theBayesian informationcriterion
(BIC) [19]. Based on the result presented in Table 1, a
ME network with M ¼ 2 is selected.

For the study of the applicability of the proposed
model, we obtain ten independent random splits of
the data into a training set and a test set, in a
proportion of 85% and 15%, respectively. The test
sets are used to assess the generalization perfor-
mance of the proposed model, based on the per-
centage of misclassifications by the model. The
results are presented in Table 2. It can be seen that
the extended ME network provides a smaller
Table 1 Model selection for the thyroid disease data

No. of experts log likelihood

2 �2711.87
3 �2607.04
4 �2521.33
a The number of experts selected by each model selection metho
averaged number of misclassified data and provides
better performance in the binary classification of
this thyroid disease data.

As described at the end of Section 2, the pre-
dicted cluster-specific random effects a and b have
a meaningful interpretation. With the thyroid dis-
ease data, the two expert networks can be consid-
ered as modeling two groups of patients with high
and low probabilities of the presence of diagnosed
conditions (incidence rates), respectively. Based on
the asymptotic variances of the estimators in the
variance components obtained according to the
procedure described in Appendix B, significance of
the cluster effects can be assessed. With the thyroid
data, significant variations among the predicted
cluster-specific random effects in the patient group
with low incidence rate is detected. In Fig. 2, we
display the predicted cluster-specific random
effects B1i and B2i (significant variation) in expert
networks for these two patient groups among the 26
clusters. As a result, an estimated negative random
effect B2i for the patient group with low incidence
rate thus indicates a smaller log odds of the pre-
sence of diagnosed conditions in a cluster, under a
Bernoulli probability model (8). Based on the pre-
dicted cluster-specific random effects, the relative
log odds of patients with diagnosed conditions at
different period can be evaluated. This useful infor-
mation can be taken into consideration for the
assessment of treatment planning of the disease.
5. An example on multi-center clinical
trials

To illustrate further the applicability of the pro-
posed model, a second example is presented. The
BIC Worth indices

5987.1a (0.624, 0.376)a

6153.1 (0.50, 0.33, 0.17)
6357.2 (0.47, 0.44, 0.05, 0.04)

d.
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Figure 2 Prediction of cluster-specific random effects
for (a) the patient group with high incidence rate and (b)
the patient group with low incidence rate.
data set is available in [20], which is a part of a large
multi-center clinical trial carried out by the Radia-
tion Therapy Oncology Group in the United States.
The data set in [20] involved the patients
with squamous carcinoma of three sites in the
oropharynx, with six institutions participating.
Table 3 The multi-center clinical trial data

(a) Model selection

No. of experts log likelihood

2 �26.66
3 �22.85
4 �21.92

(b) Leave-one-out misclassification rate

Model

ME network
Extended ME network
a The number of experts selected by each model selection metho
Each treatment policy dictated the treatment to
be administrated during a 90-day period. After this
period, each patient received medical care by the
participating institution [20]. As there was consid-
erable variability in patient treatment following
the 90-day period and in the facilities shared within
participating institution, it is conceived that insti-
tution effect may also be of importance in the
analysis of this multi-center clinical trial data. In
our study, we consider only the carcinoma of the
pharyngeal tongue (N ¼ 59) with complete infor-
mation on four attribute values (three binary vari-
ables and one continuous variable). A hierarchical
data structure with K ¼ 6 level-two units, corre-
sponding to the six participating institutions, is
postulated. We consider here a binary outcome
variable that indicates a patient’s survival time
being greater than three years or not. Censored
observations corresponding to patients that were
lost to follow-upwithin three years are ignored. The
result for the model selection is given in Table 3(a).
Based on Table 3(a), a ME network with M ¼ 2 is
selected.

The performance of the proposed model is
assessed based on the ‘‘leave-one-out’’ misclassi-
fication error rate for an ‘‘external’’ cross-valida-
tion [21]. The leave-one-out procedure can be
viewed as the special case where the size of the
test set is reduced to a single entity. As the
parameters are trained based on the training set
after eliminating a single entity each time, this
external leave-one-out procedure thus reduces
the bias in estimating the misclassification error
rate [21]. The results are presented in Table 3(b).
It can be seen that the extended ME network
provides a smaller leave-one-out misclassification
error rate, compared to the ME network. Based on
the asymptotic variances of the estimators in the
variance components, the institution effect is not
significant.
BIC Worth indices

126.7a (0.565, 0.435)a

168.0 (0.50, 0.41, 0.09)
215.1 (0.44, 0.26, 0.18, 0.12)

Number (percentage) misclassified

10 (16.9%)
7 (11.9%)

d.
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6. Discussion

The advantage of the learning mechanism for
extended ME networks relies on the relatedness
between multiple tasks. Experimental work [2]
has validated this mechanism with sets of subtasks
related in various ways. In this paper, we focus on
related multiple tasks in binary classification pro-
blems which are arisen from a setting of the multi-
level analysis of hierarchical data [3]. That is,
multiple data sets corresponding to different clus-
ters are obtained and it is anticipated that data from
the same cluster are interdependent and tend to be
more alike in characteristics than data chosen at
random from the population as a whole. The depen-
dency within clusters is incorporated into the net-
work modeling via the GLMM.

The extension of ME networks via the GLMM can
be related to the heterogeneity model or the latent
class model in the statistical literature [22,23]. For
the estimation of variance components in C2, var-
ious approaches have been proposed, including
Bayesian analysis [22,24] and the REML estimation
procedure of McGilchrist [12], among others. In this
paper, the adoption of the REML approach facilitates
the estimation of the variance components. It has
been shown in the literature that the REML estima-
tion of the variance components provides less biased
estimators compared to the ML method, including
successful applications in the analysis of survival
data and regression problems [1,12,13,16]. With
binary classification problems focussed in this paper,
the BLUP of C1 cannot be updated independently.
The supervised learning procedure for the estimate
of C1 is therefore performed in a conditional mode
using an iterative reweighted least squares (IRLS)
approach within the ECM algorithm framework
(Appendix A). This is in contrast to the unsupervised
learning for regression problems described in
[13,16].

The idea of incorporating random effects in mul-
tilayered perceptron networks has been considered
in [2] in the context of multitask learning. Unlike our
method, they incorporate the random effects in the
weight vectors of the hidden units. Denoting nhidden
the number of hidden units in the neural network
model, each random effect, a ðnhidden þ 1Þ-dimen-
sional vector, represents the hidden-to-output
weights for each subtask. In contrast to the GLMM
approach proposed in this paper, the incorporation
of random effects in the weight vectors does not
possess a meaningful interpretation. The GLMM is a
natural extension of the generalized linear model
(GLM), in the specifications of the gating and
experts networks [5], to incorporate random effects
via the corresponding linear predictors. As
described in Sections 2 and 3, the GLMM provides
a statistically principled approach to quantify the
extent of influence from each cluster on both the
gating and experts networks via a ‘‘soft sharing’’
mechanism. These predicted random effects are
useful on the comparison between different clusters
for decision making.
7. Conclusions

Many real-world problems in wide areas of medi-
cally relevant artificial neural network applications
involve data that exhibit a hierarchical or clustered
structure. In this paper, we have extended the
supervised learning mechanism for ME networks
to tackle binary classification problems with hier-
archically structured data. The cluster-specific
effects are assumed to be random and modeled
via linear predictors, based on the GLMM. This
approach provides an alternative method in incor-
porating random effects within network modeling.
For example, the method of incorporating random
effects via the GLMM can be applied to learn other
alternative models with the ME architecture, such
as themixture of Cox experts [8] and thenormalized
Gaussian ME model [25]. The former model com-
bines features of the Cox proportional hazards
model and the ME networks for modeling survival
data with censored observations, while the latter
model has a normalizedGaussian gating network. As
described in Section 1, the extended ME network
would have wide application in various scientific
fields where binary classification of hierarchical
data is involved.

In Sections 4 and 5, the proposed extended ME
network is illustrated using real examples of thyroid
disease data andmulti-center clinical trial data. It is
shown that significant improvement in the misclas-
sification rate is achieved by the adoption of the
extended ME network to tackle problems with hier-
archical structured data where interdependence of
data collected from the same cluster exists. In
addition, the proposed GLMM for binary classifica-
tion problems provides a meaningful interpretation
of the predicted cluster-specific random effects for
decision making. With the thyroid disease data,
significant variation in the cluster-specific random
effects is detected in the patient group with low
incidence rate. Useful information on the relative
log odds of patients with diagnosed conditions at
different period can be evaluated based on the
predicted cluster-specific random effects. This
information can be taken into consideration for
the assessment of treatment planning of the
disease.
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Appendix A. Maximization of the Q-
function for Bernoulli models

In this appendix, we describe how the Q-function
(10) of the extended ME model with Bernoulli local
densities (8) can be maximized on theM-step via the
ECM algorithm [11]. With the ECM algorithm and the
independence assumption of L in (4), we partition

the parameter vector a as ðaT
1 ; . . . ;aT

M�1Þ
T
, where

each ah consists of the weight vector vh and
the random effect vector a�h ¼ ðAh1; . . . ;AhKÞT of

the h th expert. That is, aT
h ¼ ðvT

h ;a
�T
h Þ for

h ¼ 1; . . . ;M� 1, where a ¼ ða�T1 ; . . . ;a�
T

ðM�1ÞÞ
T

is

regrouped according to the order of experts from
h ¼ 1 to h ¼ M� 1. On the ðcþ 1Þ th iteration of the
ECM algorithm, the M-step is replaced by ðM� 1Þ
computationally simpler conditional-maximization
(CM) steps:
� CM-step 1: Calculate a

ðcþ1Þ
1 bymaximizingQa with
alðl ¼ 2; . . . ;M� 1Þ fixed at a
ðcÞ
l ,
� C
M-step 2: Calculate aðcþ1Þ2 bymaximizingQa with
a1 fixed at a

ðcþ1Þ
1 and alðl ¼ 3; . . . ;M� 1Þ fixed

at aðcÞl ,.

� ..

� C
M-stepðM� 1Þ : Calculate a

ðcþ1Þ
ðM�1Þ by maximizing

Qa with alðl ¼ 1; . . . ;M� 2Þ fixed at aðcþ1Þl ,

where

Qa ¼
XK
i¼1

Xni
j¼1

XM
h¼1

t
ðcÞ
hi j logphðxi j;a;a;L

ðcÞÞ

� 1

2
fK log ð2pÞ þ log jLðcÞj þ aTLðcÞ

�1
ag

is the term of the Q-function in (10) for the gating
network. The ECM algorithm preserves the appeal-
ing convergence properties of the EM algorithm,
such as the monotone increasing of likelihood after
each iteration [26]; see also [11,14]. More impor-
tantly, each CM-step above corresponds to a separ-
able set of the parameters in ah for h ¼ 1; . . . ;M� 1,
and can be obtained using an iterative reweighted
least squares (IRLS) approach [5].

Let aðcþh=ðM�1ÞÞ ¼ ðaðcþ1Þ
T

1 ; . . . ;a
ðcþ1ÞT
h�1 ;a

ðcÞT
h ; . . . ;

a
ðcÞT
M�1Þ

T , at the h th CM-step on the ðcþ 1Þ th itera-
tion of the ECM algorithm ðh ¼ 1; . . . ;M� 1Þ, it
follows from (3) and (4) that the IRLS updating rule
for ah is given by

a
ðcþ1Þ
h ¼ a

ðcÞ
h þ � @2Qa

@aha
T
h

" #�1
ðcþh=ðM�1ÞÞ

@Qa

@ah

� �
ðcþh=ðM�1ÞÞ

:

(12)

Letting X and S denote the design matrices of vh and
a�h, respectively, we have

@Qa

@ah

� �
ðcþh=ðM�1ÞÞ

¼ XT

ST

" #
G�

0

a�
ðcÞ

h =l
ðcÞ
h

� �

� @2Qa

@aha
T
h

" #
ðcþh=ðM�1ÞÞ

¼ XT

ST

" #
Ua X S½ �þ

0 0

0 IK=l
ðcÞ
h

� �
;

where IK is an identity matrix of dimension K andG is
a N by 1 matrix with elements

t
ðcÞ
hi j � p

ðcþh=ðM�1ÞÞ
hi j ði ¼ 1; . . . ;K; j ¼ 1; . . . ; niÞ;

and where p
ðcþh=ðM�1ÞÞ
hi j denotes phðxi j;a

ðcþh=ðM�1ÞÞ;
a;LðcÞÞ. The matrix Ua is a N � N diagonal matrix
with diagonal elements:

p
ðcþh=ðM�1ÞÞ
hi j ð1� p

ðcþh=ðM�1ÞÞ
hi j Þ

ði ¼ 1; . . . ;K; j ¼ 1; . . . ; niÞ:

The IRLS loop (12) is referred to as the inner loop
of the EM algorithm [5]. It is terminated when the
algorithm has converged or after some prespecified
number of iterations, say, ten iterations.

In the applications to binary classification pro-
blems, a Bernoulli model with a logistic link function
is used. Let the term of the Q-function in (10) for
expert networks be

Q u ¼
XK
i¼1

Xni
j¼1

XM
h¼1

t
ðcÞ
hi j log fhðyi jjxi j; uh;b;F

ðcÞÞ

� 1

2
fK log ð2pÞ þ log jFðcÞj þ bT

FðcÞ
�1
bg;

where fhðyi jjxi j; uh;b;F
ðcÞÞ is given by (8). With the

independence assumption of F in (6), we let b�h ¼
ðBh1; . . . ;BhKÞT contain the random effects for the h
th expert, where b ¼ ðb�T1 ; . . . ;b�

T

M Þ
T
is regrouped

according to the order of experts from h ¼ 1 to
h ¼ M. From (6) and (10), we have

wðcþ1Þh

b�
ðcþ1Þ

h

" #
¼

wðcÞh

b�
ðcÞ

h

" #
þ � @2Q u

@uhu
T
h

" #�1
@Q u

@uh

� �
; (13)

where

@Q u

@uh

� �
¼ XT

ST

� �
G� 0

b�
ðcÞ

h =f
ðcÞ
h

� �
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� @2Q u

@uhu
T
h

" #
¼ XT

ST

� �
Uu X S½ � þ 0 0

0 IK=f
ðcÞ
h

� �
:

Here, G is a N by 1 matrix with elements:

t
ðcÞ
hi j �

exp h
ðcÞ
hi j

1þ exp h
ðcÞ
hi j

ði ¼ 1; . . . ;K; j ¼ 1; . . . ; niÞ;

where

h
ðcÞ
hi j ¼ w

ðcÞT
h xi j þ B

ðcÞ
hi :

The matrix Uu is a N � N diagonal matrix with diag-
onal elements:

t
ðcÞ
hi j

exp h
ðcÞ
hi j

1þ exp h
ðcÞ
hi j

0
@

1
A 1

1þ exp h
ðcÞ
hi j

0
@

1
A

for i ¼ 1; . . . ;K and j ¼ 1; . . . ; ni.
Appendix B. REML estimation of
variance components

Given the updated BLUP estimates C
ðcþ1Þ
1 , the

approximate REML estimates of the variance com-
ponents L and F are obtained based on the proce-
dure described in [12] and [16]. With the
independence assumptions of L and F in (4) and
(6), respectively, we let P denote the negative
second derivative of L ¼ L1 þ L2 in (9) with respect
to vjwjajb in the BLUP procedure (Section 3), where
vT ¼ ðvT

1 ; . . . ; vT
M�1Þ, wT ¼ ðwT

1 ; . . . ;wT
MÞ,

aT ¼ ða�T1 ; . . . ;a�
T

ðM�1ÞÞ, and bT ¼ ðb�T1 ; . . . ;b�
T

M Þ. Let-
ting P�1 ¼ H where the matrix H is partitioned
conformally to vjwjajb, it follows from [16] that
the elements of L and F are, respectively, given by

l̂h ¼ K�1ðtrHah þ â�
T

h â�hÞ ðh ¼ 1; . . . ;M� 1Þ
and

f̂h ¼ K�1ðtrHbh þ b̂
�T
h b̂
�
hÞ ðh ¼ 1; . . . ;MÞ;

where Hah is the K � K matrix corresponding to the h
th partition ðh ¼ 1; . . . ;M� 1Þ of the part of the
original matrix H partitioned conformally with
respect to a. The K � K matrix Hbh corresponds to
the h th partition ðh ¼ 1; . . . ;MÞ of the part of H
partitioned conformally with respect to b.

Asymptotic variances of the estimators Ĉ2 in the
variance components L and F can be obtained from
the inverse of the REML information matrix [16]. For
example, with a network of M ¼ 2experts, the part
of H partitioned conformally with respect to a and b
is

Ha1 Hab1 Hab2

� Hb1 Hbb1

� � Hb2

2
4

3
5:

The asymptotic covariance matrix for the variance
components l̂1, f̂1, and f̂2 is then given by

cov
l̂1

f̂1

f̂2

2
4

3
5 ¼ 2

Ra1 Rab1 Rab2

� Rb1 Rbb1

� � Rb2

2
4

3
5
�1

;

where the diagonal elements are

Ra1 ¼ l̂
�2
1 tr IK �

Ha1

l̂1

� �2
( )

and

Rbh ¼ f̂
�2
h tr IK �

Hbh

f̂h

� �2
( )

ðh ¼ 1; 2Þ:

The off-diagonal elements are given by

Rabh ¼ l̂
�1
1 f̂

�1
h trðHabhH

T
abhÞ ðh ¼ 1; 2Þ

and

Rbb1 ¼ f̂
�1
1 f̂

�1
2 trðHbb1H

T
bb1Þ:
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