
DICTA2002: Digital Image Computing Techniques and Applications, 21–22 January 2002, Melbourne, Australia. 1

ON SPEEDING UP THE EM ALGORITHM IN PATTERN RECOGNITION:
A COMPARISON OF INCREMENTAL AND MULTIRESOLUTION

KD-TREE-BASED APPROACHES

Shu Kay Ng and Geoffrey John McLachlan
Centre of Statistics

Department of Mathematics
University of Queensland

St. Lucia, Brisbane, QLD 4072, Australia
skn@maths.uq.edu.au and gjm@maths.uq.edu.au

Abstract

Finite mixture models implemented via the EM algo-
rithm are being increasingly used in a wide range of
problems in the context of unsupervised statistical pattern
recognition. As each E-step visits each feature vector on
a given iteration, the EM algorithm requires considerable
computation time in its application to large data sets. We
consider two approaches, an incremental EM (IEM) algo-
rithm and a multiresolution kd-tree-based approach, that
can be used to reduce the computational time in applying
the EM algorithm. In this paper, we investigate and com-
pare their relative performances in speeding up the EM al-
gorithm. Some simulated and real data on medical mag-
netic resonance (MR) images were used in this investiga-
tion. The results show that the IEM algorithm leads to the
lowest error rate, but that the reduction in the time to con-
vergence is very limited. The multiresolution kd-tree-based
algorithms, on the other hand, provide larger reduction in
computation time. In particular, it is demonstrated that by
using an IEM algorithm in conjunction with a multireso-
lution kd-tree, the EM algorithm can be speeded up by a
factor of 56.0 for very large data sets.

1. Introduction

Finite mixture models have been widely applied in the
£eld of unsupervised statistical pattern recoginition, where
a pattern is considered as a single entity and is represented
by a £nite dimensional vector of features of the pattern.
With the computer revolution, data are increasingly being
collected in the form of images, as in Magnetic Resonance
(MR) imaging. The aim of pattern recognition is to auto-

mate processes performed by humans. For example, auto-
matic segmentation of different tissue cells of MR images
of the human brain facilitates an imaging-based medical
diagnosis, providing an aid to surgery and treatment plan-
ning, as well as a means for studying the effect of the lo-
cality of abnormal tissues in neurologic disease.

With the mixture approach, the observed p-dimensional
feature vectors x1, . . . ,xn are assumed to have come from
a mixture of a £nite number, say g, of groups in some un-
known proportions π1, . . . , πg . The mixture density of xj
is expressed as

f(xj ;Ψ) =

g
∑

i=1

πifi(xj ;θi) (j = 1, . . . , n), (1)

where the group-conditional densities fi(xj ;θi) are spec-
i£ed up to a vector θ i of unknown parameters (i =
1, . . . , g). Usually, the group-conditional densities are
taken to belong to the same parametric family, for exam-
ple, the normal. In this case,

fi(x;θi) = φ(x;µi,Σi),

where φ(x;µ,Σ) denotes the p-dimensional multivariate
normal distribution with mean µ and covariance matrixΣ.
The vector of all the unknown parameters is given byΨ =
(π1, . . . , πg−1,θ

T
1 , . . . ,θ

T
g)

T , where the superscript T de-
notes vector transpose, and it can be estimated by the maxi-
mum likelihood method implemented via the Expectation-
Maximization (EM) algorithm of [1]. Let z1, . . . , zn de-
note the unobservable group-indicator vectors, where the
ith element zij of zj is taken to be one or zero according
as the jth feature vector xj does or does not come from the
ith group. Within the EM framework, the observed data x
and y = (xT , zT)T are regarded as the incomplete and the

2

complete data respectively, where x = (xT1 , . . . ,x
T
n)

T and
z = (zT1 , . . . , z

T
n)

T . For mixtures with normal compo-
nent densities, it is computationally advantageous to work
in terms of the suf£cient statistics. On the (k + 1)th itera-
tion of the EM algorithm, the E-step calculates the current
conditional expectations of the suf£cient statistics

T
(k)
i1 =

n
∑

j=1

τ
(k)
ij ,

T
(k)
i2 =

n
∑

j=1

τ
(k)
ij xj ,

T
(k)
i3 =

n
∑

j=1

τ
(k)
ij xjx

T
j ,

where

τ
(k)
ij = π

(k)
i φ(xj ;µ

(k)
i ,Σ

(k)
i)/

g
∑

l=1

π
(k)
l φ(xj ;µ

(k)
l ,Σ

(k)
l)

is the current estimate of the posterior probability that xj
comes from the ith group. The M-step updates the esti-
mates as follows:

π
(k+1)
i = T

(k)
i1 /n,

µ
(k+1)
i = T

(k)
i2 /T

(k)
i1 ,

Σ
(k+1)
i = T

(k)
i3 − T

(k)−1

i1 T
(k)
i2 T

(k)T

i2 .

The E- and M-steps are alternated repeatedly until conver-
gence; see for example [2,3]. An outright or hard cluster-
ing of the observations can be obtained by assigning the
jth feature vector to the group to which it has the high-
est estimated posterior probability. In the context of au-
tomatic segmentation of MR images, this hard clustering
corresponds to the noncontextual segementation, in which
the spatial characteristics of each voxel is ignored [4].

As set out in some detail in [3, Section 1.7], the EM
algorithm has a number of desirable properties, including
reliable global convergence and the likelihood is not de-
creased after each EM iteration. However, as the E-step
is implemented for each feature vector xj before the next
M-step is performed, the time spent in the E-step depends
linearly on the number of observations and the number of
groups in the mixture models. In considering methods for
improving the speed of the EM algorithm for the maxi-
mum likelihood £tting of mixture models to large data, it is
highly desirable if the simplicity and stability of the EM al-
gorithm can be preserved [5, Chapter 12]. In this paper, we
consider and compare the incremental EM (IEM) algorithm
of [6] and the multiresolution kd-tree of [7] for speeding up
the implementation of the EM algorithm for the £tting of
normal mixture models. Our focus is on the relative CPU

time to convergence and the error rate of the segmentation
for various algorithms against those of the standard EM al-
gorithm.

2. ALGORITHMS AND SIMULATION I

2.1. IEM Algorithm

With the IEM algorithm proposed by [6], the available n
observations are divided into B (B ≤ n) blocks and the E-
step is implemented for only a block of data at a time before
the next M-step is performed. A “pass” or iteration of the
IEM algorithm thus consists of B partial E-steps and B M-
steps. TheseB partial E-steps will take more time to imple-
ment than the one full E-step of the standard EM algorithm.
The additional time involves the inversion of the group-
covariances matrices, which have to be performed at each
of the B partial steps. Moreover, one iteration of the IEM
algorithm requires (B-1) additional M-steps. The argu-
ment for improved rate of convergence is that the IEM al-
gorithm exploits new information more quickly rather than
waiting for a complete iteration of the data before parame-
ters are updated by an M-step. The time to convergence for
the IEM algorithm against the standard EM algorithm is a
tradeoff between the additional computation time per itera-
tion and the fewer number of iteration required because of
the more frequent updating after each partial E-step. The
relative performances of the IEM algorithm with various
number of blocks B have been studied by [5,8]. Adopt-
ing here their simple guided rule to determine the optimal
value of B, we choose the number of blocks B to be that
factor of n that is the closest to B∗ = round(n2/5), where
round(r) rounds r to the nearest integer.

2.2. Multiresolution kd-tree (Without Pruning) Al-
gorithm

The use of multiresolution kd-trees has been proposed
by [7] to speed up the EM algorithm. Here kd stands for
k-dimensional where, in our notation, k = p, the dimen-
sion of a feature vector xj . The kd-tree is a binary tree that
recursively splits the whole set of observations into parti-
tions. Each node in the kd-tree is associated with a cer-
tain partition (subset) of the observations and the root node
owns all the observations. The kd-tree is constructed top-
down, and the partition of the current node is implemented
using the hyper-rectangle of the node, which is de£ned as
the smallest bounding box that contains all the observa-
tions owned by the node. Based on this hyper-rectangle,
the splitting dimension is identi£ed as the dimension of the
hyper-rectangle for which the range of the observations is
greatest. The current node is split at the midrange of this
splitting dimension. The splitting procedure continues until

3

the range of observations in the splitting dimension of the
hyper-rectangle of the node is smaller than some threshold
γ. This node is then declared to be a leaf-node and is left
unsplit.

With the help of the multiresolution data structure built
up by the kd-tree, the computation of the (current) con-
ditional expectations of the suf£cient statistics on the root
node (E-step) can be obtained by summing those on all the
leaf nodes. Let nL be the total number of leaf nodes. For
the mth leaf node LNm (m = 1, . . . , nL), its conditional
expectations of the suf£cient statistics can be simpli£ed by
treating all the observations in it to have the same poste-
rior probabilities τi(x̄m;Ψ(k)) calculated at the mean of
its observations, where

τi(x̄m;Ψ(k)) =
π

(k)
i φ(x̄m;µ

(k)
i ,Σ

(k)
i)

∑g
l=1 π

(k)
l φ(x̄m;µ

(k)
l ,Σ

(k)
l)

,

for i = 1, . . . , g, and where x̄m is the mean of observations
belonging to the leaf node LNm. Thus, the conditional
expectations of the suf£cient statistics on the mth leaf node
LNm (m = 1, . . . , nL) can be approximated as

T
(k)
i1,m = τi(x̄m;Ψ(k))nm,

T
(k)
i2,m = τi(x̄m;Ψ(k))nmx̄m,

T
(k)
i3,m = τi(x̄m;Ψ(k))

∑

j∈LNm

xjx
T
j (2)

for i = 1, . . . , g, where nm is the number of observations
in the leaf node LNm. Hence, without pruning, the speed
up of the EM algorithm is roughly proportional to the ratio
of n against the number of leaf nodes nL. In practice, the
error rate depends on the size of the leaf nodes. If the leaf
node is very small (γ small), the simpli£ed equations (2)
are applicable and the consequent error rate is small.

2.3. Multiresolution kd-tree (With Pruning) Algo-
rithm

In [7], a further (pruning) step was introduced to reduce
the computation time. For each group i at a given node
(i = 1, . . . , g), compute the minimum and maximum val-
ues that any observation in the node can have for its current
posterior probabilities. Let ns be the number of observa-
tions in the sth node, and τi,total the sum of the posterior
probabilities of ith group membership for all the observa-
tions. If the difference between the minimum and maxi-
mum values of the ith group posterior probability, denoted
by τi,min and τi,max, respectively, satis£es

ns(τi,max − τi,min) < βτi,total (3)

for i = 1, . . . , g, where β is a small threshold (say, 0.01),
then the node is treated as if it is a (pseudo) leaf node.

Hence its descendants need not be searched at this itera-
tion. If a larger value of β is adopted, more non-leaf-nodes
will satisfy (3). Subsequently, the number of leaf nodes de-
creases, and hence, the time to convergence decreases, but
the error rate increases. In the source code of [7], there is a
further step to check whether the pruning step (3) will re-
sult in bad likelihood estimates. With this checking step,
the number of leaf nodes and hence the time to conver-
gence increase, but the error rate decreases. In practice, the
time to convergence for this algorithm against that without
pruning (Section 2.2) is a tradeoff between the additional
computation time for τi,min and τi,max (i = 1, . . . , g) and
the fewer number of leaf nodes in each iteration. There are
some possibilities, such as those described in the source
code of [7], to reduce the amount of computation of τi,min

and τi,max and hence favour the adoption of the pruning
step. For example, if τi,max is found to be close to zero at
a given node, for instance, τi,max < 0.5τh,min for some
other group h, then there is no need to consider the ith
group posterior probabilities of all observations in descen-
dants of this node. It means that, near the tree’s leaves, the
bounds on the posterior probabilities need to be computed
only for a small fraction of g. In addition, it is easy to de-
termine whether the hyper-rectangle of the current node is
very far away from the meanµi. If it is the case, τi,max and
τi,min may set to zero and hence the ith group is removed
from all descendants of the current node. These two pro-
cedures will considerably reduce the computation time in
cases where there are large number of groups and the over-
lapping of the groups is small. However, due to the imple-
mentation of the pruning step, the number of leaf nodes at
each iteration is not the same, and hence the approximate
log likelihood calculated using the mean of each leaf node
is not monotonic increasing after each iteration. This algo-
rithm can be terminated by considering the convergence of
the estimates at each iteration; see Section 2.5.

As described in [7], the computation of τi,min and
τi,max is much easier to formulate in terms of bounds on
the density at the feature vector belonging to the node.
It means that the minimum and maximum Mahalanobis
squared distances between the mean µi (i = 1, . . . , g) and
any feature vector within the hyper-rectangle are required,
the Mahalanobis squared distance between vector xj and
µi is de£ned as

∆2 = (xj − µi)
T
Σ

−1
i (xj − µi).

Let ∆2
i,min and ∆2

i,max be the minimum and maximum
Mahalanobis squared distances, respectively. Then a lower
bound on the ith group-conditional density at the feature
vector xj in the node is given by

φi,min = (2π)−p/2 | Σi |
−1/2 exp(− 1

2∆
2
i,max).

Similarly, an upper bound φi,max is obtained for this den-

4

Table 1. The Proportions, Intensity Means,
Variances, and Correlation Coef£cients of
Seven Groups (i = 1, . . . , 7)

i πi µi1 µi2 µi3 σ2

i1
σ2

i2
σ2

i3
ρi12 ρi13 ρi23

1 0.06 1.50 1.00 2.48 1.09 0.48 2.37 0.55 0.38 0.74

2 0.05 4.96 8.06 10.17 6.91 10.46 17.62 0.22 0.27 0.95

3 0.11 5.30 3.25 8.01 3.19 1.90 4.74 0.43 0.42 0.79

4 0.08 6.53 12.92 15.00 2.55 6.39 0.92 –0.41 0.09 0.17

5 0.37 8.23 9.57 14.53 0.65 1.89 1.52 –0.52 –0.29 0.73

6 0.11 9.39 3.42 7.70 12.24 2.95 14.17 0.80 0.81 0.95

7 0.22 9.43 7.93 12.58 0.16 0.48 0.44 –0.12 0.26 0.49

sity. If follows that a lower bound of the posterior proba-
bility is given by

τi,min = πiφi,min/(πiφi,min +
∑

l 6=i

πlφl,max).

Similarly, an upper bound τi,max can be obtained. In [7],
quadratic programming is used to £nd ∆2

i,min and ∆2
i,max

with the hyper-rectangular constraints for i = 1, . . . , g.
For data with dimension p less than or equal to three, we
propose an analytic geometry approach to obtain the op-
timum values. The idea is to transform the feature vec-
tors by a matrix of normalized eigenvectors so that the
covariance matrix becomes an identity matrix. By doing
this, the Mahalanobis squared distance becomes the Eu-
clidean squared distance. Analytic tools within the con-
text of vectors and space geometry can then be applied to
£nd the minimum and maximum values. This approach is
found to be faster than the quadratic programming subrou-
tine E04NFF of the FORTRAN NAG library for computing
∆2
i,min and ∆2

i,max.

2.4. IEM with Multiresolution kd-tree Algorithm

In this section, we propose an IEM algorithm in con-
junction with a multiresolution kd-tree (without pruning).
The number of leaf nodes is unchanged at each iteration
using a kd-tree with no pruning. With this IEM–kd-tree
algorithm, the number of leaf nodes are divided into B
blocks and the E-step is implemented for only a block of
leaf nodes at a time before the next M-step is performed.
As in Section 2.1, we choose the number of blocksB based
on the simple rule of [5,8].

2.5. Result of Simulation I

A random sample of size n = 256 × 256 observations
was generated from a seven-component trivariate normal
mixture (g = 7, p = 3). The estimates obtained in [9]

Table 2. Summary of Simulation I (n = 256 ×
256)

Algorithm CPU niter lltrue error speedup

standard EM 303.0 90 –367223.2 11.73 1.0

IEM (B=64) 217.0 52 –367223.2 11.72 1.4

kd-tree (no pruning)

(γ = 0.01) 119.5 89 –367228.5 11.82 2.5

(γ = 0.005) 225.1 90 –367223.5 11.76 1.3

kd-tree (pruning)

(γ = 0.01; β = 0.01) 283.7 89 –367296.4 11.96 1.1

(γ = 0.01; β = 0.03) 180.1 86 –367420.0 12.10 1.7

(γ = 0.005; β = 0.01) 302.7 88 –367295.8 11.94 1.0

(γ = 0.005; β = 0.03) 191.2 86 –367419.9 12.06 1.6

IEM–kd-tree

(γ = 0.01) 81.6 55 –367228.5 11.83 3.7

(γ = 0.005) 150.4 55 –367223.5 11.75 2.0

were used as the values of our population parameters. They
are displayed in Table 1, where µid and σ2

id (d = 1, 2, 3)
are, respectively, the means and variances of the trivari-
ate normal distribution associated with the ith group. The
correlation coef£cients between the variates are denoted
by ρi12, ρi13, and ρi23. These seven components corre-
spond to seven tissue types in the segmentation of a two-
dimensional (2D) MR image of the human brain. In this
paper, all the algorithms used the same initial estimates as
starting values. The algorithms were terminated when the
absolute relative changes in the estimates of the means all
fell below 0.0001. This stopping criterion was adopted be-
cause the approximate log likelihood was not monotonic
increasing for kd-tree algorithm (with pruning); see Sec-
tion 2.3. In the simulation study, we considered the thresh-
old for the size of leaf node, γ, to be 1% and 0.5% of
the range in the splitting dimension of the whole data set
(root node). The results are summarized in Table 2. With
γ = 0.01, the number of leaf nodes nL is 18973. For
γ = 0.005, nL = 35519.

In Table 2, CPU represents the CPU time in seconds
for various algorithms, niter indicates the number of iter-
ations to convergence, lltrue is the log likelihood of the
simulated data calculated at the £nal estimates obtained,
error presents the percentage of incorrect segmentation,
and speedup shows the ratio of CPU times compared to
the standard EM algorithm. The CPU time involves the
computations of the E- and M-steps for the standard EM
algorithm, and the partial E- and M-steps for the IEM al-
gorithm. For the kd-tree-based algorithms, it involves the
computation of the E-step, the M-step, and the construction
of the kd-tree.

It can be seen from Table 2 that the standard EM,

5

Table 3. Summary of Simulation II (n = 128×
128× 128)

Algorithm CPU niter lltrue error speedup

standard EM 10143 96 –11750666 12.00 1.0

IEM (B=256) 6166 55 –11750665 12.00 1.6

kd-tree (no pruning)

(γ = 0.01) 773 95 –11750898 12.15 13.1

(γ = 0.005) 2179 96 –11750682 12.04 4.7

kd-tree (pruning)

(γ = 0.01; β = 0.007) 771 91 –11752705 12.27 13.2

(γ = 0.01; β = 0.01) 707 95 –11753770 12.36 14.3

(γ = 0.005; β = 0.007) 907 91 –11752697 12.20 11.2

(γ = 0.005; β = 0.01) 819 95 –11753766 12.27 12.4

IEM–kd-tree

(γ = 0.01) 506 57 –11750899 12.16 20.1

(γ = 0.005) 1314 56 –11750682 12.04 7.7

the IEM, the kd-tree (γ = 0.005), and the IEM-kd-tree
(γ = 0.005) algorithms converged to essentially the same
log likelihood value. However, the error rates for these
algorithms are different, due to the heavy overlapping of
groups 3 and 6 (see Table 1). The latter means that there
exists several feature vectors that have posterior probabil-
ities of two or more group membership very close to each
other. For the kd-tree-based algorithms, it is observed that
the smaller value of γ decreases the error rate but increases
the CPU time to convergence. It can also be seen that the
pruning step with β = 0.01 does not reduce the computa-
tion time, compared with the kd-tree (without pruning) al-
gorithm. If a larger value of β (0.03) is adopted, the CPU
times decrease but the error rates increase. Moreover, due
to the implementation of the pruning step, there are only
small improvements in the error rate and the £nal log like-
lihood when γ is changed from 0.01 to 0.005. For the pro-
posed IEM algorithm with the multiresolution kd-tree, it
leads to a larger speedup factor but similar values of the log
likelihood, compared with the kd-tree (without pruning) al-
gorithm. However, the error rate is found to be increased
for γ = 0.01 but decreased for γ = 0.005. From Table
2, it can be seen that this IEM–kd-tree algorithm gives the
largest speedup factor of 3.7.

3. SIMULATIONS II AND III

We adopted the same parameter values as in Simulation
I, but changed n to 128 × 128 × 128 and 256 × 256 ×
256 in Simulations II and III, respectively. The results are
presented in Tables 3 and 4. For n = 1283, the numbers
of leaf nodes nL are 91321 and 281128 for γ = 0.01 and
0.005, respectively. For n = 2563, nL = 128268 and

Table 4. Summary of Simulation III (n = 256×
256× 256)

Algorithm CPU niter lltrue error speedup

standard EM 88950 95 –94015922 11.99 1.0

IEM (B=1024) 59425 54 –94015918 11.99 1.5

kd-tree (no pruning)

(γ = 0.01) 1860 94 –94018940 12.20 47.8

(γ = 0.005) 5079 95 –94016148 12.03 17.5

kd-tree (pruning)

(γ = 0.01; β = 0.007) 1751 95 –94034451 12.34 50.8

(γ = 0.01; β = 0.01) 1680 93 –94040015 12.38 52.9

(γ = 0.005; β = 0.007) 2219 95 –94034056 12.21 40.1

(γ = 0.005; β = 0.01) 2128 93 –94039705 12.24 41.8

IEM–kd-tree

(γ = 0.01) 1589 56 –94018948 12.20 56.0

(γ = 0.005) 3962 56 –94016148 12.03 22.5

560274, respectively, for γ = 0.01 and 0.005.
It can be seen that the speedup factors of the IEM algo-

rithm are small and similar when n is increased. On the
other hand, for the kd-tree-based algorithms, the speedup
factors increase with n. From Tables 3 and 4, it can be
seen that the pruning step does reduce the computation time
compared with the kd-tree with no pruning. However, the
error rates are relatively larger and the log likelihood val-
ues are smaller. If a smaller value of β (0.007) is adopted,
the error rates decreases but the CPU times increases. The
IEM–kd-tree algorithm gives the largest speedup factors,
equal to 20.1 and 56.0 for Simulations II and III, respec-
tively.

4. REAL DATA

In this section, we applied the versions of the EM al-
gorithm described in Section 2 to a real MR image data
set concerning the human brain. The image was a 2D MR
image acquired by a 2 Tesla Bruker Medspac whole body
scanner. The acquisition matrix was 256 × 256. The im-
age intensities were scaled to the range of (0,20) for the
parameter estimation. We assumed g = 7 and adopted the
same initial estimates for all the algorithms. The results are
summarized in Table 5. With γ = 0.01, nL = 15068; for
γ = 0.005, nL = 24576.

From Table 5, it can be seen that the relative perfor-
mances of the various versions of the EM algorithm on real
MR data are comparable to those of Simulation I, except
the kd-tree (with pruning) algorithm. This algorithm re-
quires more number of iterations to convergence and has
the smallest value of the log likelihood.

6

Table 5. Analysis of Real 2D MR Image Data
(n = 256× 256)

Algorithm CPU niter lltrue speedup

standard EM 265.1 79 –178810.9 1.0

IEM (B=64) 189.6 46 –178809.4 1.4

kd-tree (no pruning)

(γ = 0.01) 90.2 81 –179077.6 2.9

(γ = 0.005) 148.1 82 –178848.8 1.8

kd-tree (pruning)

(γ = 0.01; β = 0.01) 255.1 84 –179506.6 1.0

(γ = 0.005; β = 0.01) 300.9 85 –179433.5 0.9

IEM–kd-tree

(γ = 0.01) 64.3 47 –179082.9 4.1

(γ = 0.005) 107.4 49 –178848.7 2.5

5. DISCUSSION

We have compared the relative performances of the IEM
algorithm and various multiresolution kd-tree-based algo-
rithms to speed up the implementation of the EM algo-
rithm. As the IEM algorithm improves the time to con-
vergence of the EM algorithm by reducing the number of
iterations required, its performance remains similar when
the sample size of the data increases. From Tables 2 to
4, it can be seen that the reduction in time to convergence
is very limited, compared to the kd-tree-based algorithms,
but the IEM algorithm leads to the lowest error rate. On
the other hand, with the multiresolution kd-tree data struc-
ture, the number of leaf nodes nL does not linearly increase
with n. For example, with γ = 0.01, nL = 18973, 91321,
and 128268 for n = 2562, 1283, and 2563, respectively.
Hence, when the sample size increases, kd-tree-based al-
gorithms have better relative performances.

For kd-tree-based algorithms, when γ decreases
(smaller sized leaf nodes), it can be seen that the error rate
descreases but the CPU time to convergence increases. In
the applications of preliminary data analysis, γ = 0.01 may
be so chosen that results can be available earlier. More-
over, within the context of automatic segmentation of MR
images, contextual segmentation, in which the spatial char-
acteristics of each voxel is considered, will be performed
based on the noncontextual analysis to £nally segment the
tissue cells. The misallocations of the voxels at the prelim-
inary noncontextual segmentation can be corrected at this
£nal stage [4].

With the simulated data on MR images, we found that
the pruning step can reduce the computation time, com-
pared with the kd-tree (without pruning) algorithm, it im-
plies that the fewer number of leaf nodes in each iteration
offsets the additional computation time for the minimum

and maximum values of the posterior probabilities. How-
ever, the error rates are relatively higher, which may be
lowered if a smaller value of β is adopted. But conse-
quently, the CPU times increase. Moreover, when the kd-
tree (with pruning) algorithm is applied to the real data on
2D MR image, it requires more number of iterations and
has smaller value of the log likelihood. Its performance on
larger real data sets requires further investigation.

The IEM algortihm with the multiresolution kd-tree
structure is the fastest version of the EM algorithm con-
sidered here. Its superior performance has been demon-
strated on simulated data in Sections 2 and 3 and on real
data in Section 4. In particular, with this combined ver-
sion, the value of the “true” log likelihood calculated at the
parameter estimate obtained after each iteration is mono-
tonic increasing. From Section 3, it can be seen that the
IEM algorithm with the multiresolution kd-tree structure
can speed the EM algorithm up by a factor of 56.0 for very
large data sets.

REFERENCES

[1] A. Dempster, N. Laird, and D. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm (with
discussion),” Journal of the Royal Statistical Society Series
B, vol. 39, 1977, pp. 1–38.
[2] G.J. McLachlan, Discriminant Analysis and Statistical
Pattern Recognition, Wiley, New York, 1992.
[3] G.J. McLachlan and T. Krishman, The EM Algorithm,
Wiley, New York, 1997.
[4] G.J. McLachlan, S.K. Ng, G. Galloway, and D. Wang,
“Clutering of magnetic resonance images,” Proceedings of
the American Statistical Association (Statistical Comput-
ing Section), Alexandria, American Statistical Association,
Virginia, 1996, pp. 12–17.
[5] G.J. McLachlan and D. Peel, Finite Mixture Models,
Wiley, New York, 2000.
[6] R.M. Neal and G.E. Hinton, “A view of the EM al-
gorithm that justi£es incremental, sparse, and other vari-
ants,” in Learning in Graphical Models, M.I. Jordan (Eds.),
Kluwer, Dordrecht, 1998, pp. 355–368.
[7] A.W. Moore, “Very fast EM-based mixture model clus-
tering using multiresolution kd-trees,” in Advances in Neu-
ral Information Processing Systems 11, M.S. Kearns, S.A.
Solla, and D.A. Cohn (Eds.), MIT Press, Cambridge, Mas-
sachusetts, 1999, pp. 543–549.
[8] S.K. Ng and G.J. McLachlan, “On the choice of the
number of blocks with the incremental EM algorithm for
the £tting of normal mixtures,” Technical Report, Centre
of Statistics, University of Queensland, Brisbane, 2001.
[9] Z. Liang, J.R. MacFall, and D.P. Harrington, “Param-
eter estimation and tissue segmentation from multispectral
MR images,” IEEE Transactions on Medical Imaging, vol.
13, 1994, pp. 441–449.

