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The EM algorithm is a popular method for parameter estimation in situations where the data can
be viewed as being incomplete. As each E-step visits each data point on a given iteration, the EM
algorithm requires considerable computation time in its application to large data sets. Two versions,
the incremental EM (IEM) algorithm and a sparse version of the EM algorithm, were proposed re-
cently by Neal R.M. and Hinton G.E. in Jordan M.I. (Ed.), Learning in Graphical Models, Kluwer,
Dordrecht, 1998, pp. 355–368 to reduce the computational cost of applying the EM algorithm. With
the IEM algorithm, the available n observations are divided into B (B ≤ n) blocks and the E-step is
implemented for only a block of observations at a time before the next M-step is performed. With the
sparse version of the EM algorithm for the fitting of mixture models, only those posterior probabilities
of component membership of the mixture that are above a specified threshold are updated; the re-
maining component-posterior probabilities are held fixed. In this paper, simulations are performed to
assess the relative performances of the IEM algorithm with various number of blocks and the standard
EM algorithm. In particular, we propose a simple rule for choosing the number of blocks with the
IEM algorithm. For the IEM algorithm in the extreme case of one observation per block, we provide
efficient updating formulas, which avoid the direct calculation of the inverses and determinants of
the component-covariance matrices. Moreover, a sparse version of the IEM algorithm (SPIEM) is
formulated by combining the sparse E-step of the EM algorithm and the partial E-step of the IEM
algorithm. This SPIEM algorithm can further reduce the computation time of the IEM algorithm.

Keywords: incremental EM algorithm, sparse IEM algorithm, partial E-step, efficient updating
formulas

1. Introduction

The EM algorithm (Dempster, Laird and Rubin 1977) is a pop-
ular tool for parameter estimation in a variety of problems in-
volving missing data or incomplete information. As set out in
some detail in McLachlan and Krishnan (1997, Section 1.7), the
EM algorithm has a number of desirable properties, including its
simplicity of implementation and reliable global convergence.
However, a common criticism is that the convergence with the
EM algorithm is only at a linear rate. In the context of mix-
ture models, various attempts have been proposed to accelerate
the EM iteration. In considering methods for speeding up the
convergence of the EM algorithm, it is highly desirable if the
simplicity and stability of the EM algorithm can be preserved.
In situations where the M-step is computationally complicated,
conditional M-steps can be used to avoid the requirement of

iterative M-steps. The so-called Expectation/Conditional Max-
imization (ECM) algorithm (Meng and Rubin 1993, Meng and
van Dyk 1997) shares all the appealing convergence properties
of the EM algorithm (Meng 1994). Among other approaches
that have been considered in the literature, Meilijson (1989)
and Jamshidian and Jennrich (1997) replace the M-step with a
(quasi-) Newton-type step, while Jamshidian and Jennrich
(1993) and Thiesson (1995) replace the M-step with a (con-
jugate) gradient step.

In applications where the M-step is computationally simple,
for example, in fitting mutivariate normal mixtures, the rate of
convergence of the EM algorithm depends mainly on the com-
putation time of an E-step. Because each E-step visits each data
point, the EM algorithm requires much computation time in
its application to large data sets. Neal and Hinton (1998) pro-
posed the incremental EM (IEM) algorithm to improve the rate of
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convergence of the EM algorithm. More specifically, suppose the
available n observations y1, . . . , yn are divided into B (B ≤ n)
blocks. The IEM algorithm proceeds by implementing the E-step
for only a block of observations at a time before performing a
M-step. A “pass” or scan of the IEM algorithm thus consists of B
partial E-steps and B M-steps. The argument for improved rate of
convergence is that the IEM algorithm exploits new information
more quickly rather than waiting for a complete scan of the data
before parameters are updated by an M-step. The time to conver-
gence for the IEM algorithm against the standard EM algorithm
is a tradeoff between the additional computation time per scan
and the fewer number of scans required because of the more fre-
quent updating after each partial E-step. When the data are par-
titioned into more and more blocks, the additional computation
time per scan increases and hence the time to convergence will
eventually start to rise. Thus, an appropriate choice of B is im-
portant for the performance of the IEM algorithm. In this paper,
we propose a simple guide for choosing the number of blocks.

Another approach suggested by Neal and Hinton (1998) for
speeding up the EM algorithm is the so-called sparse EM
(SPEM) algorithm. In fitting a mixture model to a data set by
maximum likelihood via the EM algorithm, the current estimates
of the posterior probabilities for some components of the mixture
for a given data point y j are often close to zero. With the SPEM
algorithm, these posterior probabilities are held fixed, while only
the posterior probabilities for the remaining components in the
mixture are updated.

In this paper, a sparse version of the IEM algorithm (SPIEM)
is formulated to further reduce the computation time of the IEM
algorithm, by combining the sparse E-step of the SPEM algo-
rithm and the partial E-step of the IEM algorithm. In Section 2,
we formulate the IEM algorithm and give efficient updating for-
mulas for the extreme case of B = n blocks and in Section 3, we
present simulations to compare the relative performances of the
IEM with various numbers of blocks B and the standard EM al-
gorithm. In Section 4, a simple rule for choosing an appropriate
number of blocks with the IEM algorithm is derived and a sim-
ulation study is performed to demonstrate the performance of
the rule and compare its performance with a search method pro-
posed by Thiesson, Meek and Heckerman (2001). The SPIEM
algorithm is formulated in Section 5, and in Section 6, we present
simulations to compare the SPIEM, the IEM, and the standard
EM algorithms. Practical values are suggested for the tuning
constants in the formulation of the SPIEM algorithm.

2. The incremental EM algorithm

Let y = (yT
1 , . . . , yT

n )T denote an observed random sample of
size n, where y j ( j = 1, . . . , n) is a vector of p dimensions and
the superscript T denotes vector transpose. It is proposed to fit a
g-component normal mixture model. The log likelihood for the
vector � of unknown parameters is given by

log L(�) =
n∑

j=1

log

{
g∑

i=1

πiφ(y j ; µi , �i )

}
(1)

where φ(y; µi ; �i ) denotes the multivariate normal density func-
tion with mean µi and covariance matrix �i , and the πi denote
the mixing proportions that are nonnegative and sum to one. So-
lutions of the likelihood equation corresponding to local maxima
can be found iteratively by application of the EM algorithm.

With the IEM algorithm, the data are divided into B blocks
of equal or near equal size. We let � (k) denote the estimate
of � after the kth scan, and � (k+b/B) the estimate of � after
the bth iteration on the (k + 1)th scan (b = 1, . . . , B). It is
computational advantageous to work in terms of the sufficient
statistics.

E-step: For the first scan (k = 1), a full E-step is performed (see
Section 3.1), which requires the calculation of
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is the current estimate of the posterior probability that y j belongs
to the i th component. The equations (2) to (4) are the conditional
expectations of the sufficient statistics, using the initial value
�(0) for �. On subsequent scans, these quantities are updated for
only a block of observations at a time on the E-step. For example,
on the (b+1)th iteration of the (k+1)th scan (b = 0, . . . , B−1),
the current conditional expectations of the sufficient statistics
T (k+b/B)

i1 , T (k+b/B)
i2 , and T (k+b/B)

i3 are obtained for i = 1, . . . , g,
using the relationship

T (k+b/B)
iq = T (k+(b−1)/B)

iq − T (k−1+b/B)
iq,b+1 + T (k+b/B)

iq,b+1

(q = 1, 2, 3; b = 0, . . . , B − 1), (6)

where only
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)
, (7)
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)
y j yT

j , (9)

have to be calculated. This is because the first term on the right-
hand side of (6) is available from the previous iteration, while
the second term is available from the previous scan. In (7) to (9),
Sb+1 denotes the subset of {1, . . . , n} containing the subscripts
of those y j that belong to the (b + 1)th block.
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M-step: For i = 1, . . . , g, the estimates of πi , µi and �i are
updated, based on the conditional expectations of the sufficient
statistics, as follows:

π
(k+(b+1)/B)
i = T (k+b/B)

i1

/
n, (10)

µ
(k+(b+1)/B)
i = T (k+b/B)

i2

/
T (k+b/B)

i1 , (11)

�
(k+(b+1)/B)
i = {

T (k+b/B)
i3 − T (k+b/B)−1

i1

× T (k+b/B)
i2 T (k+b/B)T

i2

}/
T (k+b/B)

i1 . (12)

The argument for improved rate of convergence is that the
IEM algorithm exploits new information more quickly rather
than waiting for a complete scan of the data before parameters
are updated by an M-step.

The theoretical justification for the IEM algorithm has been
provided by Neal and Hinton (1998). Let z denote the vec-
tor containing the unobservable data and let P be any dis-
tribution defined over the support of Z. They considered the
function

F(P, �) = log L(�) − KL[P, f (z | y; �)],

where f (z | y; �) is the conditional distribution of Z given the
observed data and KL[P, f (z | y; �)] is the Kullback-Leibler
information that measures the divergence of P relative to
f (z | y; �). They showed that both the E- and M-steps of the
IEM algorithm monotonically increase F(P, �) and if a local
maximum (or saddle point) of F(P, �) occurs at P∗ and �∗,
then a local maximum (or saddle point) for the log likelihood
(1) occurs at �∗ as well. However, as the second argument � of
τi (y j ; �) in (5) is changing at each iteration within each scan,
the same argument for proving that EM always increases the
log likelihood cannot be adopted. That is, the current theoret-
ical results for the IEM algorithm do not promise monotonic
behaviour of the log likelihood as the EM algorithm does. How-
ever, it is noted that F(P, �) can be considered as a lower bound
on the log likelihood since the Kullback-Leibler information is
non-negative. For given P , as obtained in the E-step, the M-step
increases F(P, �) with respect to �. It follows that

F
(
P, � (k+(b+1)/B)

) ≥ F
(
P, � (k+b/B)

)
(b = 0, . . . , B − 1).

That is, the lower bound of the log likelihood is monotonic in-
creasing after each iteration.

In order to reduce the computational time, we approximate
the value of the log likelihood after each E-step, based on the
current estimate of �. More precisely, the log likelihood based
on � (k+b/B) is calculated after the E-step on the (b+1)th iteration
of the (k + 1)th scan using the approximation.

log L
(
� (k+b/B)

) ≈ log L
(
� (k+(b−1)/B)

)
+

∑
j∈Sb+1

{
log f

(
y j ; �

(k+b/B)
)

− log f
(
y j ; �

(k−1+b/B)
)}

, (13)

for b = 0, . . . , B − 1. Convergence tests can be based on B
succesive log likelihood values or, alternatively, we can deter-
mine the convergence based on the incremental log likelihood
after a complete scan of all the data (Thiesson, Meek and
Heckerman 2001). The latter convergence criterion is adopted
in our analysis. In our simulation experiments, the values of
the incremental log likelihood after a complete scan do show
monotonic increasing behaviour.

2.1. IEM algorithm for singleton blocks

In some applications, we may have situations where data actually
appear one at a time. In this case, we may need to adopt the IEM
algorithm with B = n and implement the E-step for only a
single observation at a time before performing a M-step. It will
be seen in Section 3 that the additional CPU time for each scan
starts to increase as B becomes sufficiently large. Fortunately, the
time to convergence can be considerably reduced by the use of
updating formulas that avoid the direct calculation of the inverses
and determinants of the component-covariance matrices in the
updating of the component-posterior probabilities for a single
observation in (5), where the probability density function of the
multivariate normal distribution is evaluated. These formulas
are obtained by modifying similar formulas in Friedman (1989)
for the case where an observation is deleted from the sample.

Without loss of generality, we assume that the j th block
consists of the j th observation y j ( j = 1, . . . , n). For brevity
of notation, we let τ ∗

i j and τi j denote the posterior proba-

bility τi (y j ; �) evaluated for � equal to � (k−1+( j−1)/n) and
�(k+( j−1)/n), respectively (i = 1, . . . , g). Also, we write
π

(k+( j−1)/n)
i , µ

(k+( j−1)/n)
i , and �

(k+( j−1)/n)
i as πi , µi , and �i ,

respectively. The corresponding quantities after the M-step
on the next iteration (the j th) are denoted by π+

i , µ+
i , and

�+
i , respectively. McLachlan and Ng (2000) showed that the

latter can be computed in terms of the existing estimates
as follows:

π+
i = (nπi − τ ∗

i j + τi j )/n, (14)

µ+
i = µi − (τ ∗

i j − τi j )(y j − µi )/(nπ+
i ), (15)
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T
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i
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(16)
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|�i |
[

1 − τ ∗
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nπ+
i

(y j − µi )
T �−1

i (y j − µi )
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(17)

for i = 1, . . . , g. The use of (14) to (17) considerably reduces the
amount of computation time in the updating of the g component-
posterior probabilities for y j .
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3. Simulation results for the IEM algorithm

In this section, we discuss the results of two simulations per-
formed to compare the performance of the IEM algorithm with
different number of blocks B relative to the standard EM algo-
rithm. For the standard EM algorithm, we used the stopping cri-
terion that the change in the log likelihood from the current scan
and that from ten scans previously differs by less than 0.000001
of the current log likelihood value (McLachlan et al. 1999). For
the IEM algorithm, the log likelihood after a complete scan of all
the data is approximated by (13) and the convergence criterion
is the same as that of the standard EM algorithm, based on the
change in the log likelihood after a complete scan of the data.
All simulations are run on a Sun unix workstation with enough
memory that there is no paging activity.

3.1. Simulation 1

A sample of size n = 256 × 256 was generated from a seven-
component trivariate normal mixture. The estimates obtained in
Liang, MacFall and Harrington (1994) were used as the values
of our population parameters. They are displayed in Table 1,
where µip and σ 2

ip (p = 1, 2, 3) are, respectively, the means and
variances of the trivariate normal distribution associated with
the i th group. The correlation coefficients between the vari-
ates are denoted by ρi12, ρi13, and ρi23. These seven compo-
nents correspond to seven tissue types in the segmentation of a
two-dimensional magnetic resonance (MR) image of the human
brain.

The standard EM algorithm and the IEM version for vari-
ous number of blocks B were fitted to this simulated set, using
the same random start and assuming unrestricted component-
covariance matrices. In order to avoid the problem of premature
component starvation with the IEM algorithm (Thiesson, Meek
and Heckerman 2001), a full E-step (B = 1) was performed
before running the initial M-step.

With this implementation, the EM and IEM algorithms con-
verged for a given start to the same local maximum of the log
likelihood. The overall CPU time (in seconds), the number of
scans and the overall CPU time per scan are displayed in Table 2.
In addition, the average CPU times of the E-step (TE ) and the
M-step (TM ) for each scan are displayed in parentheses. It can

Table 1. The proportions, intensity means, variances, and correlation
coefficients of seven groups (i = 1, . . . , 7)

i πi µi1 µi2 µi3 σ 2
i1 σ 2

i2 σ 2
i3 ρi12 ρi13 ρi23

1 0.06 1.50 1.00 2.48 1.09 0.48 2.37 0.55 0.38 0.74
2 0.05 4.96 8.06 10.17 6.91 10.46 17.62 0.22 0.27 0.95
3 0.11 5.30 3.25 8.01 3.19 1.90 4.74 0.43 0.42 0.79
4 0.08 6.53 12.92 15.00 2.55 6.39 0.92 −0.41 0.09 0.17
5 0.37 8.23 9.57 14.53 0.65 1.89 1.52 −0.52 −0.29 0.73
6 0.11 9.39 3.42 7.70 12.24 2.95 14.17 0.80 0.81 0.95
7 0.22 9.43 7.93 12.58 0.16 0.48 0.44 −0.12 0.26 0.49

Table 2. CPU times (in seconds) and the number of scans for the
standard EM algorithm and the IEM version for B Blocks (Simulation 1)

CPU times No. of Overall CPU
Algorithm overall (TE , TM ) scans (Time per scan)

Standard EM 601.0 (4.76, 1.07) 101 5.950
Incremental EM

B = 4 458.4 (4.89, 1.26) 72 6.367
B = 8 426.8 (4.89, 1.26) 67 6.370
B = 16 414.3 (4.89, 1.26) 65 6.374
B = 32 408.0 (4.90, 1.25) 64 6.375
B = 64 404.6 (4.90, 1.28) 63 6.422
B = 128 406.6 (4.92, 1.28) 63 6.454
B = 256 410.9 (4.94, 1.32) 63 6.522
B = 2562 = n 2352 (28.40, 6.87) 63 37.33
B = 2562

with updating 1143 (10.34, 6.80) 63 18.14
formulas

be seen that when the data are partitioned into blocks with the
IEM algorithm, the average times TE and TM increase, but the
number of scans to convergence decreases, relative to the stan-
dard EM algorithm. The time to convergence for the IEM ver-
sion against the standard EM algorithm is a tradeoff between
the additional computation time per scan and the fewer num-
ber of scans required because of the more frequent updating
due to B partial E-steps instead of one full E-step. As the data
are partitioned into more and more blocks, the time to conver-
gence eventually starts to rise. From Table 2, it can be seen that
the fastest time to convergence with the IEM algorithm was ob-
tained with B = 64. For this value of B, the time to convergence
is reduced by a factor of 33% compared to the standard EM
algorithm.

For the extreme case of B = n blocks, the convergence time
of the IEM algorithm for this data set was reduced by a factor
of 51% with the use of the updating formulas. They are useful
in situations where data actually appear one at a time and hence
B = n blocks are adopted.

3.2. Simulation 2

A sample of size n = 2000 was generated from a four-component
eight-dimensional normal mixture. The population parameters
are those described in Fukunaga (1990, pp. 46), given as follows.
The mixing proportions are π1 = π2 = π3 = 0.2 and π4 = 0.4.
The component mean µ1 is the null vector, while µ2 and µ3 have
all elements zero, apart from their first, which is equal to 2.56
and 1, respectively; µ4 is equal to

µ4 = (3.86, 3.1, 0.84, 0.84, 1.64, 1.08, 0.26, 0.01)T .

The component-covariance matrices are all diagonal with �1

and �2 being equal to I p and �3 equal to 4I p, where I p is the
p × p identity matrix; �4 is given by

�4 = diag(8.41, 12.06, 0.12, 0.22, 1.49, 1.77, 0.35, 2.73).
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Table 3. CPU times (in seconds) and the number of scans for the
standard EM algorithm and the IEM version for B blocks (Simulation 2)

CPU times No. of Overall CPU
Algorithm Overall (TE , TM ) scans (Time per scan)

Standard EM 185.8 (0.34, 0.07) 446 0.417
Incremental EM

B = 4 136.8 (0.37, 0.10) 287 0.477
B = 8 119.1 (0.37, 0.10) 249 0.478
B = 16 111.9 (0.38, 0.10) 230 0.487
B = 20 109.0 (0.39, 0.10) 218 0.500
B = 40 113.1 (0.40, 0.11) 215 0.526
B = 80 117.9 (0.42, 0.12) 213 0.554
B = 200 144.0 (0.52, 0.14) 210 0.686
B = 400 195.9 (0.68, 0.20) 210 0.933
B = 2000 = n 510 (1.82, 0.47) 210 2.429
B = 2000
with updating 249 (0.63, 0.49) 210 1.186

formulas

The standard EM algorithm and the IEM version for vari-
ous number of blocks B were fitted to this simulated set, using
the same random start and assuming unrestricted component-
covariance matrices. In order to avoid the problem of prema-
ture component starvation with the IEM algorithm, a full E-step
(B = 1) was performed before running the initial M-step.

With this implementation, the EM and IEM algorithms con-
verged for a given start to the same local maximum of the log
likelihood. The results are presented in Table 3. It can be seen
that when the data are partitioned into blocks with the IEM al-
gorithm, the overall CPU time decreases, but eventually starts
to rise as the data are partitioned into more and more blocks.
From Table 3, it can be seen that the fastest time to convergence
with the IEM algorithm was obtained with B = 20. For this
value of B, the time to convergence is reduced by a factor of
41% compared to the standard EM algorithm. For the extreme
case of B = n blocks, the use of the updating formulas again
considerably reduces the amount of computation time. For this
data set, the convergence time of the IEM algorithm was reduced
by a factor of 51%.

4. Choosing the number of blocks

Concerning the time taken to perform the IEM algorithm for one
scan, the B partial E-steps take more time to implement than the
one full E-step of the standard EM algorithm, the additional time
involving the subtraction of the second term on the right-hand
side of (6) and the inversion of the component-covariances ma-
trices, which have to be performed at each of the B partial steps.
Also, one scan of the IEM algorithm requires (B −1) additional
M-steps in updating the estimates using (10) to (12). The time
to convergence for the IEM algorithm against the standard EM
algorithm is a tradeoff between this additional computation time
of the IEM algorithm and the fewer number of scans required

because of the more frequent updating after each partial E-step.
An initial work on investigating the times to convergence for the
IEM algorithm with various numbers of blocks B can be found
in McLachlan and Ng (2000).

We let T be the computation time per scan of the (standard)
EM, which can be decomposed as

T = TE + TM

= TE1 + TE2 + TM , (18)

where TE and TM denote the time spent on the E- and M-steps,
respectively, and where TE2 denotes that time of the E-step spent
on inverting the component-covariance matrices in updating the
posterior probabilities of component membership, and TE1 de-
notes the remainder of the time spent on the E-step. The latter
time is devoted essentially to the updating of the conditional
expectations of the sufficient statistics.

Then the time per scan of the IEM algorithm is given approx-
imately by

TIEM ≈ TA + TE1 + BTE2 + BTM , (19)

where TA denotes an additional time due to the different pro-
gramming code for the IEM algorithm. The time spent on up-
dating the conditional expectations of the sufficient statistic is
TE1 rather than BTE1, as the updating can be confined effectively
to a block of observations per scan as explained above; see (6).
It follows from (19) that TIEM can be expressed approximately
as

TIEM ≈ (u + Bv)T, (20)

where

u = (TA + TE1)/T (21)

and

v = (1 − TE1/T ). (22)

We now let

sB = sIEM/sEM (23)

denote the ratio of the number of scans to convergence of the
IEM and EM algorithms. It follows then that the proportionate
reduction R in time to convergence with the IEM compared to
the EM algorithm is given approximately by

R ≈ (sEMT − sIEMTIEM)/(sEMT )

= 1 − sB(u + Bv). (24)

As B increases, sB decreases and reaches a minimum at the
maximum value n for B. Thus in order to maximize R, the aim is
to decrease B in the right-hand side of (24) as much as possible
without increasing sB too much above its minimum value. In
this way, we investigated empirically the optimal value Bopt for
B. It appears in our simulations that log Bopt is proportional to
log n approximately; that is,

Bopt ≈ nc, (25)
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Table 4. Simulation results for choosing the number of blocks

Set n g p �i Bopt Topt Ropt R∗ RTMH R∗
3/8

1 16,384 7 3 Unrestricted 32 146.6 0.34 0.33 0.31 0.34
2 32,768 7 3 Unrestricted 64 173.7 0.35 0.35 0.34 0.32
3 65,536 7 3 Unrestricted 64 404.6 0.33 0.33 0.33 0.33

4 30,000 4 8 Unrestricted 48 475.9 0.28 0.27 0.25 0.28
Equal 50 644.3 0.35 0.33 0.35 0.33
Diagonal 48 350.2 0.39 0.38 0.38 0.39

5 50,000 4 8 Unrestricted 80 1349.8 0.28 0.28 0.28 0.28
Equal 80 830.3 0.38 0.37 0.37 0.37
Diagonal 40 784.7 0.19 0.19 0.16 0.18

6 100,000 4 8 Unrestricted 80 1340.6 0.29 0.28 0.27 0.29
Equal 100 2217.2 0.34 0.34 0.31 0.34
Diagonal 40 1262.8 0.20 0.18 0.17 0.18

7 30,000 3 20 Unrestricted 60 758.8 0.27 0.27 0.27 0.26
Equal 50 1390.4 0.33 0.33 0.33 0.33
Diagonal 40 824.3 0.19 0.18 0.18 0.18

8 50,000 3 20 Unrestricted 80 1158.0 0.22 0.22 0.20 0.20
Equal 50 2171.0 0.34 0.34 0.34 0.34
Diagonal 40 1219.4 0.30 0.30 0.30 0.30

9 100,000 3 20 Unrestricted 80 2342.7 0.24 0.23 0.21 0.24
Equal 125 4056.1 0.32 0.31 0.31 0.31
Diagonal 50 2473.6 0.20 0.20 0.18 0.20

10 30,000 25 2 Unrestricted 60 1882.9 0.43 0.43 0.43 0.43
Equal 50 1225.5 0.63 0.62 0.63 0.62
Diagonal 48 2601.9 0.34 0.32 0.34 0.34

11 50,000 25 2 Unrestricted 100 3701.1 0.34 0.32 0.32 0.31
Equal 80 2416.2 0.72 0.71 0.71 0.71
Diagonal 40 4100.9 0.65 0.65 0.61 0.61

12 100,000 25 2 Unrestricted 125 10401.3 0.32 0.31 0.31 0.32
Equal 80 3736.0 0.45 0.45 0.43 0.45
Diagonal 50 6665.7 0.55 0.55 0.54 0.54

where c depends on the model adopted for the component-
covariance matrices. For example, from the simulation result
of Set 1 in Table 2, we approximated u by (2 ∗ 6.367 −
6.370)/5.950 = 1.07 and took sB = 63/101 = 0.62, R =
(601.0 − 404.6)/601.0 = 0.33, and v = (37.33/5.950 − u)/
n = 0.00008 in (24) and (25) to give c = 0.44.

We considered the optimal choice of c empirically by perform-
ing some simulations for various combinations of the parameters
n, g, and p. The results are presented in Table 4, where Bopt (a
factor of n) is the optimal number of blocks obtained from the
simulation, Topt is the corresponding overall CPU times, and Ropt

is the corresponding reduction in time to convergence as a pro-
portion of the convergence time for the standard EM algorithm.

The first three sets in Table 4 used the population parameters of
Set 1 in Section 3 (g = 7, p = 3) with different values of n. Sets
4 to 6 used the population parameters of Set 2 in Section 3 (g =
4, p = 8) with different values of n. We considered a higher
dimensional data p = 20 in Sets 7 to 9 and a larger number of
groups g = 25 in Sets 10 to 12. For Set 4 to Set 12, we fitted
the simulated sets by assuming unrestricted, equal, and diagonal
component-covariance matrices respectively. It was observed in

the simulations that v increased when the component-covariance
matrices were restricted to being equal or diagonal. It therefore
follows that, to achieve the same proportionate reduction R in
convergence time, the values of c need to be smaller than in the
case of unrestricted covariance matrices. From our simulations,
we propose B∗ = round(n2/5), B∗ = round(n3/8), and B∗ =
round(n1/3) for unrestricted, equal, and diagonal component-
covariance matrices, respectively, where round (r ) rounds r to
the nearest integer. However, the value of the integer B∗ obtained
usually is not a factor of the sample size n. Thus, in our analysis,
we choose the number of blocks B which is a factor of n and
is the closest to B∗. The corresponding reduction in time to
convergence is denoted as R∗ in Table 4.

Thiesson, Meek and Heckerman (2001) suggest a search
method to choose the number of blocks. For a given number of
blocks B, they propose to run the IEM algorithm for two scans
(the first scan involves a full E-step) and calculate the ratio

r = (L2 − L1)/t,

where L1 and L2 are the log likelihood values after the first and
the second complete scan of the data respectively, and t is the
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time required for the second scan which involves the partial E-
step. The procedure is repeated for various number of blocks
B and the choice of B is that maximizes r . The corresponding
reduction in time to convergence is denoted as RTMH in Table 4.
It can be seen from Table 4 that our proposed rule is not only
simple, but also works very well in the simulations. With our
formulation of the rule for choosing Bopt, even though it may
be possible to obtain a better estimate of Bopt if v can be re-
lated to the values of p and g for the data set, our focus here
is on a simple rule to guide in the choice of B. As Thiesson,
Meek and Heckerman (2001) pointed out, the reduction in time
to convergence versus the number of blocks exhibited a sin-
gle broad peak around the optimal number of blocks. It follows
that there is no requirment to identify the exact optimal number
of blocks in practice, and hence, our simple rule may also be
good enough as a guide for applications where a different type
of models is considered. For example, it is interested to note
that if we choose B∗ = round(n3/8) for unrestricted or diagonal
component-covariance matrices, the reductions in time to con-
vergence, denoted as R∗

3/8 in Table 4, are still very close to Ropt.

5. Sparse IEM algorithm

In fitting a mixture model by maximum likelihood via the EM
algorithm, it is often observed that the posterior probabilities for
some components of the mixture for a given data point y j are
close to zero (for example, τi (y j ; �

(k)) < C = 0.01, where � (k)

is the value of � after the kth iteration of the EM algorithm).
With the Sparse EM (SPEM) algorithm proposed by Neal and
Hinton (1998), their posterior probabilities of component mem-
bership are held fixed, while only those posterior probabilities
for the remaining components in the mixture are updated. To ex-
amine this more closely, suppose that the SPEM version is to be
implemented on the (k + 1)th scan, where the current estimates
of the posterior probabilities of component membership of y j

are close to zero and held fixed for components i with i ∈ A j ,
where A j is a subset of {1, . . . , g}. Then on the E-step on the
(k + 1)th iteration of the SPEM algorithm, if A j is the null set
for observation y j , update the posterior probabilities of compo-
nent membership to τi (y j ; �

(k))(i = 1, . . . , g). If A j is not the
null set, then update the posterior probabilities of component
membership to

∑
h /∈A j

τh

(
y j ; �

(k−1)
) τi

(
y j ; �

(k)
)

∑
h /∈A j

τh

(
y j ; � (k)

) (26)

for those components i which do not belong to A j ; otherwise do
not update the posterior probabilities τi (y j ; �

(k−1)). This sparse
E-step will take time proportional only to the number of com-
ponents i /∈ A j ( j = 1, . . . , n). The calculation of the condi-
tional expectations of the sufficient statistics can also be done
efficiently by updating only the contribution to the sufficient

statistics for those components i /∈ A j . For example,

T (k)
i1 =

n∑
j=1

IA j (i)τi

(
y j ; �

(k−1)
) +

n∑
j=1

IAc
j
(i)τi

(
y j ; �

(k)
)
, (27)

where Ac
j is the complement of A j and IA j (i) is the indicator

function for the set A j . The first term on the right-hand side
of (27) can be saved for use in the subsequent SPEM itera-
tions. Similar arguments apply to T (k)

i2 and T (k)
i3 . After running

the sparse version a number of iterations k1, a standard EM it-
eration is then performed, and a new set A j ( j = 1, . . . , n) is
selected.

A sparse version of the IEM algorithm (SPIEM) can be for-
mulated by combining the sparse E-step of the SPEM algorithm
and the partial E-step of the IEM algorithm. Suppose that the
SPEM is to be implemented on the subsequent B iterations of
the (k + 1)th scan. Then on the E-step of the (b + 1)th iteration
for b = 0, . . . , B − 1, the posterior probabilities of component
membership for all j ∈ S(b+1) are updated to

∑
h /∈A j

τh

(
y j ; �

(k−1+b/B)
) τi

(
y j ; �

(k+b/B)
)

∑
h /∈A j

τh

(
y j ; � (k+b/B)

)
for those components i which do not belong to A j ; otherwise
leave the posterior probabilities unchange as τi (y j ; �

(k−1+b/B)).
To avoid the problem of premature component starvation, we

suggest running a standard EM iteration for the first scan and
then performing the IEM for five scans before running the sparse
version SPIEM. After running the spare version for a number
of scans k1, the IEM is performed for a scan, and a new set
A j ( j = 1, . . . , n) is selected. The efficient step (27) described
above is also applicable for the SPIEM algorithm.

6. Simulation results for the SPIEM algorithm

In this section, we report some simulations performed to com-
pare the relative performances of the SPIEM, IEM, and the stan-
dard EM algorithms. Moreover, we assess the quality of the esti-
mates obtained by the SPIEM algorithm, relative to the standard
EM algorithm, by comparing the final log likelihood values. The
stopping criteria for the standard EM and the IEM algorithms
are described in Section 4. For the SPIEM algorithm, the con-
vergence is based on the change in the log likelihood after a
complete scan of the data with full EM steps (B iterations of
IEM without SPIEM steps).

6.1. Simulation 1

The first simulated data used in Section 3 is considered again
here. The number of blocks B is set to be 64 and we consider the
combinations of k1 = 2, 3, 4, 5, 6 and C = 0.05, 0.01, 0.005.
For this simulated data, all the algorithms converged to the same
local maximum of the log likelihood. The overall CPU time,
the average times for the E-step (TE ) and M-step (TM ), and the
number of scans are displayed in Table 5.
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Table 5. CPU times (in seconds) and the number of scans for the
SPIEM algorithm for B = 64 blocks (Simulation 1)

CPU times
k1 C Overall (TE , TM ) No. of scans

2 0.05 323 (2.88, 0.75) 83
2 0.01 319 (3.31, 0.88) 71
2 0.005 325 (3.39, 0.89) 71
3 0.05 316 (2.62, 0.69) 89
3 0.01 300 (3.03, 0.80) 73
3 0.005 308 (3.12, 0.82) 73
4 0.05 343 (2.42, 0.64) 105
4 0.01 318 (2.84, 0.74) 83
4 0.005 313 (2.97, 0.78) 78
5 0.05 325 (2.25, 0.59) 107
5 0.01 304 (2.82, 0.71) 80
5 0.005 291 (2.84, 0.72) 77
6 0.05 369 (2.22, 0.57) 124
6 0.01 312 (2.73, 0.69) 85
6 0.005 315 (2.82, 0.71) 83

On comparing Table 5 with Table 2 for B = 64, it can be seen
that the number of scans to convergence for each combination
of C and k1 with the SPIEM algorithm is larger than that for the
IEM algorithm. However, as to be anticipated, TE and TM for the
SPIEM algorithm are smaller than that for the IEM algorithm,
which allows the SPIEM algorithm for the present combinations

Fig. 1. Log likelihood versus number of scans. Standard EM (solid curve); Incremental EM with B = 64 (dotted curve); SPIEM with B = 64,
k1 = 5, and C = 0.005 (dashed curve)

of C and k1 to converge faster than the IEM algorithm. Concern-
ing the optimal choice of C and k1, the overall CPU time is a
tradeoff between the computation time per scan and the number
of scans required. It can be seen from Table 5 that the SPIEM
algorithm converges fastest for k1 = 5 and C = 0.005. With
these values of the tuning constants, the time to convergence is
reduced by a factor of 52% and 28%, compared with the standard
EM algorithm and the IEM algorithm for B = 64, respectively.

In Fig. 1, the log likelihood is plotted against the number of
scans for the various algorithms. It shows how the log likeli-
hood changes in the initial fifty scans. It is noted that for the
implementation of the SPIEM algorithm, the IEM algorithm is
performed for the first five scans before running the first SPIEM
step. Thus in Fig. 1, the curves corresponding to the IEM and the
SPIEM algorithms coincide up to the fifth scan. From Fig. 1, it
is observed that the SPIEM algorithm takes more scans to con-
verge compared with the IEM algorithm. But, both the SPIEM
and the IEM algorithms take less scans when compared to the
standard EM algorithm. In Fig. 2, the log likelihood is plotted
against the elapsed time for the various algorithms. It shows
how the log likelihood changes during the initial two hundred
and fifty seconds.

6.2. Simulation 2

The second simulated data used in Section 3 is considered
again here. The number of blocks B is set to be 20 and the
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Fig. 2. Log likelihood versus elapsed time. Standard EM (solid curve); Incremental EM with B = 64 (dotted curve); SPIEM with B = 64, k1 = 5,
and C = 0.005 (dashed curve)

combinations of k1 = 2, 3, 4, 5, 6 and C = 0.05, 0.01, 0.005
are considered. The results are displayed in Table 6. For this sim-
ulated data, some runs of the SPIEM algorithm with C = 0.05
and C = 0.01 converge to a slightly smaller local maxi-
mum of the log likelihood value. It implies that an appropri-

Table 6. CPU times (in seconds) and the number of scans for the
SPIEM algorithm for B = 20 blocks (Simulation 2)

CPU times No. of
k1 C Overall (TE , TM ) scans Log likelihood

2 0.05 96 (0.30, 0.07) 254 −30384.7
2 0.01 86 (0.34, 0.08) 203 −30381.6
2 0.005 91 (0.35, 0.09) 203 −30381.6
3 0.05 95 (0.27, 0.07) 273 −30384.7
3 0.01 84 (0.31, 0.08) 209 −30381.6
3 0.005 86 (0.34, 0.08) 201 −30381.6
4 0.05 100 (0.26, 0.07) 300 −30384.7
4 0.01 84 (0.30, 0.07) 215 −30381.6
4 0.005 85 (0.32, 0.08) 205 −30381.6
5 0.05 100 (0.25, 0.06) 317 −30384.7
5 0.01 83 (0.30, 0.07) 221 −30381.6
5 0.005 81 (0.31, 0.08) 203 −30381.6
6 0.05 104 (0.24, 0.06) 341 −30384.7
6 0.01 90 (0.29, 0.07) 243 −30384.7
6 0.005 82 (0.31, 0.07) 208 −30381.6

ate choice of the tuning constants of the SPIEM algorithm is
required.

On comparing Table 6 with Table 3 for B = 20, it can be
seen that TE and TM for the SPIEM algorithm are smaller for
each combination of C and k1 considered than that for the IEM
algorithm, which is to be expected. For some of these com-
binations of C and k1, the SPIEM algorithm required a fewer
number of scans to convergence, while for all combinations
its time to convergence is smaller than that of the IEM algo-
rithm. As in the first simulation, the convergence time of the
SPIEM algorithm is smallest for k1 = 5 and C = 0.005. With
these values of the tuning constants, the time to convergence
is reduced by a factor of 56% and 26%, compared with the
standard EM algorithm and the IEM algorithm for B = 20,
respectively. In particular, the sparse E-steps does not intro-
duce bias to the estimates of the parameters and the final log
likelihood obtained is the same as that from the standard EM
algorithm.

7. Conclusions

We have compared the relative performances of the IEM algo-
rithm with various numbers of blocks B and the standard EM
algorithm. It can be seen from Sections 3 and 4 that the IEM
algorithm with an appropriate choice of B can significantly re-
duce the computation times. The time to convergence is found to
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be reduced by a factor of 19% to 71%, compared with the stan-
dard EM algorithm (Table 4). A simple guide for choosing the
optimal number of blocks B is proposed: B ≈ n2/5, B ≈ n3/8,
and B ≈ n1/3 for unrestricted, equal, and diagonal component-
covariances matrices respectively. Alternatively, we may choose
B ≈ n3/8 for the above different assumptions of the component-
covariances matrices. As presented in Section 4, this simple
rule works very well in the simulations. For the extreme case
of B = n blocks, the convergence time of the IEM algorithm
is found to be reduced by a factor of 51% with the use of the
updating formulas. These formulas are useful in applications
where data actually appear one at a time and B = n blocks are
adopted.

Further reduction in the time to convergence can be achieved
by using a sparse version of the IEM algorithm. For the imple-
mentation of this SPIEM algorithm, we suggest choosing the
number of blocks B obtained from the proposed simple rule and
taking C = 0.005 and k1 = 5. For these values of C and k1, the
time to convergence is reduced by a factor of 52% for the first
simulated data set, compared with the standard EM algorithm,
and a factor of 28%, compared with the IEM algorithm for
B = 64. For the second simulation, the time to convergence is
reduced by a factor of 56%, compared with the standard EM
algorithm, and a factor of 26%, compared with the IEM
algorithm for B = 20.

Other approaches for speeding up the EM algorithm for mix-
tures have been considered in Bradley, Fayyad and Reina (1999)
and Moore (1999). The former developed a scalable version of
the EM algorithm to handle very large databases with a limited
memory buffer. It is based on identifying regions of the data that
are compressible and regions that must be maintained in mem-
ory; see for example McLachlan and Peel (2000, ch. 12). Moore
(1999) has made use of multiresolution kd-trees (mrkd-trees) to
speed up the fitting process of the EM algorithm. Here kd stands
for k-dimensional where, in our notation, k = p, the dimension
of a feature vector y j . His approach builds a multiresolution
data structure (mrkd-tree) to summarize the database at all reso-
lutions of interest simultaneously. The mrkd-tree is a binary tree
that recursively splits the whole set of data points into partitions.
Each non-leaf-node has two children nodes, which divide their
parent’s data points between them. The leaf-nodes are the small-
est possible partitions this mrkd-tree offers. It can be shown that
the relative time to convergence, compared to the standard EM
algorithm, is roughly proportional to the ratio of the number of
leaf-nodes to the number of data points n. Further reduction in
the computation time can be achieved by pruning the tree. At a
given node, if the minimum and maximum values that any point
y j in the node can have for its current posterior probabilities
τi (y j ; �

(k)) are close and satisfy some pruning criterion for all
i = 1, . . . , g (see for example Moore 1999), the node is treated
as if it is a leaf node and its descendents need not be searched at
this iteration.

Neither the scalable EM algorithm of Bradley, Fayyad and
Reina (1999) nor the mrkd-tree proposed by Moore (1999)

maintain the desirable convergence guarantees of the standard
EM algorithm. Moreover, McCallum, Nigam and Ungar (2000)
point out that the scalable EM algorithm becomes less efficient
when the number of groups g is large, and the mrkd-trees-based
approach slows down as the dimension p increases; see also
Thiesson, Meek and Heckerman (2001).
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