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SUMMARY

We consider a mixture model approach to the regression analysis of competing-risks data. Attention
is focused on inference concerning the e�ects of factors on both the probability of occurrence and
the hazard rate conditional on each of the failure types. These two quantities are speci�ed in the
mixture model using the logistic model and the proportional hazards model, respectively. We propose
a semi-parametric mixture method to estimate the logistic and regression coe�cients jointly, whereby
the component-baseline hazard functions are completely unspeci�ed. Estimation is based on maximum
likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization
(ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-
parametric method with a fully parametric mixture approach. The results show that when the component-
baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches
are comparable for mildly and moderately censored samples. When the component-baseline hazard is
not monotonic increasing, the semi-parametric method consistently provides less biased estimates than
a fully parametric approach and is comparable in e�ciency in the estimation of the parameters for all
levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated
with di�erent dosages of the drug diethylstilbestrol. Copyright ? 2003 John Wiley & Sons, Ltd.
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analysis; semi-parametric approach

1. INTRODUCTION

Competing-risks problems arise naturally in a number of scienti�c �elds, particularly in sur-
vival analysis. With covariates, the traditional approach based on statistical models for the
observable failure=censoring time T is to represent the competing-risk failure rates by the
cause-speci�c hazard functions via Cox’s [1] proportional hazards assumption [2]; see also
reference [3], Chapter 7, and reference [4]. Some examples of applying this approach can
be found in references [5–7]. Recently, Lunn and McNeil [8] proposed an augmented data
approach to analyse competing-risks data using readily available standard programs for �tting
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Cox’s proportional hazards regression model with censored observations. A comparison of this
augmented data approach with Kaplan–Meier methods and the cause-speci�c hazard approach
to estimate the cumulative incidence functions in the competing-risks analysis can be found
in reference [9].
An alternative analysis of competing-risk data postulates a mixture model that expresses

the failure time distribution in terms of the marginal distribution of failure type and the
conditional distribution of time to failure, given the type of failure. Within this mixture model
framework, it is assumed that an individual will fail from a particular risk, chosen by a
stochastic mechanism at the outset, characterized by the marginal distribution of each failure
type. Suppose that there are g distinct causes of failure and the observed failure-time data is

y=(t1;xT1 ; D1; : : : ; tn;x
T
n ; Dn)

T (1)

where the superscript T denotes vector transpose, tj is the failure time or censoring time for
the jth individual, xj is a vector of covariates associated with the jth individual, and Dj= i
indicates that the jth individual fails due to the ith type of failure and Dj=0 represents a
censored observation. The survival function of T is modelled as

S(t;x) =
g∑
i=1
�i(x)Si(t;x) (2)

where Si(t;x) denotes the conditional survival function given failure is due to the ith cause,
and �i(x) (i=1; : : : ; g) is the probability of failure from the ith cause; the �i(x) sum to one.
In the context of competing-risk analysis, it means that each individual will fail from one of
the g failure types, while the relative risk is characterized by the marginal distribution �i(x)
given the characteristics of the individual x. The model (2) thus allows the possibility of some
useful interpretations on how the factors x in�uence the incidence of each cause and how they
a�ect the failure time among individuals who failed from each cause. Larson and Dinse [10]
were among the �rst to use model (2) to handle competing-risks problems. They assumed that
the component-hazard functions, hi(t;x) (i=1; : : : ; g), follow a proportional hazards model,
that is

hi(t;x)= h0i(t) exp{xT�i} (i=1; : : : ; g) (3)

where �i is a vector of regression coe�cients and where the baseline hazard functions, h0i(t),
are taken to be piecewise constant. An alternative to the speci�cation of the baseline hazard
functions is to adopt some common lifetime distributions for them. For example, Gordon [11]
adopted the Gompertz distribution to specify the conditional survival functions in the context
of estimating the ‘cure’ rate of breast cancer after a treatment therapy. However, in practice,
it is di�cult to verify the distributional assumptions adopted in the mixture models and the
inference can be very sensitive to the choice of distributions. Common lifetime distributions
may fail to adequately interpret data for which the failure rate is not monotonic increasing
or decreasing [12]. One typical example in medical research is the existence of short-term
failures. The occurrence of failures soon after the treatment indicates that a non-monotone
bathtub-shaped hazard function with three phases (a decreasing hazard, following by a constant
hazard, and �nally by an increasing hazard) can possibly provide a more realistic model than
the monotone hazard function; see for example reference [13] and the review [14]. Glasser
[15] showed that a gamma mixture with a common scale parameter can have bathtub-shaped
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hazard function. For the analysis of competing-risks data, it implies that a larger number of
components is required which results in a much more complicated model and hence may
induce di�culties in the estimation. Alternatively, a �exible rich class of baseline hazards
can be adopted. For example, Larson and Dinse [10] speci�ed the baseline hazard function
to be piecewise constant. Gelfand et al. [12] proposed a continuous baseline hazard in the
form of the summation of an arbitrary number of parametric hazards such as the Weibull.
However, the division of the baseline hazards into intervals or the determination of the number
of parametric hazards for each component is somewhat arbitrary.
A non-parametric speci�cation for the baseline hazard functions may be used to relax the

parametric constraints. In particular, Efron [16] and Oakes [17] showed that, for the estimation
of the regression coe�cients, parametric speci�cation of the baseline hazard functions will
usually not improve much on the partial likelihood model, with the baseline hazard completely
unspeci�ed. Kuk [18] considered a semi-parametric generalization of the parametric mixture
model of reference [10]. A marginal likelihood approach is adopted to estimate the regression
parameters �i, whereby the baseline hazard functions h0i(t) in (3) are eliminated as nuisance
parameters during the analysis. His method relies on the Monte Carlo approximation of the
marginal likelihood [19] and the validity of assigning equal probability to each realization of
the failure type for the set of censored observations.
In this paper, we propose an ECM-based semi-parametric mixture method that does not

require Monte Carlo approximation. Moreover, estimation is based on maximum likelihood
of the full likelihood. In Section 2 we present the semi-parametric mixture model, where
parameters can be estimated by an extension of the EM algorithm that Meng and Rubin
[20] termed the expectation-conditional maximization (ECM) algorithm. Some simulations
performed to compare the proposed semi-parametric method with a fully parametric approach
are reported in Section 3, and the analysis of a real data set is given in Section 4.

2. SEMI-PARAMETRIC MIXTURE MODEL AND ECM ALGORITHM

In the mixture model framework, a population may be split into g mutually exclusive com-
ponents corresponding to each type of failure. The mixing proportions are assumed to have
the logistic form

�i(x; �)= exp(ai + bTi x)
/(

1 +
g−1∑
l=1

exp(al + bTl x)
)

(i=1; : : : ; g− 1) (4)

where �i=(ai; bTi )
T and �=(�T1 ; : : : ; �

T
g−1)

T contains the logistic coe�cients [21], and �g(x; �)
=1−∑g−1

i=1 �i(x; �). Let �=(�
T; �T1 ; : : : ; �

T
g )
T be the vector containing the unknown parameters

for the logistic and regression coe�cients. On the basis of the observed data y given by (1),
the log-likelihood function for � under the mixture model (2) is given by

log L(�) =
n∑
j=1

[
g∑
i=1
I(Dj= i) log{�i(xj; �)fi(tj;xj; �i)}

+ I(Dj=0) log S(tj;xj;�)
]

(5)
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where I(A) is the indicator function for event A and fi(:) is the probability density function
for the ith component. It is noted that the full likelihood (5) is used here because a partial
likelihood approach as described in reference [3], pp. 170, fails to eliminate the baseline
survival function (see equation (10)) from the likelihood formed under the mixture model
(2). The maximum likelihood estimate of � is obtained via the EM algorithm of Dempster
et al. [22]. Further discussion of the EM algorithm in its application to mixture models in a
general context may be found in references [23, 24].
In order to pose the problem as an incomplete-data one, an unobservable random vec-

tor z of zero-one indicator variables is introduced for each censored observation tj, where
zj=(z1j; : : : ; zgj)T, and where zij=1 or 0 according as the jth individual would have failed
from cause i or not (i=1; : : : ; g). The actual failure time for those censored observations
was not introduced as an incomplete variable in the complete-data framework, as it did not
simplify the calculations.
The complete-data log-likelihood is then given by

log Lc(�) =
n∑
j=1

[
g∑
i=1
I(Dj= i) log{�i(xj; �)fi(tj;xj; �i)}

+
g∑
i=1
I(Dj=0)zij log �i(xj; �)Si(tj;xj; �i)

]
(6)

It follows on application of the EM algorithm in the aforementioned framework that on the
(k + 1)th iteration of the E-step, we calculate the Q-function, which is the expectation of
the complete-data log-likelihood conditional on the current estimate of the parameter and the
observed data

Q(�;�(k)) =
n∑
j=1

[
g∑
i=1
I(Dj= i) log{�i(xj; �)fi(tj;xj; �i)}

+
g∑
i=1
I(Dj=0)�

(k)
ij log �i(xj; �)Si(tj;xj; �i)

]
(7)

where �(k) is the estimate of � after the kth iteration and

�(k)ij = E(zij|y;�(k))

= �i(xj; �(k))Si(tj;xj; �
(k)
i )
/

g∑
l=1
�l(xj; �(k))Sl(tj;xj; �

(k)
l ) (8)

is the posterior probability that the jth individual with censored survival time tj would have
failed due to cause i (i=1; : : : ; g).
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The M-step provides the updated estimate �(k+1) that maximizes the Q-function with respect
to �. It can be seen that the Q-function in (7) can be decomposed into

n∑
j=1

g∑
i=1
[I(Dj= i) log �i(xj; �) + I(Dj=0)�

(k)
ij log �i(xj; �)]

+
n∑
j=1
[I(Dj=1) logf1(tj;xj; �1) + I(Dj=0)�

(k)
1j log S1(tj;xj; �1)]

+
...

+
n∑
j=1
[I(Dj= g) logfg(tj;xj; �g) + I(Dj=0)�

(k)
gj log Sg(tj;xj; �g)]

=Q0 +Q1 + · · ·+Qg (9)

with respect to the unknown parameters � and �1; : : : ; �g, respectively. It implies that the
estimates of � and �1; : : : ; �g can be updated separately by maximizing Q0 and Q1; : : : ; Qg,
respectively. On di�erentiation of Q0 with respect to �i (i=1; : : : ; g−1), it follows that �(k+1)i
satis�es the equation

n∑
j=1
[I(Dj= i) + I(Dj=0)�

(k)
ij − �i(xj; �)]xj = 0

For the maximization of Qi with respect to �i (i=1; : : : ; g), the proportional hazards assumption
(3) is adopted for the component-hazard functions, hi(t;x) (i=1; : : : ; g).
The ith component-survival function is given by

Si(t;x)= S0i(t)exp{x
T�i} (10)

where S0i(t) is the baseline survival function. On letting H0i(t) denote the cumulative hazard
function for the ith component (i=1; : : : ; g), we have that

S0i(t)= exp
{
−
∫ t

0
h0i(u) du

}
= exp{−H0i(t)}

From (9), it follows that, for i=1; : : : ; g

Qi =
n∑
j=1
[−{I(Dj= i) + I(Dj=0)�(k)ij }H0i(tj) exp(xTj �i)

+I(Dj= i){log h0i(tj) + xTj �i}] (11)

On the M-step, it follows from (11) that we need to maximize Qi with respect to �i and
the function H0i(t). This maximization is implemented using a conditional approach, and
the resulting algorithm can be viewed as an expectation-conditional maximization (ECM)
algorithm [20]. With the application of the ECM algorithm here, the M-step is replaced
by two conditional maximization (CM) steps. The �rst involves the calculation of H (k+1)

0i (t)
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by maximization of (11) with �i �xed at �
(k)
i . The second CM step calculates �(k+1)i by

maximization of (11) with H0i(t) �xed at H
(k+1)
0i (t).

We now rearrange the failure time observations in increasing order and denote the mi
distinct failure times due to the ith cause by t(i1)¡ · · ·¡t(imi) for i=1; : : : ; g. By assuming a
step function for h0i(t) with discontinuities at each observed failure time due to the ith cause
and considering censored observations as censored at the preceding uncensored failure time
[25, 26], it can be shown that, for �xed �i (i=1; : : : ; g), (11) is maximized with respect to
H0i(t) at

H (k+1)
0i (t(im))=

m∑
j=1

(
dij∑

r∈R(t(ij)) [I(Dr = i) + I(Dr =0)�
(k)
ir ] exp(xTr �i)

)
(12)

for m=1; : : : ; mi, where dij is the number of failures due to cause i at time t(ij) and R(t(ij)) is
the risk set at time t(ij). From (12), the updated estimates for the baseline survival functions
are given by

S(k+1)0i (t(im))= exp{−H (k+1)
0i (t(im))} (i=1; : : : ; g; m=1; : : : ; mi)

which can be substituted into (7) for the implementation of the next E-step. Alternatively,
a discrete model assuming a step function for S0i(t) (reference [3], pp. 85) may be adopted
to obtain the estimates of the baseline survival functions that maximize (11) for �xed �i.
However, unlike (12), the equation must be solved iteratively when there are ties in the data.
If there are relatively few ties in the data, they may be broken by adding randomly some
in�nitesimally small values to the tied data.
The solution to the second CM-step, however, does not exist in closed form. On di�eren-

tiation of the Q-function with respect to �i for �xed H
(k+1)
0i (t), it follows that �(k+1)i satis�es

the equation
n∑
j=1
[I(Dj= i)− {I(Dj= i) + I(Dj=0)�(k)ij }H (k+1)

0i (tj) exp(xTj �i)]xj= 0 (13)

The ECM algorithm preserves the appealing convergence properties of the EM algorithm.
It thus has reliable global convergence in that it monotonely increases the likelihood after
each iteration, no matter what starting value is used. As the likelihood function usually has
multiple maxima with mixture models, the ECM algorithm should be applied from di�erent
initial values to obtain the global maximum, which is usually taken to be the largest of the
local maxima obtained. A detailed account of the convergence properties of the EM (ECM)
algorithm can be found in references [27, 28]. It is noted that if �(k+1)i is obtained by simply
increasing the Q-function with respect to �i rather than a global maximization (13), then the
algorithm is referred to as a generalized EM (GEM) algorithm [22].
In an application of mixture models for cure rate estimation, where only one type of

failure is being observed, Sy and Taylor [29] and Peng and Dear [30] adopted the pro�le
likelihood approach to estimate the regression parameters and the non-parametric baseline
survival function. The estimation via the ECM algorithm is found to be more stable compared
to the pro�le likelihood approach.
From (8) and (13), it can be seen that the baseline component-survival functions are not

completely eliminated in the estimation process with our proposed method. Because the base-
line component-survival functions are estimated on the basis of the current information (12),
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it means that, in comparison to Kuk’s [18] semi-parametric approach, our model allows the
non-parametric maximum likelihood estimates of the baseline survival functions to be used in
the estimation of the logistic and regression parameters.
The standard errors of estimates of the parameters can be computed by applying the non-

parametric bootstrap approach of Efron [31] with the resampling scheme modi�ed for the
competing-risks problems. Let ni (i=1; : : : ; g) be the number of failures due to ith cause,
and let ng+1 be the number of censored observations. The bootstrap data are obtained by
sampling separately from each of the (g+1) sets, corresponding to cause i failures (i=1; : : : ; g)
and the censored observations, with the sizes of these bootstrap subsamples taken equal to
ni (i=1; : : : ; g) and ng+1, respectively [32, 33]. The standard errors of the estimates can be
approximated by the sample standard deviations of the corresponding bootstrap estimates based
on B independent bootstrap samples (say, B=100).
With the mixture approach, the cumulative incidence function and the conditional probability

[34] can be obtained as follows. Let �̂; �̂i, and Ŝ0i(t) (i=1; : : : ; g) be the maximum likelihood
estimates of �; �i (i=1; : : : ; g), and the baseline survival functions, respectively, the estimated
cumulative incidence function for the ith type of failure is given by

�i(x; �̂){1− Ŝ0i(t)exp(xT �̂i)} (14)

Similarly, the conditional probability for the ith type of failure within a speci�ed time t given
that failure due to other types does not occur during this period is estimated by

�i(x; �̂){1− Ŝ0i(t)exp(xT �̂i)}
�i(x; �̂) +

∑g
l�=i �l(x; �̂)Ŝ0l(t)exp(x

T �̂i)
(15)

3. SIMULATION EXPERIMENTS

In this section we present the results of two simulation experiments for comparing the proposed
semi-parametric method with a fully parametric approach. In both simulations we considered
the sample size n=1000 and two distinct causes of failure (g=2). The covariate x was a
continuous variable, which was generated independently from the N(0; 1) distribution. In the
�rst simulation study, we assume both the component-hazard functions hi(t; x) (i=1; 2) are
exponential distributions with proportional hazards

hi(t; x)= �i exp(�ix) (16)

The true parameter values were (�1; �1; �2; �2)= (0:5;−0:5; 1:0;−1:0). For the parameters in
the logistic model (4), we used a=−1:0 and b=0:5. Given that an entity belongs to the �rst
component, a sample failure time due to cause 1 was generated according to h1(t; x; �1; �1)
using the inverse transform method. Similarly, for an entity belonging to the second com-
ponent, a sample failure time due to cause 2 was generated according to h2(t; x; �2; �2). For
each entity, the censoring time was generated from a uniform distribution U(c1; c2), where c1
and c2 are some constants. If the jth failure time were greater than the jth censoring time, it
was taken to be censored at this censoring time. In the study, we considered three di�erent
sets of values for c1 and c2 so that comparison under di�erent levels of censoring could be
investigated. For each simulation set, we generated 500 independent samples and �tted the
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Table I. Average bias, MSE, and the relative e�ciency of estimates from the parametric
mixture model and the proposed semi-parametric mixture method (simulation study 1).

Censoring Average Parameter Parametric method Semi-parametric method Relative
distribution per cent e�ciency

censored Average bias MSE Average bias MSE

U(2:0; 9:0) 9.1 a −0.0008 0.0065 −0.0030 0.0067 0.98
b 0.0029 0.0099 0.0011 0.0105 0.95
�1 0.0051 0.0074 0.0049 0.0073 1.02
�2 −0.0019 0.0026 −0.0042 0.0030 0.89

U(0:5; 5:0) 22.8 a −0.0112 0.0118 −0.0196 0.0128 0.92
b −0.0007 0.0147 −0.0064 0.0149 0.98
�1 −0.0010 0.0096 0.0006 0.0101 0.95
�2 −0.0011 0.0032 −0.0038 0.0035 0.91

U(0:5; 1:8) 40.7 a −0.0377 0.0611 −0.0645 0.0847 0.72
b −0.0162 0.0405 −0.0232 0.0469 0.87
�1 0.0153 0.0263 0.0214 0.0289 0.91
�2 −0.0014 0.0069 −0.0050 0.0067 1.03

simulated data using the proposed semi-parametric method. The number of replications was
so chosen that the variation due to the Monte Carlo simulations contributes only a small frac-
tion of the total variance of estimates. With the parametric modelling approach, we �tted a
mixture of exponential distributions to the simulated data. The average bias, the mean square
error (MSE), and the e�ciency of the semi-parametric method relative to the fully parametric
approach for each parameter are reported in Table I.
From Table I, it can be seen that the fully parametric approach and the proposed semi-

parametric method are comparable to each other for mildly and moderately censored samples.
For heavily censored samples, the parametric approach provides less biased estimates and
is more e�cient for the logistic parameters. The semi-parametric approach is generally less
e�cient, which is to be expected because the true model is a two-component mixture of
exponential distributions.
For the second simulation study, the exponential distribution of the second component of

mixture is replaced by a distribution with baseline hazard function speci�ed as

h02(t)= �21�21t�21−1 + �22�22t�22−1 (17)

with (�21; �21; �22; �22)= (1:5; 0:5; 0:01; 2:5). It is noted that, with these parameter values, the
�rst term on the right-hand side of (17) corresponds to a decreasing Weibull hazard, whereas
the second term corresponds to an increasing Weibull hazard. Therefore, the baseline hazard
function h02(t) is bathtub-shaped [12, 33]. With the parametric modelling approach, we �tted
a mixture of exponential and Weibull distributions to the simulated data. The e�ect of mis-
speci�cation of the bathtub-shaped baseline hazard by a Weibull distribution can be obtained.
The results are presented in Table II.
From Table II, it can be seen that the proposed semi-parametric approach provides con-

sistently less biased estimates and is comparable in e�ciency for all levels of censoring. In
particular, for heavily censored samples, the parametric approach gives relatively large biased
estimates for a and large MSE for the estimate of �2. The coe�cient �2 corresponds to the

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1097–1111
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Table II. Average bias, MSE, and the relative e�ciency of estimates from the parametric
mixture model and the proposed semi-parametric mixture method (simulation study 2).

Censoring Average Parameter Parametric method Semi-parametric method Relative
distribution per cent e�ciency

censored Average bias MSE Average bias MSE

U(2:0; 10:0) 9.4 a −0.0273 0.0065 0.0023 0.0062 1.05
b −0.0322 0.0082 0.0065 0.0087 0.95
�1 0.0426 0.0075 −0.0018 0.0062 1.20
�2 0.0042 0.0023 −0.0024 0.0025 0.95

U(0:5; 4:5) 22.9 a −0.0484 0.0161 −0.0108 0.0171 0.94
b −0.0361 0.0167 0.0012 0.0180 0.93
�1 0.0275 0.0119 −0.0031 0.0119 1.00
�2 −0.0096 0.0038 −0.0011 0.0041 0.95

U(0:5; 1:0) 40.4 a −0.1748 0.2166 −0.1002 0.1438 1.51
b −0.0657 0.0665 −0.0514 0.0673 0.99
�1 0.0520 0.0441 0.0515 0.0482 0.92
�2 0.0838 0.1183 −0.0065 0.0078 15.2

second component of the mixture, which baseline hazard function h02(t) is not monotonic
increasing.

4. ANALYSIS OF PROSTATE CANCER DATA

As an illustration of the proposed semi-parametric mixture method, we consider the survival
times of 506 patients with prostate cancer who entered a clinical trial during 1967–1969 and
who were randomly allocated to di�erent levels of treatment with the drug diethylstilbestrol
(DES). These data were considered by Byar and Green [35] and are published in reference
[36]. Kay [37] analysed a subset of these data by considering eight risk factors, de�ned by
eight categorical variables: drug treatment (RX: 0, 0.0 or 0.2 mg; 1, 1.0 or 5.0 mg); age
group (AG: 0;¡75 years; 1, 75 to 79 years; 2, ¿80 years); weight index (WT: 0, ¿100;
1, 80–99; 2, ¡80); performance rating (PF: 0, normal; 1, limitation of activity); history of
cardiovascular disease (HX: 0, no; 1, yes); serum haemoglobin (HG: 0, ¿12 g=100 ml; 1,
9–12 g=100 ml; 2;¡9 g=100 ml); size of primary lesion (SZ: 0, ¡30 cm2; 1, ¿30 cm2), and
Gleason stage=grade category (SG: 0;610; 1;¿10). There were 483 patients with complete
information on the covariates. Kay [37] considered three types of failure: (i) death due to
cancer; (ii) death due to cardiovascular (CVD) disease; (iii) death due to other reasons. He
�tted separate cause-speci�c Cox proportional hazards models to each type of failure. On the
other hand, Cheng et al. [38] reanalysed the same data subset, but they classi�ed the three
causes of death as: (i) prostate cancer; (ii) CVD; (iii) other causes, as in reference [35].
We analysed the same data subset with the latter classi�cation of three causes of death for

comparison purposes. In addition, following the analyses of Kay [37] and Cheng et al. [38], the
three levels of factors AG, WT and HG are treated as a linear contribution according to being
0, 1 or 2, though this is not an usual practice in regression analysis. There were 125 patients
who died from prostate cancer, 139 patients who died due to CVD disease, and 80 patients who
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Table III. Maximum likelihood estimates (with standard errors) for ECM-based
semi-parametric mixture method (∗ denotes P-value¡0:05).

Coe�cient Logistic model Components

Prostate cancer CVD Prostate cancer CVD Other

Constant −1:32∗(0.58) −0.77 (0.60)
RX 0.03 (0.48) 0.88∗(0.45) −0:60∗(0.29) −0.17 (0.34) 0.23 (0.43)
AG −0.54 (0.33) −0.32 (0.34) 0.10 (0.30) 0:43∗(0.22) 0.48 (0.31)
WT −0.39 (0.32) −0.35 (0.36) 0.24 (0.28) −0.01 (0.31) 0.53 (0.34)
PF 0.53 (0.64) 0.29 (0.59) 0.20 (0.35) 0.52 (0.35) 0.69 (0.81)
HX 0.45 (0.41) 1:50∗(0.50) −0.01 (0.34) 0.48 (0.46) 1.00 (0.57)
HG 0.13 (0.45) 0.01 (0.45) 0:51∗(0.26) −0.16 (0.47) 0:97∗(0.50)
SZ 0.41 (0.57) −1.12 (0.62) 0:61∗(0.28) 1:18∗(0.53) 0.94 (0.55)
SG 3:01∗(0.63) 1:45∗(0.45) 0:88∗(0:45) −0.27 (0.35) 1:18∗(0.56)

Table IV. Maximum likelihood estimates (with standard errors) for three-component Weibull
mixture model (∗ denotes P-value¡0:05).

Coe�cient Logistic model Components

Prostate cancer CVD Prostate cancer CVD Other

Constant −1:22∗(0.52) −0.57 (0.48)
RX −0.05 (0.45) 0:86∗(0.42) −0.43 (0.24) −0.17 (0.16) 0.09 (0.30)
AG −0.57 (0.32) −0.37 (0.33) 0.08 (0.22) 0:33∗(0.16) 0.29 (0.21)
WT −0.40 (0.34) −0.45 (0.33) 0.15 (0.17) 0.04 (0.17) 0.34 (0.21)
PF 0.58 (0.66) 0.43 (0.60) 0.22 (0.31) 0.28 (0.22) 0.80 (0.54)
HX 0.35 (0.43) 1:44∗(0.39) 0.04 (0.31) 0.44 (0.26) 0.69 (0.35)
HG 0.13 (0.38) 0.01 (0.39) 0.35 (0.20) −0.08 (0.24) 0:81∗(0.35)
SZ 0.45 (0.61) −0.95 (0.67) 0:56∗(0.20) 0:76∗(0.31) 0.68 (0.44)
SG 2:90∗(0.50) 1:07∗(0.45) 0.65 (0.37) −0.01 (0.23) 0.61 (0.38)

died from other causes. The remaining 139 survival times were all censored; the proportion of
censored observation is 28.8 per cent. The proposed semi-parametric three-component mixture
approach is adopted and the result is presented in Table III. For comparison, we also �tted
a parametric Weibull mixture model and Kuk’s semi-parametric model [18]. The results are
presented in Tables IV and V, respectively. Standard errors of the maximum likelihood
estimates are obtained by the non-parametric bootstrap approach with B=100 replications, as
described in Section 2. For Kuk’s semi-parametric approach, the Monte Carlo approximation
of the marginal likelihood is based on r=1000 replications. Standard errors of the estimates
are obtained by inverting the matrix of second derivatives of the marginal log-likelihood based
on r=100 000 replications.
Based on the cause-speci�c hazard approach, Cheng et al. [38] found that treatment with

high dose DES signi�cantly reduced the risk of prostate cancer while increasing the risk of
CVD. In addition, the SZ and SG variables are highly signi�cant for the death time due to
prostate cancer. Besides RX, other signi�cant risk factors for CVD are AG and HX, while
AG, WT, HG and SG are all related to the failure from other causes. However, a draw-
back of the cause-speci�c hazard approach is that the competing causes of failure are not
jointly estimated; that is, a separate model is �tted for each failure cause, treating other fail-
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Table V. Semi-parametric estimates (with standard errors) based on Kuk’s mixture approach
(∗ denoted P-value¡0:05).

Coe�cient Logistic model Components

Prostate cancer CVD Prostate cancer CVD Other

Constant −0:54 (0.46) −0.38 (0.41)
RX −0.05 (0.29) 0:57∗(0.23) −0:62∗(0.20) 0.03 (0.15) −0.01 (0.23)
AG −0.51 (0.27) −0.25 (0.19) 0.10 (0.18) 0.38 (0.21) 0:53∗(0.18)
WT −0.34 (0.26) −0.27 (0.25) 0.18 (0.16) −0.08 (0.17) 0:57∗(0.21)
PF 0.59 (0.52) 0.51 (0.50) 0.27 (0.30) 0.38 (0.29) 1:10∗(0.53)
HX 0.11 (0.31) 1:09∗(0.30) −0.11 (0.25) 0:73∗(0.22) 0:57∗(0.27)
HG 0.05 (0.30) −0.15 (0.29) 0:48∗(0.22) −0.03 (0.21) 0:85∗(0.30)
SZ 0.41 (0.51) −0.87 (0.57) 0:72∗(0.24) 0:85∗(0.42) 1.04 (0.54)
SG 2:16∗(0.31) 0:89∗(0.31) 1:42∗(0.30) −0:07 (0.21) 0.48 (0.47)

ure causes as censored. Subsequently, estimation of the unconditional (marginal) probability
�i(x) or cumulative incidence function can only be accomplished by combining estimates of
each failure cause. A factor that has strong in�uence on the cause-speci�c hazard function
may have no e�ect on the unconditional probability or cumulative incidence function; see
for example reference [39] on the analysis of prostate cancer data. Thus, a direct comparison
of parameter estimates corresponding to the various failure types is complicated under the
cause-speci�c hazard approach [8, 9, 39, 40]. Recently, Lunn and McNeil [8] proposed two
methods for joint estimation of parameter in models for competing risks in survival analysis,
based on an adaptation of Cox’s proportional hazards regression model [1] and the indepen-
dent risks assumption. Advantages of this approach are that it exploits the use of statistical
tests with existing statistical software and provides hazard ratios comparing competing events
between covariate values. On the other hand, with the mixture approach, we simultaneously
estimate the logistic coe�cients � and the regression coe�cients �i (i=1; : : : ; g). Thus, useful
interpretations on how the risk factors in�uence the incidence of each cause of death and how
they a�ect the time to death among patients dying from each cause are obtained.
With the analysis of the prostate cancer data using the proposed ECM-based semi-parametric

method, it follows from Table III that higher DES dosage not only reduces the probability of
death due to prostate cancer, but also prolongs the time to death given that death is due to
prostate cancer. On the other hand, higher DES dosage increases the probability of death due to
CVD, but DES dosage does not have a signi�cant e�ect on time to death due to CVD. Patients
with a history of cardiovascular disease (HX=1) have a higher probability of death due to
CVD, compared to those patients without such a history. Patients with high-grade tumours
(SZ=1 and SG=1) have higher probability of death due to prostate cancer and also shorter
time to death given that death is due to prostate cancer. These results are consistent with
the observations made by Byar and Green [35] that patients with high-grade tumours were at
greater risk of prostate cancer death, whereas patients with a history of cardiovascular disease,
with low-grade tumours, and treated with a high dose of DES were at greater risk of dying
from CVD. In Figure 1 we illustrate the e�ect of DES dosage on the cumulative incidence
function of death due to prostate cancer for patients with high-grade tumours (SZ=1, SG=1,
and the other variables set to zero). For young (AG=0) patients with high-grade tumours
but no history of CVD, it can be seen from Figure 1 that the cumulative incidence of death
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Figure 1. Cumulative incidence function of death due to prostate cancer for young
(AG=0) patients with weight index ¿100, normal PF, no history of CVD,

haemoglobin ¿12 g=100 ml, and high-grade tumours (SZ=1;SG=1).

due to prostate cancer tends to increase much more rapidly in the low-dose DES group than
that in the high-dose group. It can be seen from Table III that, besides RX, SZ and SG, the
HG variable is also signi�cant for the conditional hazard rate of prostate cancer death. Other
signi�cant risk factors for death due to CVD, besides RX and HX, are AG, SZ and SG.
With the fully parametric approach, it can be seen from Table IV that higher DES dosage

reduces the probability of death due to prostate cancer, but DES dosage has only a marginally
signi�cant e�ect on time to death due to prostate cancer. In contrast to the result obtained by
the semi-parametric approach (Table III), it can be seen that HG is not an important factor
on the time to death due to prostate cancer. In addition, with the fully parametric approach,
a larger value of SG increases the probability of prostate cancer death, but SG does not have
a signi�cant e�ect on time to death due to prostate cancer. Its e�ect on the time to death
due to other causes is also not signi�cant, which is di�erent from the result obtained by the
semi-parametric approach.
From Tables III and V, it can be seen that the results obtained by Kuk’s [18] and our

semi-parametric approaches lead to similar conclusions on the e�ect of DES dosage on death
due to prostate cancer and CVD. However, with Kuk’s approach [18], age of patients has
only a marginally signi�cant e�ect on time to death given death is due to CVD. Moreover,
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HX not only increases the probability of death due to CVD, but also lowers the time to death
due to CVD. Factors that have a signi�cant e�ect on time to death due to other causes are
also not the same.

5. DISCUSSION

We have proposed an ECM-based semi-parametric mixture method for the regression analysis
of competing-risks data. In contrast to Kuk’s approach [18], the proposed method does not
require Monte Carlo approximation. Estimation is undertaken by maximum likelihood via the
ECM algorithm, and the process allows the non-parametric maximum likelihood estimates of
the baseline survival functions to be used in the estimation of the parameters. As described in
Section 2, the proposed estimation procedure via the ECM algorithm is more stable than with
the pro�le likelihood approach and the likelihood is monotonic increasing after each iteration.
We also performed some simulation studies using a pro�le likelihood approach instead of
the ECM algorithm. It was found that the MSEs of the estimates obtained by the former
approach were relatively larger. Similarly, when it was applied to the real prostate cancer
data, convergence was not as stable as with the ECM algorithm, and it took a longer time to
converge.
Comparison of the ECM-based semi-parametric mixture method with a fully parametric

mixture approach is presented in Section 3. In summary, when the true model is an exponential
mixture, the fully parametric approach and the semi-parametric method are comparable under
mild and moderate censoring. When one of the components has a bathtub-shaped hazard,
the semi-parametric approach consistently provides less biased estimates and is comparable
in e�ciency in the estimation of the parameters for all levels of censoring. In particular,
for heavily censored samples, the parametric approach gives relatively large MSE for the
estimate of the regression parameter �2 which corresponds to the component with bathtub-
shaped baseline hazard function.
An attractive feature of the mixture model approach for analysing competing risks data is

that it does not have to make assumptions about the independence of the competing risks
[33]. In addition, there is interest in practice as to how factors in�uence the probability of
occurrence and how they relate to the failure rates of each type separately. A factor that is
important for the probability of occurrence may not be important for the failure risk and vice
versa. The mixture model (2) considers the in�uence of factors on both the probability of
occurrence and the hazard rate conditional on each of the failure types using the logistic model
and the proportional hazards model, respectively. In particular, the probability of occurrence
for the ith cause is estimated based on the information on the uncensored observations and
the posterior probabilities (8) of failure for the censored observations. The mixture model (2)
allows us to determine the e�ect of factors on these two quantities simultaneously. However,
a parametric or semi-parametric mixture model for competing-risks data should not be used
indiscriminately. Such a model generally requires long-term follow-up and large samples.
Otherwise, identi�ability problems between the coe�cient parameters in the logistic part and
the component parts may occur. A simple and informative way of checking the proportional
hazards assumption in the semi-parametric mixture model is provided by plotting log(− log(1−
F̂i(t)=�̂i)) versus time for each level of the variable, where F̂i(t) is the estimated cumulative
incidence function, such as the Aalen–Johansen estimator [41], for the ith cause and �̂i is the
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estimated �nal levelled cumulative incidence function. The latter requires large sample with
long-term follow-up as described above. Approximately parallel lines should result to support
the proportional hazards assumption for the conditional distributions.
The application of the semi-parametric mixture method to a real data set has been given

in Section 4. The conclusions obtained from the semi-parametric and the fully parametric
approaches have some di�erent interpretations. The reason may be that there exist �ve causes
of death other than prostate cancer death or death due to CVD: other cancer; respiratory
disease; other speci�c non-cancer cause; unspeci�ed non-cancer cause, and unknown cause.
These causes of death are grouped into the third component ‘other causes’. Thus, the survival
or the hazard function of this group may itself be a mixture, which implies that it would
be inadequate to model it by the common lifetime distribution adopted for the �rst (prostate
cancer death) and second (death due to CVD) components.
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