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Normal mixture models are being increasingly used to model the distributions of a wide variety of
random phenomena and to cluster sets of continuous multivariate data. However, for a set of data
containing a group or groups of observations with longer than normal tails or atypical observations,
the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider
a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM
algorithm to fit this t mixture model is described and examples of its use are given in the context of
clustering multivariate data in the presence of atypical observations in the form of background noise.
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1. Introduction

Finite mixtures of distributions have provided a mathematical-
based approach to the statistical modelling of a wide variety of
random phenomena; see, for example, Everitt and Hand (1981),
Titterington, Smith and Makov (1985), McLachlan and Basford
(1988), Lindsay (1995), and Böhning (1999). Because of their
usefulness as an extremely flexible method of modelling, finite
mixture models have continued to receive increasing attention
over the years, both from a practical and theoretical point of
view. For multivariate data of a continuous nature, attention has
focussed on the use of multivariate normal components because
of their computational convenience. They can be easily fitted
iteratively by maximum likelihood (ML) via the expectation-
maximization (EM) algorithm of Dempster, Laird and Rubin
(1977); see also McLachlan and Krishnan (1997).

However, for many applied problems, the tails of the normal
distribution are often shorter than required. Also, the estimates
of the component means and covariance matrices can be affected
by observations that are atypical of the components in the normal
mixture model being fitted. The problem of providing protection
against outliers in multivariate data is a very difficult problem
and increases with the difficulty of the dimension of the data
(Rocke and Woodruff (1997) and Kosinski (1999)).

In this paper, we consider the fitting of mixtures of (mul-
tivariate) t distributions. The t distribution provides a longer

tailed alternative to the normal distribution. Hence it provides
a more robust approach to the fitting of normal mixture mod-
els, as observations that are atypical of a component are given
reduced weight in the calculation of its parameters. Also, the
use of t components gives less extreme estimates of the pos-
terior probabilities of component membership of the mixture
model, as demonstrated in McLachlan and Peel (1998). In their
conference paper, they reported briefly on robust clustering via
mixtures of t components, but did not include details of the im-
plementation of the EM algorithm nor the examples to be given
here.

With this t mixture model-based approach, the normal
distribution for each component in the mixture is embedded
in a wider class of elliptically symmetric distributions with an
additional parameter called the degrees of freedom ν. As ν tends
to infinity, the t distribution approaches the normal distribution.
Hence this parameter νmay be viewed as a robustness tuning pa-
rameter. It can be fixed in advance or it can be inferred from the
data for each component thereby providing an adaptive robust
procedure, as explained in Lange, Little and Taylor (1989), who
considered the use of a single component t distribution in linear
and nonlinear regression problems; see also Rubin (1983) and
Sutradhar and Ali (1986).

In the past, there have been many attempts at modifying
existing methods of cluster analysis to provide robust cluster-
ing procedures. Some of these have been of a rather ad hoc

0960-3174 C© 2000 Kluwer Academic Publishers



340 Peel and McLachlan

nature. The use of a mixture model of t distributions provides
a sound mathematical basis for a robust method of mixture es-
timation and hence clustering. We shall illustrate its usefulness
in the latter context by a cluster analysis of a simulated data set
with background noise added and of an actual data set.

2. Previous work

Robust estimation in the context of mixture models has been con-
sidered in the past by Campbell (1984), McLachlan and Basford
(1988, Chapter 3), and De Veaux and Kreiger (1990), among
others, using M-estimates of the means and covariance matrices
of the normal components of the mixture model. This line of
approach is to be discussed in Section 9.

Recently, Markatou (1998) has provided a formal approach
to robust mixture estimation by applying weighted likelihood
methodology in the context of mixture models. With this
methodology, an estimate of the vector of unknown parameters
is obtained as a solution of the equation

n∑
j=1

w(y j )∂ log f (y j ; Ψ)/∂Ψ = 0, (1)

where f (y; Ψ) denotes the specified parametric form for the
probability density function (p.d.f.) of the random vector Y on
which y1, . . . , yn have been observed independently. The weight
function w(y) is defined in terms of the Pearson residuals; see
Markatou, Basu and Lindsay (1998) and the previous work of
Green (1984). The weighted likelihood methodology provides
robust and first-order efficient estimators, and Markatou (1998)
has established these results in the context of univariate mixture
models.

One useful application of normal mixture models has been in
the important field of cluster analysis. Besides having a sound
mathematical basis, this approach is not confined to the produc-
tion of spherical clusters, such as with k-means-type algorithms
that use Euclidean distance rather than the Mahalanobis distance
metric which allows for within-cluster correlations between the
variables in the feature vector Y . Moreover, unlike clustering
methods defined solely in terms of the Mahalanobis distance,
the normal mixture-based clustering takes into account the nor-
malizing term |Σi |−1/2 in the estimate of the multivariate nor-
mal density adopted for the component distribution of Y cor-
responding to the i th cluster. This term can make an important
contribution in the case of disparate group-covariance matrices
(McLachlan 1992, Chapter 2).

Although even a crude estimate of the within-cluster co-
variance matrix Σi often suffices for clustering purposes
(Gnanadesikan, Harvey and Kettenring 1993), it can be severely
affected by outliers. Hence it is highly desirable for methods
of cluster analysis to provide robust clustering procedures. The
problem of making clustering algorithms more robust has re-
ceived much attention recently as, for example, in Smith, Bailey
and Munford (1995), Davé and Krishnapuram (1996), Frigui
and Krishnapuram (1996), Jolion, Meer and Bataouche (1996),

Kharin (1996), Rousseeuw, Kaufman and Trauwaert (1996) and
Zhuang et al. (1996).

3. Multivariate t distribution

We let y1, . . . , yn denote an observed p-dimensional random
sample of size n. With a normal mixture model-based approach
to drawing inferences from these data, each data point is assumed
to be a realization of the random p-dimensional vector Y with
the g-component normal mixture probability density function
(p.d.f.),

f (y; Ψ) =
g∑

i=1

πiφ(y; µi , Σi ),

where the mixing proportionsπi are nonnegative and sum to one
and where

φ(y; µi , Σi ) = (2π )−
p
2 |Σi |− 1

2

× exp

{
− 1

2
(y − µi )

T Σ−1
i (y − µi )

}
(2)

denotes the p-variate multivariate normal p.d.f. with mean
µi and covariance matrix Σi (i = 1, . . . , g). Here Ψ =
(π1, . . . , πg−1,θ

T )T , where θ consists of the elements of the
µi and the distinct elements of the Σi (i = 1, . . . , g). In the
above and sequel, we are using f as a generic symbol for a p.d.f.

One way to broaden this parametric family for potential out-
liers or data with longer than normal tails is to adopt the two-
component normal mixture p.d.f.

(1− ε)φ(y; µ, Σ)+ εφ(y; µ, cΣ), (3)

where c is large and ε is small, representing the small propor-
tion of observations that have a relatively large variance. Huber
(1964) subsequently considered more general forms of contami-
nation of the normal distribution in the development of his robust
M-estimators of a location parameter, as discussed further in
Section 9.

The normal scale mixture model (3) can be written as∫
φ(y;µ; Σ/u) d H (u), (4)

where H is the probability distribution that places mass (1− ε)
at the point u = 1 and mass ε at the point u = 1/c. Suppose we
now replace H by the p.d.f. of a chi-squared random variable
on its degrees of freedom ν; that is, by the random variable U
distributed as

U ∼ gamma

(
1

2
ν,

1

2
ν

)
,

where the gamma (α, β) density function f (u; α, β) is given
by

f (u;α, β)={βαuα−1/0(α)} exp(−βu)I(0,∞)(u); (α, β > 0),

and the indicator function I(0,∞)(u) = 1 for u > 0 and is
zero elsewhere. We then obtain the t distribution with location
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parameter µ, positive definite inner product matrix Σ, and ν
degrees of freedom,

f (y; µ, Σ, ν) = 0
(
ν+p

2

)|Σ|−1/2

(πν)
1
2 p0

(
ν
2

){1+ δ(y, µ; Σ)/ν} 1
2 (ν+p)

,

(5)

where

δ(y, µ; Σ) = (y − µ)T Σ−1(y − µ) (6)

denotes the Mahalanobis squared distance between y andµ (with
Σ as the covariance matrix). If ν > 1, µ is the mean of Y , and
if ν > 2, ν(ν − 2)−1Σ is its covariance matrix. As ν tends
to infinity, U converges to one with probability one, and so
Y becomes marginally multivariate normal with mean µ and
covariance matrix Σ. The family of t distributions thus provides
a heavy-tailed alternative to the normal family with mean µ
and covariance matrix that is equal to a scalar multiple of Σ
(if ν > 2).

4. ML estimation of t distribution

A brief history of the development of ML estimation of a
single component t distribution is given in Liu and Rubin (1995).
An account of more recent work is given in Liu (1997). Liu
and Rubin (1994, 1995) have shown that the ML estimates can
be found much more efficiently by using an extension of the
EM algorithm called the expectation-conditional maximization
either (ECME) algorithm. Meng and van Dyk (1997) demon-
strated that the more promising versions of the ECME algo-
rithm for the t distribution can be obtained using alternative data
augmentation schemes. They called this algorithm the alternat-
ing expectation-conditional maximization (AECM) algorithm.
Following Meng and van Dyk (1997), Liu (1997) considered a
class of data augmentation schemes even more general than the
class of Meng and van Dyk (1997). This led to new versions
of the ECME algorithm for ML estimation of the t distribution
with possible missing values, corresponding to applications of
the parameter-expanded EM (PX-EM) algorithm (Liu, Wu and
Rubin 1998).

5. ML estimation of mixture of t distributions

We consider now ML estimation for a g-component mixture of
t distributions, given by

f (y; Ψ) =
g∑

i=1

πi f (y; µi , Σi , νi ), (7)

where

Ψ = (π1, . . . , πg−1, θ
T , νT )T ,

ν = (ν1, . . . , νg)T , and θ = (θT
1 , . . . ,θ

T
g )T , and where θi con-

tains the elements of µi and the distinct elements of Σi (i =

1, . . . , g). The application of the EM algorithm for ML estima-
tion in the case of a single component t distribution has been de-
scribed in McLachlan and Krishnan (1997, Sections 2.6 and 5.8).
The results there can be extended to cover the present case of a
g-component mixture of multivariate t distributions.

In the EM-framework, the complete-data vector is given by

xc =
(
xT

o , zT
1 , . . . , zT

n , u1, . . . , un

)T
(8)

where xo = (yT
1 , . . . , yT

n )T denotes the observed-data vector,
z1, . . . , zn are the component-label vectors defining the compo-
nent of origin of y1, . . . , yn , respectively, and zij = (z j )i is 1
or zero, according as to whether y j belongs or does not belong
to the i th component. In the light of the above characterization
of the t distribution, it is convenient to view the observed data
augmented by the z j as still being incomplete and introduce into
the complete-data vector the additional missing data, u1, . . . , un ,
which are defined so that given zij = 1,

Y j | u j , zij = 1 ∼ N (µi , Σi/u j ), (9)

independently for j = 1, . . . , n, and

U j | zij = 1 ∼ gamma

(
1

2
νi ,

1

2
νi

)
. (10)

Given z1, . . . , zn , the U1, . . . ,Un are independently distributed
according to (10).

The complete-data likelihood Lc(Ψ) can be factored into the
product of the marginal densities of the Z j , the conditional den-
sities of the U j given the z j , and the conditional densities of the
Y j given the u j and the z j . Accordingly, the complete-data log
likelihood can be written as

log Lc(Ψ) = log L1c(π)+ log L2c(ν)+ log L3c(θ), (11)

where

log L1c(π) =
g∑

i=1

n∑
j=1

zij logπi , (12)

log L2c(ν) =
g∑

i=1

n∑
j=1

zij

{
− log0

(
1

2
νi

)
+ 1

2
νi log

(
1

2
νi

)

+ 1

2
νi (log u j − u j )− log u j

}
,

(13)

and

log L3c(θ) =
g∑

i=1

n∑
j=1

zij

{
−1

2
p log(2π )− 1

2
log |Σi |

−1

2
u j (y j − µi )

T Σ−1
i (y j − µi )

}
.

(14)

In (11), π = (π1, . . . , πg)T .
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6. E-step

Now the E-step on the (k + 1)th iteration of the EM algo-
rithm requires the calculation of Q(Ψ; Ψ(k)), the current condi-
tional expectation of the complete-data log likelihood function
log Lc(Ψ). This E-step can be effected by first taking the expec-
tation of log Lc(Ψ) conditional also on z1, . . . , zn , as well as xo,
and then finally over the z j given xo. It can be seen from (12)
to (14) that in order to do this, we need to calculate

EΨ(k) (Zij | y j ),

EΨ(k) (U j | y j , z j ),

and

EΨ(k) (log U j | y j , z j ) (15)

for i = 1, . . . , g; j = 1, . . . , n).
It follows that

EΨ(k) (Zij | y j ) = τ (k)
ij

where

τ
(k)
ij =

π
(k)
i f

(
y j ; µ

(k+1)
i , Σ(k+1)

i , ν
(k+1)
i

)
f
(
y j ; Ψ(k+1)

) , (16)

is the posterior probability that y j belongs to the i th com-
ponent of the mixture, using the current fit Ψ(k) for Ψ (i =
1, . . . , g; j = 1, . . . , n).

Since the gamma distribution is the conjugate prior distri-
bution for U j , it is not difficult to show that the conditional
distribution of U j given Y j = y j and Zij = 1 is

U | y j , zij = 1 ∼ gamma (m1i , m2i ), (17)

where

m1i = 1

2
(νi + p)

and

m2i = 1

2
{νi + δ(y j , µi ; Σi )}. (18)

From (17), we have that

E(U j | y j , zij = 1) = νi + p

νi + δ(y j , µi ; Σi )
. (19)

Thus from (19),

EΨ(k) (U j | y j , zij = 1) = u(k)
ij ,

where

u(k)
ij =

νk
i + p

νk
i + δ

(
y j , µ

(k)
i ; Σ(k)

i

) . (20)

To calculate the conditional expectation (15), we need the
result that if a random variable R has a gamma (α, β)

distribution, then

E(log R) = ψ(α)− logβ, (21)

where

ψ(s) = {∂0(s)/∂s}/0(s)

is the Digamma function. Applying the result (21) to the condi-
tional density of U j given y j and zij = 1, as specified by (10), it
follows that

EΨ(k) (log U j | y j , zi j = 1)

=ψ
(
ν

(k)
i + p

2

)
− log

[
1

2

{
ν

(k)
i + δ

(
y j , µ

(k)
i ; Σ(k)

i

}]

= log u(k)
ij +

{
ψ

(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)}
(22)

for j = 1, . . . , n. The last term on the right-hand side of (22),

ψ

(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)
,

can be interpreted as the correction for just imputing the condi-
tional mean value u(k)

ij for u j in log u j .
On using the results (16), (19) and (22) to calculate the condi-

tional expectation of the complete-data log likelihood from (11),
we have that Q(Ψ; Ψ(k)) is given by

Q
(
Ψ; Ψ(k)

) = Q1
(
π; Ψ(k)

)+ Q2
(
ν; Ψ(k)

)++Q3
(
θ; Ψ(k)

)
,

(23)
where

Q1
(
π; Ψ(k)

) = g∑
i=1

n∑
j=1

τ̂
(k)
ij logπi , (24)

Q2
(
ν; Ψ(k)

) = g∑
i=1

n∑
j=1

τ̂
(k)
ij Q2 j

(
νi ; Ψ(k)

)
, (25)

and

Q3
(
θ; Ψ(k)

) = g∑
i=1

n∑
j=1

τ̂
(k)
ij Q3 j

(
θi ; Ψ(k)

)
, (26)

and where, on ignoring terms not involving the νi ,

Q2 j

(
νi ; Ψ(k)

) = − log0

(
1

2
νi

)
+ 1

2
νi log

(
1

2
νi

)

+ 1

2
νi

{
n∑

j=1

(
log u(k)

ij − u(k)
ij

)

+ψ
(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)}
, (27)
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and

Q3 j

(
θi ; Ψ(k)

) = {− 1

2
p log(2π )− 1

2
log |Σi | + 1

2
p log u(k)

ij

−1

2
uij(y j − µi )

T Σ−1
i (y j − µi )

}
. (28)

7. M-step

On the M-step at the (k + 1)th iteration of the EM algorithm, it
follows from (23) thatπ(k+1),θ(k+1), andν(k+1) can be computed
independently of each other, by separate consideration of (24),
(25), and (26), respectively. The solutions for π(k+1)

i and θ(k+1)

exist in closed form. Only the updates ν(k+1)
i for the degrees of

freedom νi need to be computed iteratively.
The mixing proportions are updated by consideration of the

first term Q1(π; Ψ(k)) on the right-hand side of (23). This leads
toπ (k+1)

i being given by the average of the posterior probabilities
of component membership of the mixture. That is,

π
(k+1)
i =

n∑
j=1

τ
(k)
i j

/
n (i = 1, . . . , g). (29)

To update the estimates of µi and Σi (i = 1, . . . , g), we need to
consider

Q3
(
θi ; Ψ(k)

)
.

This is easily undertaken on noting that it corresponds to the
log likelihood function formed from n independent observa-
tions y1, . . . , yn with common meanµi and covariance matrices
Σi/uk

1, . . . ,Σi/uk
n , respectively. It is thus equivalent to comput-

ing the weighted sample mean and sample covariance matrix of
y1, . . . , yn with weights u(k)

1 , . . . , u(k)
n . Hence

µ
(k+1)
i =

n∑
j=1

τ
(k)
ij u(k)

ij y j

/
n∑

j=1

τ
(k)
ij u(k)

ij (30)

and

Σ(k+1)
i =

∑n
j=1 τ

(k)
ij u(k)

ij

(
y j − µ(k+1)

i

)(
y j − µ(k+1)

i

)T∑n
j=1 τ

(k)
ij

.

(31)

It can be seen that it effectively chooses µ(k+1)
i and Σ(k+1)

i
by weighted least-squares estimation. The E-step updates the
weights u(k)

ij , while the M-step effectively chooses µ(k+1)
i and

Σ(k+1)
i by weighted least-squares estimation. It can be seen from

the form of the equation (30) derived for the MLE of µi that,
as ν(k)

i decreases, the degree of downweighting of an outlier in-
creases. For finite ν(k)

i as ‖y j‖→∞, the effect on the i th com-
ponent location parameter estimate goes to zero, whereas the
effect on the i th component scale estimate remains bounded but
does not vanish.

Following the proposal of Kent, Tyler and Vardi (1994) in the
case of a single component t distribution, we can replace the
divisor

∑n
j=1 τ

(k)
ij in (31) by

n∑
j=1

τ
(k)
ij u(k)

ij .

This modified algorithm, however, converges faster than the con-
ventional EM algorithm, as reported by Kent, Tyler and Vardi
(1994) and Meng and van Dyk (1997) in the case of a single
component t distribution (g = 1). In the latter situation, Meng
and van Dyk (1997) showed that this modified EM algorithm is
optimal among EM algorithms generated from a class of data
augmentation schemes. More recently, in the case g = 1, Liu
(1997) and Liu, Rubin and Wu (1998) have derived this modified
EM algorithm using the PX-EM algorithm.

It can be seen that if the degrees of freedom νi is fixed in
advance for each component, then the M-step exists in closed
form. In this case where νi is fixed beforehand, the estimation
of the component parameters is a form of M-estimation; see
Lange, Little and Taylor (1989, Page 882). However, an attractive
feature of the use of the t distribution to model the component
distributions is that the degrees of robustness as controlled by
νi can be inferred from the data by computing its ML estimate.
In this case, we have to compute also on the M-step the updated
estimate ν(k+1)

i of νi . On calculating the left-hand side of the
equation

n∑
j=1

∂Q2 j

(
νi ; Ψ(k)

)/
∂νi = 0,

it follows that ν(k+1)
i is a solution of the equation{

−ψ
(

1

2
νi

)
+ log

(
1

2
νi

)
+ 1+ 1

n(k)
i

n∑
j=1

τ
(k)
ij

(
log u(k)

ij − u(k)
j

)

+ψ
(
ν

(k)
i + p

2

)
− log

(
ν

(k)
i + p

2

)}
= 0, (32)

where n(k)
i =

∑n
j=1 τ

(k)
ij .

8. Application of ECM algorithm

For ML estimation of a single t component, Liu and Rubin
(1995) noted that the convergence of the EM algorithm is slow
for unknown ν and the one-dimensional search for the compu-
tation of ν(k+1) is time consuming. Consequently, they consid-
ered extensions of the EM algorithm in the form of the ECM
and ECME algorithms; see McLachlan and Krishnan (1997,
Section 5.8) and Liu (1997).

We consider the ECM algorithm for this problem, where Ψ
is partitioned as (ΨT

1 , Ψ2)T , with Ψ1 = (π1, . . . , πg−1, θ
T )T

and with Ψ2 equal to ν. On the (k + 1)th iteration of the ECM
algorithm, the E-step is the same as given above for the EM
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algorithm, but the M-step of the latter is replaced by two CM-
steps, as follows.

CM-Step 1. Calculate Ψ(k+1)
1 by maximizing Q(Ψ; Ψ(k)) with

Ψ2 fixed at Ψ(k)
2 ; that is, ν fixed at ν(k).

CM-Step 2. Calculate Ψ(k+1)
2 by maximizing Q(Ψ; Ψ(k)) with

Ψ1 fixed at Ψ(k+1)
1 .

But as seen above, Ψ(k+1)
1 and Ψ(k+1)

2 are calculated indepen-
dently of each other on the M-step, and so these two CM-steps
of the ECM algorithm are equivalent to the M-step of the EM
algorithm. Hence there is no difference between this ECM and
the EM algorithms here. But Liu and Rubin (1995) used the ECM
algorithm to give two modifications that are different from the
EM algorithm. These two modifications are a multicycle version
of the ECM algorithm and an ECME extension. The multicycle
version of the ECM algorithm has an additional E-step between
the two CM-steps. That is, after the first CM-step, the E-step is
taken with

Ψ =
(
Ψ(k+1)T

1 , Ψ(k)T

2

)T
,

instead of with Ψ = (Ψ(k)T

1 , Ψ(k)T

2 )
T

as on the commence-
ment of the (k + 1)th iteration of the ECM algorithm. The
EMMIX algorithm of McLachlan et al. (1999) has an option
for the fitting of mixtures of multivariate t components ei-
ther with or without the specification of the component de-
grees of freedom. It is available from the software archive
StatLib or from the first author’s homepage with website ad-
dress http://www.maths.uq.edu.au/~gjm/.

For a single component t distribution, Liu and Rubin (1994,
1995), Kowalski et al. (1997), Liu (1997), Meng and van Dyk
(1997), and Liu, Rubin and Wu (1998) have considered further
extensions of the ECM algorithm corresponding to various ver-
sions of the ECME algorithm. However, the implementation of
the ECME algorithm for mixtures of t distributions is not as
straightforward, and so it is not applied here.

9. Previous work on M-estimation of
mixture components

A common way in which robust fitting of normal mixture mod-
els has been undertaken, is by using M-estimates to update the
component estimates on the M-step of the EM algorithm, as in
Campbell (1984) and McLachlan and Basford (1988). In this
case, the updated component means µ(k+1)

i are given by (30),
but where now the weights u(k)

ij are defined as

u(k)
ij = ψ

(
d (k)

ij

)/
d (k)

ij , (33)

where

d (k)
ij =

{(
y j − µ(k)

i

)T
Σ(k)−1

i

(
y j − µ(k)

i

)}1/2

and ψ(s) = −ψ(−s) is Huber’s (1964) ψ-function defined as

ψ(s) = s, |s| ≤ a,

= sign(s)a, |s| > a, (34)

for an appropriate choice of the tuning constant a. The i th
component-covariance matrix Σ(k+1)

i can be updated as (31),
where u(k)

ij is replaced by {ψ(d (k)
ij )/d (k)

ij }2. An alternative to
Huber’s ψ-function is a redescending ψ-function, for exam-
ple, Hampel’s (1973) piecewise linear function. However, there
can be problems in forming the posterior probabilities of com-
ponent membership, as there is the question as to which para-
metric family to use for the component p.d.f.’s (McLachlan and
Basford 1988, Section 2.8). One possibility is to use the form
of the p.d.f. corresponding to theψ-function adopted. However,
in the case of any redescending ψ-function with finite rejection
points, there is no corresponding p.d.f. In Campbell (1984), the
normal p.d.f. was used, while in the related univariate work in
De Veaux and Kreiger (1990), the t density with three degrees
of freedom was used, with the location and scale component pa-
rameters estimated by the (weighted) median and mean absolute
deviation, respectively.

It can be therefore seen that the use of mixtures of t distri-
butions provides a sound statistical basis for formalizing and
implementing the somewhat ad hoc approaches that have been
proposed in the past. It also provides a framework for assessing
the degree of robustness to be incorporated into the fitting of
the mixture model through the specification or estimation of the
degrees of freedom νi in the t component p.d.f.’s.

As noted in the introduction, the use of t components in place
of the normal components will generally give less extreme esti-
mates of the posterior probabilities of component membership
of the mixture model. The use of the t distribution in place of the
normal distribution leading to less extreme posterior probabili-
ties of group membership was noted in a discriminant analysis
context, where the group-conditional densities correspond to
the component densities of the mixture model (Aitchison and
Dunsmore 1975, Chapter 2). If a Bayesian approach is adopted
and the conventional improper or vague prior specified for the
mean and the inverse of the covariance matrix in the normal
distribution for each group-conditional density, it leads to the
so-called predictive density estimate, which has the form of the
t distribution; see McLachlan (1992, Section 3.5).

10. Example 1: Simulated noisy data set

One way in which the presence of atypical observations or back-
ground noise in the data has been handled when fitting mixtures
of normal components has been to include an additional com-
ponent having a uniform distribution. The support of the latter
component is generally specified by the upper and lower ex-
tremities of each dimension defining the rectangular region that
contains all the data points. Typically, the mixing proportion for
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this uniform component is left unspecified to be estimated from
the data. For example, Schroeter et al. (1998) fitted a mixture of
three normal components and a uniform distribution to segment
magnetic resonance images of the human brain into three regions
(gray matter, white matter and cerbro-spinal fluid) in the pres-
ence of background noise arising from instrument irregularities
and tissue abnormalities.

Here we consider a sample consisting initially of 100 sim-
ulated points from a two-component bivariate normal mixture
model, to which 50 noise points were added from a uniform
distribution over the range −10 to 10 on each variate. The
parameters of the mixture model were,

µ1 = ( 0 3 )T µ2 = ( 3 0 )T µ3 = (−3 0 )T

Σ1 =
(

2 0.5

0.5 .5

)
Σ2 =

(
1 0

0 .1

)
Σ3 =

(
2 −0.5

−0.5 .5

)
with mixing proportions π1 = π2 = π3 = 1

3 . The true grouping
is shown in Fig. 1. We now consider the clustering obtained
by fitting a mixture of three t components with unequal scale
matrices but equal degrees of freedom (ν1 = ν2 = ν3 = ν). The
values of the weights u(k)

ij at convergence, ûij, were examined.
The noise points (points 101–150) generally produced much
lower ûij values. In this application, an observation y j is treated
as an outlier (background noise) if

∑g
i=1 ẑijûij is sufficiently

small, or equivalently,

g∑
i=1

ẑijδ(y j , µ̂i ; Σ̂i ) (35)

is sufficiently large, where

ẑij = arg max
h
τ̂ hj (i = 1, . . . , g; j = 1, . . . , n),

and τ̂ ij denotes the estimated posterior probability that y j

belongs to the i th component of the mixture.

Fig. 1. Plot the true grouping of the simulated noisy data set

Fig. 2. Plot of the result of fitting a mixture of t distributions with a
classification of noise at a significance level of 5% to the simulated
noisy data

Fig. 3. Plot of the result of fitting a three component normal mixture
plus a uniform component model to the simulated noisy data

To decide on how large the statistic (35) must be in order
for y j to be classified as noise, we compared it to the 95th
percentile of the chi-squared distribution with p degrees of free-
dom, where the latter is used to approximate the true distribution
of δ(Y j , µ̂i ; Σ̂i ).

The clustering so obtained is displayed in Fig. 2. It compares
well with the true grouping in Fig. 1 and the clustering in Fig. 3
obtained by fitting a mixture of three normal components and
an additional uniform component. In this particular example the
model of three normal components with an additional uniform
component to model the noise works well since it is the same
model used to generate the data in the first instance. However,
this model, unlike the t mixture model, cannot be expected to
work as well in situations when the noise is not uniform or is
unable to be modelled adequately by the uniform distribution.
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Fig. 4. Plot of the result of fitting a four component normal mixture
model to the simulated noisy data

It is of interest to note that if the number of groups is treated as
unknown and a normal mixture fitted, then the number of groups
selected via AIC, BIC, and bootstrapping of−2 log λ is four for
each of these criteria. The result of fitting a mixture of four nor-
mal components is displayed in Fig. 4. Obviously, the additional
fourth component is attempting to model the background noise.
However, it can be seen from Fig. 4 that this normal mixture-
based clustering is still affected by the noise.

11. Example 2: Blue crab data set

To further illustrate the t mixture model-based approach to clus-
tering, we consider now the crab data set of Campbell and Mahon
(1974) on the genus Leptograpsus. Attention is focussed on the
sample of n = 100 blue crabs, there being n1 = 50 males and
n2 = 50 females, which we shall refer to as groups G1 and
G2 respectively. Each specimen has measurements on the width
of the frontal lip FL, the rear width RW, and length along the
midline CL and the maximum width CW of the carapace, and
the body depth BD in mm. In Fig. 5, we give the scatter plot of
the second and third variates with their group of origin noted.
Hawkins’ (1981) simultaneous test for multivariate normality
and equal covariance matrices (homoscedasticity) suggests it is
reasonable to assume that the group-conditional distributions
are normal with a common covariance matrix. Consistent with
this, fitting a mixture of two t components (with equal scale
matrices and equal degrees of freedoms) gives only a slightly
improved outright clustering over that obtained using a mix-
ture of two normal homoscedastic components. The t mixture
model-based clustering results in one cluster containing 32 ob-
servations from G1 and another containing all 50 observations
from G2, along with the remaining 18 observations from G1;
the normal mixture model leads to one additional member of
G1 being assigned to the cluster corresponding to G2. We note
in passing that, although the groups are homoscedastic, a much

Fig. 5. Scatter plot of the second and third variates of the Blue Crab
data set with their true group of origin noted

improved clustering is obtained without restrictions on the scale
matrices, with the t and normal mixture model-based clusterings
both resulting in 17 fewer misallocations.

In this example, where the normal model for the components
appears to be a reasonable assumption, the estimated degrees
of freedom for the t components should be large, which they
are. The estimate of their common value ν in the case of equal
scale matrices and equal degrees of freedom (ν1 = ν2 = ν),
is ν̂ = 22.5; the estimates of ν1 and ν2 in the case of unequal
scale matrices and unequal degrees of freedom are ν̂1 = 23.0
and ν̂2 = 120.3.

The likelihood function can be fairly flat near the maximum
likelihood estimates of the degrees of freedom of the t com-
ponents. To illustrate this, we have plotted in Fig. 6 the profile
likelihood function in the case of equal scale matrices and equal

Fig. 6. Plot of the profile log likelihood for various values of ν for
the Blue Crab data set with equal scale matrices and equal degrees of
freedom (ν1 = ν2 = ν)
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Table 1. Summary of comparison of error rates when fitting normal and t-distributions with the modification of a single point

Constant Normal error rate t component error rate ν̂ û1,25 û2,25

−15 49 19 5.76 .0154 .0118
−10 49 19 6.65 .0395 .0265
−5 21 20 13.11 .1721 .3640

0 19 18 23.05 .8298 1.1394
5 21 20 13.11 .1721 .3640

10 50 20 7.04 .0734 .0512
15 47 20 5.95 .0138 .0183
20 49 20 5.45 .0092 .0074

degrees of freedom (ν1 = ν2 = ν), while in Fig. 7, we have plot-
ted the profile likelihood function in the case of unequal scale
matrices and unequal degrees of freedom.

Finally, we now compare the t and normal mixture based-
clusterings after some outliers are introduced into the original
data set. This was done by adding various values to the second
variate of the 25th point. In Table 1, we report the overall misal-
location rate of the normal and t mixture-based clusterings for
each perturbed version of the original data set. It can be seen
that the t mixture-based clustering is robust to those perturba-
tions, unlike the normal mixture-based clustering. It should be
noted in the cases where the constant equals−15, −10, and 20,
that fitting a normal mixture model results in an outright clas-
sification of the outlier into one cluster. The remaining points
are allocated to the second cluster giving an error rate of 49. In
practice the user should identify this situation when interpreting
the results and hence remove the outlier giving an error rate of
20%. However when the fitting is part of an automatic procedure
this would not be the case.

Concerning the effect of outliers by working with the logs
of these data under the normal mixture model (as raised by a
referee), it was found that the consequent clustering is still very
sensitive to atypical observations when introduced as above.

Fig. 7. Plot of the profile likelihood for ν1 and ν2 for the Blue Crab
data set with unequal scale matrices and unequal degrees of freedom
ν1 and ν2

However, the assumption of normality is slightly more tenable
for the logged data as assessed by Hawkins’ (1981) test, and the
clustering of the logged data via either the normal or t mixture
models does result in fewer misallocations.
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