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DNA microarray is a technology that simultaneously 
evaluates quantitative measurements for the expression 
of thousands of genes. DNA microarrays have been 
used to assess gene expression between groups of cells 
of different organs or different populations. In order 
to understand the role and function of the genes, one 
needs the complete information about their mRNA 
transcripts and proteins. Unfortunately, exploring the 
protein functions is very difficult, due to their unique 
3-dimentional complicated structure. To overcome this 
difficulty, one may concentrate on the mRNA molecules 
produced by the genes’ expression. In this paper, we 
describe some of the methods for preprocessing data 
for gene expression and for pairwise comparison 

from genomic experiments. Previous studies to 
assess the efficiency of different methods for pairwise 
comparisons have found little agreement in the lists of 
significant genes. Finally, we describe the procedures 
to control false discovery rates, sample size approach 
for these experiments, and available software for 
microarray data analysis. This paper is written for 
those professionals who are new in microarray data 
analysis for differential expression and want to have 
an overview of the specific steps or the different 
approaches for this sort of analysis.

Key words: Preprocessing data for microarrays, Pair-
wise comparison for microarrays, False discovery rate, 
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Bioinformatics is a growing branch of biology and 
is highly interdisciplinary, using techniques and 
concepts from different fields, such as informatics, 

biostatistics, statistics, epidemiology, mathematics, 
chemistry, biochemistry, and physics.  Bioinformatics 
grew as a field of study to maintain, organize, analyze, 
and make accessible large amounts of gene and genomic 
sequence information. Bioinformatics has a large impact 
on biological research. Giant research projects such as the 
Human Genome Project (HGP) would be meaningless 
without the bioinformatics component. The HGP was 
completed in 2003, after 13-years, and was coordinated by 
the U.S. Department of Energy and the National Institutes 
of Health. One of the main purposes of HGP are: i) to 
identify the approximately 25,000 genes in DNA and 
ii) to determine the sequences of the 3 billion chemical 
base pairs that make up human DNA. More details of the 
HGP can be seen in the following website: genomics.
energy.gov.

Genomics encompasses the study of all features of 
genomes and individual genes at the DNA level, including 
mutations, polymorphisms, and phylogenetic relationships 

that are based on sequence differences. Another aspect of 
genomics is concerned with the pattern of transcription 
(gene expression) as a function of clinical conditions in 
response to natural or toxic agents or at different times 
during biological processes, such as the cell cycle. One of 
the aims of gene expression studies is to discover the genes 
that are up – and down- regulated under specific conditions. 
Because of the large amount of data that is generated from 
these experiments, special computational tools are required 
for obtaining, storing, and analysing data (1).

DNA microarray is a high throughput technology 
to simultaneously evaluate quantitative measurements 
for the expression of thousands of genes. Previously, 
expression analysis was performed in a low-throughput 
fashion, one gene at a time, typically by northern blot 
analysis. DNA microarrays have been used to discover 
new genes by assessing gene expression between groups 
of cells of different organs or different populations 
and have been used to identify disease biomarkers that 
may be important in genetic epidemiology (2). The 
applications of microarrays for the study of neurological 
diseases, like multiple sclerosis, Alzheimer’s disease, or 
neuromuscular diseases are promising, both for generating 
new pathophysiological hypotheses and for enabling new 
molecular classifications (3). Microarray data analysis on 
cancer research has opened new avenues for diagnosis 
and therapeutic interventions (4). Our capabilities for 
diagnosis and understanding of infectious diseases have 
also been enhanced by using microarrays (5-6).

Several microarray platforms have been used to assess 
gene expression, such as: Agilent, CodelinkTM Bioarray, 
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cDNA, Expression Array System, Febit, GeneChip, 
NimbleGen, and Xeotron (7). Microarray platform 
performance is measured by several indicators, such as 
specificity and sensitivity. Specificity is the ability to 
distinguish sequences up to a certain homology. Imperfect 
specificity is caused by cross-hybridization of other 
transcripts. Sensitivity is defined as the lowest target 
concentration at which an acceptable accuracy is obtained. 
Cross-platform integration of data has had limited success 
to date. Differences arise from the intrinsic properties of 
the arrays themselves, and the various processing and 
analytical steps involved (7).  

To prepare microarrays using cDNA technology, 
glass or nylon micro plates are used onto which 
thousands of single stranded pieces of DNA of lengths 
of tens of nucleotides are placed. Each spot on the 
plate corresponds to a particular gene. In standard 
terminology, the cDNAs spotted onto the arrays are 
called probes, and those in the RNA sample are called 
target genes. In a single reaction, two different RNA 
samples can be labelled with different colours and 
simultaneously incubated with a microarray. Robots 
(arrayers) are required to place (or array) a large number 
of probes onto slides. After DNA probes are arrayed onto 
slides, they are air–dried. The probes are immobilized 
by UV irradiation to form covalent bonds between 
the thymidine residues in the DNA and the positively 
charged amine groups on the silane slides. After cross 
linking, excess DNA molecules are removed by washing 
the arrays at room temperature and the arrayed samples 
are denatured in water before hybridization, that is when 
two complementary sequences find each other, such as 
the immobilized target DNA and the mobile cDNA, and 
lock together (Figure 1). After hybridization, a laser 
scanner measures dye fluorescence of each colour at a 
fine grid of pixel. Higher fluorescence indicates higher 
amounts of hybridized cDNA, which, in turn, indicate 
higher gene expression in the sample. 

The oligonucleotide array is made up of sets of 
oligonucleotide probes, usually 25 nucleotides in length, 
representing thousands of genes, that are synthesized 
directly (in situ) on a quartz of wafer by photolithography. 
For each gene, there are 11 to 20 pairs of oligonucleotide 
probes near the 3’. Therefore, each probe pair belongs 
to a probe set of one mRNA molecule produced by one 
gene, as follows:

Gene → DNA → mRNA → Probe set (11-20 pairs) → 
probe pair (25 bases)

A pair of probes consists of a sense and an antisense 
sequence. Multiple probes are used for each gene 
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Figure 1. Nucleic Acid Hybrydization

to distinguish between specific and non-specific 
hybridizations. The most widely used oligonucleotide 
array is the Affymetrix GeneChip -or Affy- (Figure 2).

The first type of probe in each pair is known as perfect 
match (PM) and is taken from gene sequence (25 bases). 
The second type probe is known as mismatch (MM) and 
is created by changing the middle (13th) base of the PM 
sequence to reduce the rate of specific binding of mRNA 
for that gene, as follows:

GGGAATGGGTCAGAA   C    GACTCCTATGTGGGTGGCT     
Reference sequence

TTACCCAGTCTT    C    CTGAGGATACACCCAC         
Perfect Match Oligo (PM)

TTACCCAGTCTT    G    CTGAGGATACACCCAC         
Mismatched Oligo (MM)

The goal of MMs is controlling for experimental 
variation and non-specific binding of mRNA from other 
parts of the genome (8). These two probes (PM, MM) are 
referred to as a probe pair. RNA samples are prepared, 
labelled, and hybridized with array. Arrays are scanned 
and images are produced and analyzed to obtain an 
intensity value for each probe. These intensities represent 
how much hybridization occurred for each olinucleotide.  
The average of the PM-MM differences for all probe pairs 
is used as the expression index for the target gene (the 
DNA or RNA sequence of research interest) (9). 
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In order to understand the role and function of the 
genes, one needs the complete information about their 
mRNA transcripts and proteins. Unfortunately, exploring 
the protein functions is very difficult due to their unique 
3-dimentional complicated structure and a shortage of 
efficient technologies. To overcome this difficulty, one 
may concentrate on the mRNA molecules produced 
by the genes of interest (gene expression) and use this 
information to investigate specific questions of the 
functional roles of the genes. Microarray experiments 
are often complex, generate large amounts of data, and 
warrant careful planning. Different books have already 
been published for Microarrays data analysis (8, 10-15). In 
this paper, we pretend to summarize some of the statistical 
approaches used for microarray data analysis, particularly 
for preprocessing data and for pairwise comparison 
from genomic experiments. We describe some of the 
procedures for image analysis, data normalization, and 
data summarization. In addition, we describe some of the 
alternatives to perform a pairwise comparison, to control 
the false discovery rate, to determine the sample size, and 
the software availability for microarray data analysis. 

I) Preprocessing data
Preprocessing data in microarrays refers to the methods 

for controlling the effect of the different sources of 
variation during the experimental procedures before one 
obtains the genomic-level measurements (12). Microarrays 
are imaged using an optical scanner that must be subjected 
to background correction to adjust for nonspecific binding 
and fluorescence from other chemicals on the slide (16).

1.1) Image Analysis
One of the major objectives of microarray image 

analysis is to find the discrete spot locations and to 
quantify the spot intensities of gene expressions. 
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Figure 2. Oligonucleotide Chips (GENECHIP PROBE ARRAYS)

Using a laser scanner, Tagged Image File Format 
(TIFF) images of the gene spots are obtained. Gene spots 
are often composed of characteristic imperfections such 
as irregular contour, donut shapes, artefacts, and low or 
heterogeneous expression. It is often assumed that the 
signal observed is a combination of the true signal or 
foreground signal (from the specific hybridization of 
interest) and the background signal (due to non-specific 
hybridization and/or contamination). Estimation of 
background intensity is generally considered necessary 
for the purpose of performing background correction. The 
standard approach is simply to subtract the background 
estimate directly from the spot intensity, with the aim 
of improving accuracy (reducing bias). However, the 
background signal may increase due to dust, fibres, 
fingerprints, auto fluorescence of the coated glass, 
hybridization problems resulting from dehydration 
near the edge of the coverslips, or residual effects from 
inadequate washing. Exploratory data analysis has been 
the tool of choice for detection of problematic arrays. 
However, the largest values are orders of magnitude 
larger than the bulk of the data and these results in a non-
informative image (12). A simple solution is to examine 
an image plot of the log intensities, as it is demonstrated 
with the data from a large acute lymphoblastic leukemia 
study (17) described in Figure 3.

In cDNA, usually two individual heterogeneous mRNA 
samples are labelled with either a red-fluorescent dye Cy5 
(referred as R) or a green –fluorescent dye Cy3 (referred as 
G), respectively. Then, they are mixed and hybridized to 
the arrayed cDNA sequences. The ratio of the fluorescence 
measurements for red and green dye, obtained from TIFF 
files describes the relative abundance of the corresponding 
mRNA. The phase of image processing which attains two 
values for intensities, R and G, and one value, R/G, of 
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relative abundance for a single spot can be divided into 
three basic steps:

i) �Addressing or gridding. Identifying the areas 
(assigning coordinates) that belong to spots in an 
image, usually K rectangular zone (default K=16). 
The combined area of a spot and its background is 
called the target area (or target Patch), as follows:

Spot

Target area
(several pixels)

ii) �Segmentation. Partitioning the target area of every 
spot in two distinct regions, as foreground (the spot 
itself) and background: 

Usually, for each grid (equally spaced zone), the lowest 
2% of probe intensities are used to compute a background 
value for that grid.

iii) �Intensity extraction. Extracting scalar values for 
the absolute and relative’s intensities. In cDNA, 
the intensities of R and G and the ratio R/G (or 
log2(R/G).

Most methods assume circular shapes and require 
manual alignment of the grid location. In cDNA 
microarray images, the assumption of circular spot shape 
is not justified due to artifacts caused by the printing 

Figure 3. Image of probe intensities in log-scale for two arrays 
(or chips using the package ALLMLL (www.bioconductor.
org). The log- scale in chip A demonstrates a strong spatial 
artefact (smeared or incorrectly segmented area) not seen in 
the chip F.

Chip A Chip F

Foreground Background

process and the hybridization technique. One of the major 
difficulties is that each cDNA clone usually contains 
several hundreds of pixels, and the locations and shapes 
of these spots may vary depending on the quality of the 
experiment and the scanner. Some scanners have higher 
sensitivity than others; the background values for the 
same slide will differ depending on which scanner is 
used to acquire the image. Therefore, the errors in image 
analysis can be produced from different sources and can 
be classified as follows (18-19):

1. Variable size: different diameters
2. �Variable contours: sickle shape, donut shape, oval 

or pear shape, scratched or interrupted shape
3. �Normalization: adjustment for effects which 

arise from variation in the technology or between 
the printed probes high background and/or low 
foreground.

4. �Spatial artefacts: smeared or incorrectly segmented 
areas, caused by dirt on the slide or slide 
treatment.

Several methods for image analysis have been adapted 
for microarray to deal with its specific problems. 
In general, they can be classified into spatial and 
distributional methods. Spatial methods try to capture 
the shape of a spot; one of these methods is to fix a circle 
with a constant diameter to all the spots in the image, 
which is clearly not satisfactory for all the spots. One of 
the distributional methods is based on a threshold value 
using the Mann-Whitney test; pixels are classified as 
foreground if their value is greater than the threshold and 
as background otherwise. Another distributional method 
is based on the histogram, it defines the background 
and the foreground as the mean (or median) intensities 
between some predefined percentiles values; by default, 
these are the 5th and 20th percentiles for the background 
and 80th and 95th percentile for the foreground. By 
computing the foreground intensities from a higher 
percentile range, this method usually yields a higher 
estimate of the foreground. The main advantage of these 
methods is their simplicity. Furthermore, as the resulting 
spots are not necessarily connected, these methods may 
perform well with donut-shaped spots. However, a major 
disadvantage is that quantification is unstable when 
a large target mask is set to compensate for spot size 
variation, as follows: 

Target site
Target mask
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A recent method for segmentation in cDNA that uses 
a parametric approach for the densities distribution of 
the pixels intensities of the background and foreground 
has been published (20). For the background, it has been 
proposed the bivariate distribution as the underlying 
pixel intensities distribution, whose marginal densities 
for the Cy5 dye (Red, R) and Cy3 dye (Green, G) are 
independent three parameters gamma: αi shape parameter, 
βi scale parameters, and γi location parameter. For the 
underlying distribution for the foreground, the bivariate 
t distribution, with the following location parameters

  

μR = αR βR + γR + øR ,  μG = αG βG + γG + øG ,  øi  > 0,

is adopted. Since the mean of the foreground intensity 
must be larger than the mean of the background, μi was 
parameterized as the mean of the background plus the 
nonnegative parameter. Also, it was assumed that the 
observed intensities (yi’s) are independent and identically 
distributed realizations from the following mixture of 
densities:

f (y; Ψ) = πB  * fB (y; αi, βi) + πF * fF * (y; μi, Σ, υ)

where Ψ = (αi , βi , μi , Σ, υ, πi ), πi is the probability that 
a pixel belongs to background or foreground with πB + 
πF = 1, and fB and fF are the densities for background 
and foreground, respectively. To obtain the maximum 
likelihood estimates of the parameters Ψ, the EM algorithm 
was implemented. In the E-step, the posterior probability 
that yj belongs to the ith component (background or 
foreground) of the mixture, given the value Ψ(k) of  Ψ after 
the kth iteration, was expressed as follows:

ÿ i

When a solution was found in the EM algorithm for 
the posterior probability, assuming ÿ, a nonparametric 
kernel estimate was obtained to encourage neighbouring 
pixels, either in the background or in the foreground of the 
rectangle containing the spot. The authors of this proposed 
method (20) concluded that the new method for gridding, 
segmentation, and estimation to cDNA microarray images 
provided better segmentation results in spot shapes as well 
as intensity estimation than Spot and spot Segmentation 
R language software.

For oligonucleotide arrays, the suggested purpose of 
the MM probes was that they could be used to adjust 
the PM probes for probe-specific non-specific binding 
by subtracting the intensities of the MM probe from the 
intensities of the corresponding PM probes. The reason 
for including an MM probe is to provide a value that 
compromises most of the background cross-hybridization 

and stray signal affecting the PM probe. It also contains 
a portion of the true signal. If the MM value is less than 
the PM value, it is physically possible to estimate for 
background. One of the concerns in the MM adjustment 
is that some MM probes may have intensities higher than 
their corresponding PM probes. Thus, when raw MM 
intensities are subtracted from PM intensities, negative 
expression  values can occur, which makes no sense, 
because an expression value should not be below zero 
(12). To solve this problem, an idealized value is estimated 
based on the knowledge of the whole probe set, an ideal 
mismatch for probe pair “j” in   probe set “i” is obtained 
as follows (21):

where SBi is the specific background for each probe set 
(robust average of log2(PM/MM) among all pair probes 
in each probe set), τ and κ are tuning constants, referred 
to as the contrast τ (with default values of 0.03) and the 
scaling κ (with default value of 10).  The first case where 
the mismatch value provides a probe-specific estimate 
of stray signal is the best solution. In the second case, 
the estimate is not probe-specific, but at least provides 
information specific to the probe set. The third set case 
involves the least informative estimate, based only weakly 
on probe-set specific data. The adjusted PM intensity is 
obtained by subtracting the corresponding IM from the 
observed PM intensity (12).

1.2) Normalization
Normalization aims to adjust microarray data for effects 

which arise from variation in the technology rather than 
from biological differences between the RNA samples or 
between the printed probes.  The need for normalization 
arises naturally when dealing with experiments involving 
multiple arrays. Imbalance between the red and green 
dyes may arise from differences between the labelling 
efficiencies or scanning properties of the fluorescence, 
complicated perhaps by the use of different scanner 
settings. The dye-bias will also generally vary with 
spatial position on the slide. Positions on a slide may 
differ because of differences between the print-tips on the 
array printer, variation over the course of the print-run, 
non-uniformity in the hybridization, or from artefacts 
on the surface of the array which affect one colour more 

IMij =

IMij < PMij

MMij > PMij and SBi > τ

MMij > PMij and SBi > κ

MMij ,

PMij 

PMij ,
2SBi

 

2

τ

1 +
τ – SBi

κ

,

,



PRHSJ Vol. 28 No. 2
June, 2009

10

A Tutorial in Microarray Data Analysis
Suárez E, et al.

than the other. Finally, differences between arrays may 
arise from differences in print quality, from differences in 
environmental conditions when the plates were processed, 
or simply from changes in the scanner settings (18, 22).

cDNA microarrays generate one- or two-channel data. 
In the latter, the arrays are hybridized to a mixture of two 
samples, each labelled with two dyes (Cy3, Cy5). In one 
channel use, each array is hybridized to a single sample, 
labelled with a single dye. The two-channel data allow for 
internal correction of a number of commonly occurring 
artefacts (i.e., defective print tips and fainting of the signal 
in large regions of an array). Variation across arrays will 
reflect the genetic, experimental, and environmental 
differences under study, but will also include variations 
introduced during sample preparation, manufacturing 
of the arrays, and processing of the arrays (labelling, 
hybridization, and scanning).  A first step to explore the 
possibility of data normalization is to draw a scatter plot 
between the M=log2(R/G) and A=log2 ( RxG ), where, 
R and G for the background-corrected red and green 
intensities for each spot. It is convenient to use base-2 
logarithms for M and A so that M is units of 2-fold change 
and A is in units of 2-fold increase in brightness. On this 
scale, M=0 represents equal expression, M=1 represents a 
2-fold change between the RNA samples, M=2 represents 
a 4-fold change, and so on (22). If M-A plots exhibit any 
obvious curvature deviating from the horizontal line at 
zero, normalization is recommended (Figure 4).

Array A

6

M M

-4

-2

-2

0

0

2

2

4

10 10
A A

8 812 1214

Median: -0.683
IQR: 0.34

Median: -0.683
IQR: 0.34

14

Array B

Figure 4. MA Plot in two arrays plotted with common pseudo-
array reference and the loess trend. Original data from Ross, et 
al. (2004), as described in figure 3. 

In oligonucleotide arrays, different exploratory plots 
can be used to detect obscure sources of variation and the 
need for normalization. For example, one may consider 

direct array-to-array comparison of PM values via box 
plots of log2(PM), log2(MM), log2(PM/MM), or PP-MM. 
Alternatively, one can explore intensity–related biases 
for each pairwise array comparison via M-A plots of 
M=log2(PMk/PMl) versus abundance A=log2( PMk

* PMi ) 
for two different arrays .

The process of cDNA normalization can be separated 
into two main components: location and scale. In general, 
methods for location and scale normalization adjust the 
centre and spread of the distribution of log-ratios. The 
normalized intensity log-ratios Mnorm are generally given 
by:

ℓ and s denote the location and scale normalized values, 
respectively. The two-channel normalization method is 
recognized by the definition of the forms ℓ and s. For 
example, in global median normalization, the parameter ℓ   
is assumed to be the same for all spots on an array, whereas 
in global A-dependent normalization it is assumed to be a 
smooth function of A = log2( Cy5* Cy3 ), and the function 
is estimated using the scatter-plot smoother loess (23).

In oligonucleotide arrays, normalization methods have 
been classified as complete data method and baseline 
array method (18).  The complete data methods combined 
information from all arrays to form the normalization 
relation. The baseline array method uses information from 
one array as a reference; for example, the array having 
the median of the median intensities.

The Cyclic loess is a complete data method, which is based 
on the M versus A plot. The procedure is as follows:

1. �Calculate Mk = log2(xki xkj) and Ak = log2 
xki

* xkj  for 
every probe k in any two arrays (i,j), where x’s are 
the intensities.

2. Fit the loess curve of M versus A, Mk    
3. �Calculate the normalization adjustment:  

M'k = Mk - Mk     
4. Adjust the probe intensities: 

x'ki = 2Ak + , x'kj = 2Ak - 
M'k

2

 

M'k
2

 

Mnorm = M - ℓ
s 

M = log2
 where , Cy5

Cy3 

When more than two arrays are considered, the method 
is extended to look at all distinct pairwise combinations. 
So, after looking at all pairs of arrays for any array k, 
there are p-1 adjustments, where p is the number of 
arrays. Then, the adjustments are equally weighted 
and applied to the set of arrays. Bolstad, et al. (2003) 
has reported that this method could be somewhat time 
consuming (18).

Another complete data method is the quantile 
normalization (18). The goal of this method is to make 
the distribution of probe intensities for each array in a set 
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of the same arrays, that is, to impose the same empirical 
distribution of intensities to each array. The motivation 
of this method is that a quantile-quantile plot (q-q plot) 
shows that the distribution of two data vectors is the same 
if the plot is a straight diagonal line; thus, to make a set 
of data to have the same distribution, we need to project 
the points of our quantile plot onto the diagonal; this 
method is extended to n-dimension. The quantile method 
is a specific case of the transformation x'i = F-1[(G(xi)], 
where G is estimated by the empirical distribution of 
each array and F is the empirical distribution of the 
averaged sample quantiles. The method will be adequate 
when distribution of the normalized data will around 
zero using the MA plot (Figure 5). The extension of the 
quantile method can be implemented where F-1 and G are 
more smoothly estimated. However, previous studies by 
Bostand, et al. (2003) have shown that the performance 
of the quantile normalization is slightly better than the 
cyclic loess (18). 

Array A (normalized)

6 6

M

M

-4

-2

-2

0

0

2

2

4
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A A

8 812 1214

Median: -0.363
IQR: 0.345

Median: 0.0363
IQR: 0.345

14

Array B (normalized)

Figure 5. MA Plot in two normalized arrays plotted with 
common pseudo-array reference and the loess trend. Data source 
from Figure 4. 

Scaling method is a baseline array method. This is the 
standard normalization method in Affymetrix (version 
4.0 and 5.0) that is carried out on probe set expression 
measures. Bolstand, et al. (2003) assess this method 
at probe level (18). This method chooses a baseline 
array, in particular, the array having the median of the 
median intensities. Then, all arrays are normalized to this 
‘baseline’ as follows:

 1. �Compute the trimmed mean intensity (excluding 
highest and lowest 2% probe intensities) of the 
baseline array, called xbase

~  

2. �Compute the trimmed mean intensity (excluding 
highest and lowest 2% probe intensities) of the array 
“i”, called  xi

~   

3. Let, 
xbase
~

 xi
~βi =  

      

4. �Then, the intensities for the normalized array would 
be:  x'= βi xi     

This is equivalent to selecting a baseline array and, 
then, for every other array fitting a linear regression, 
without an intercept term, removing the highest and lowest 
intensities. Affymetrix has proposed using the scaling 
normalization after the computation of expression values, 
but it may also be used on probe-level data.

1.3) Summarization
Before the statistical analysis is performed, a probe 

reduction has to be defined in oligonucleotide arrays, 
that is, to combine the multiple probe intensities for 
each probe set to produce an expression value for each 
gene. Efron, et al. (2001) (21) have evaluated the probe 
reduction using the following expression:

Mi = mean{log(PMÿ) - c*log(MMÿ)}; j=1,..,20 probe
      

Results from a study to assess the transcriptional 
responses to ionizing radiation have shown that the 
probe reduction with c = 0.5 has a mild advantage over  
c = 1 or c = 0 (24). 

Another method for probe reduction was developed by 
Irizarry, et al. (2003) based on a log scale linear additive 
model, which is referred to as the log scale robust multi-
array analysis (RMA) (21). The motivation of the model 
is due to the large variation at probe level data, since 
probes with larger mean intensities have larger variances.  
The RMA model is defined as follows:

T(PMÿ) = ei + aj + εÿ                                    
            

where T represents the transformation that background 
corrects, normalizes, and log2 PM intensities, ei represents 
the log2 scale expression value found on array i = 1,…,I, 
aj represents the log scale affinity effects for probe  
j = 1,…, J, and εÿ represents the error. A robust linear 
fitting procedure, such as median polish, has been 
used to estimate the log scale expression values ei. 
This model does not consider the subtraction of the 
MM intensities because the empirical results have 
demonstrated that mathematical subtraction does not 
translate to biological subtraction. The authors have 
concluded that substantial benefits of using the RMA 
measure instead of the GeneChip technology where 
the computer software automatically calculates average 
difference values (22).
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II) Statistical Analysis
Statistical methods for microarray data analysis can 

be classified in the following two major groups: i) 
methods that identify differentially expressed genes, and 
ii) methods that classify the functional dependency of 
genes. The objective of the first method is to identify those 
genes that are consistently expressed at different levels 
under different conditions using the classical statistical 
test (t-test, ANOVA, Mann-Whitney test,…) controlling 
the probability of false declaration (25-27). The second 
method pretends to identify the shared patterns of 
expression across genes to classify new diseases of subtype 
of diseases for subsequent validation and prediction, and, 
ultimately, to develop individualized prognosis and 
therapy, using cluster analysis methods (28-29). In this 
paper, we describe and compare some of the methods 
used for pairwise comparison from genomic experiments, 
controlling the false discovery rate and the assumption in 
the density distribution (normal vs. empirical distribution) 
of the statistics test for the unaffected genes.

The simplest experimental design is the comparison 
of two groups (diseased persons vs. healthy; treatment A 
vs. treatment B; exposed vs. not-exposed) in microarray 
data analysis (30). Usually, the databases for this scenario 
are described in row and columns, where rows indicate 
the genes and the columns, the arrays associated to each 
group (Table 1).

	           Diseased	                              Healthy
 
Genes	 Array 1	 …..	 Array n1	 Array 1	 …….	 Array n2
1	 X11		  X1n1	Y 11		Y  1n2
2	 X21		  X2n1	Y 21		Y  2n2
:						    
:						    
m	 Xm1		  Xmn1	Y m1		Y  mn2

Table 1. Data structure in microarray data analysis for pairwise 
comparison

2.1) Ordinary t-test
The statistical methods used to identify differentially 

expressed genes in the two groups are based on fold 
change, i.e.,  X (diseased) – Y  (healthy) for any gene. 
In order to assess the significance of these fold-changes, 
some researchers have used the ordinary t-statistics for 
each gene, as follows:

tj = ~tdf=
X j 

- Y j X j 
- Y j

Var(X j 
- Y j) s j 

The distribution of the tj will be expected to be 
symmetrically distributed around zero and their respective 

p-values will have an inverse J-shape distribution, as it 
is demonstrated with the data of the study of Chriaretti, 
et al. (2004) (31), where  BCR/ABL cells are compared 
with cytogenetically normal cells (Figure 6).
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Figure 6. Data on Acute Lymphoblastic Leukaemia from 
Chiaretti et al. (2004), where BCR/ABL (n=37) cells are 
compared with cytogenetically normal cells (n=42). Data were 
normalized with RMA (intensities are on log2-scale). For this 
example, intensities above 100 were selected in at least 75% of 
the samples, and the interquartile range of log2-intensities >0.5  
(m=1541 genes). The p-values distribution shows: 296 genes 
with p <0.05, 23 genes with  p<.01, 45 with p <0.001, 21 with 
p<0.0001, and 10 with p<0.00001.
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2.2) Modified t-statistics
Similar statistical tests have been used with an 

adjustment in the sample standard deviation as follows 
(modified t-statistics):

tj = ~tυj

X j 
- Y j

s j + 
s 0

^

                
         

where s0
2  is the 90th percentile of the sample standard 

deviations (or any other percentile, ie., 50% among all 
genes. Specifically, s0  is chosen to make the coefficient of 
variation of tj approximately constant as a function of  sj ; 
this has the added effect of dampening large values of tj that 
arise from genes whose expression is near zero (24, 32). 

2.3) Moderate t-test
Linear models for microarray (Limma) data is another 

approach for analysing differential expression (33). For 
example, the expectation of the expression for gene “j” 
can be defined for pairwise comparison, as follows:

E[yj] = Xαj =   1   (μYj αj) = μYj + αj = μYj +(μXj - μYj)

                             1

var(yj) = Wj σ 2j                                          var(âj) = Vj s
2
j

where yj contains the expression data for the gene j, X  
is the design matrix of a full column rank to define the 
reference group, Wj is a known non-negative definite 
weight matrix, Vj is a positive matrix not depending 
on s2

j and αj is a vector of coefficients to determine the 
effect groups. To take advantage of the parallel structure 
whereby the same model is fitted to each gene, the 
variances σ 2j     across the genes, given a prior distribution 
( 

σ 2g
χ 2d 0 d0s 

2
0

1 1~ ), is estimated as follows:

s 2
d0s

2
0  + djs

2
j    ~ = E(σ 2g   |  s

2
j ) =g j      d0 + dj

where s 2~
g j      is called the posterior mean of σ 2j  given s 2j  and  

s 20  is the prior estimator σ 2j with do degrees of freedom; 
so, the t statistics to compare two groups is defined as 
follows:

tgj = υgj

~td0 
+ dj 

| H0 : μgx= μgy

X j 
- Y j

sgj

~

where υgj is the jth diagonal element of XTVgX. The 
statistics  is called the moderated t-statistics and represents 
a hybrid classical/Bayes approach in which the posterior 

variance has been substituted in the ordinary t-statistics in 
place of the usual sample variance. If do=0, the moderate 
t-statistics reduces to the ordinary t-statistics (33).

2.4) Bayesian Methods
Bayesian methods for differential gene expression 

with mixture model approach have also been applied, as 
follows (34):

   

       

zg= Pr(zg =1|xg, yg, p, ψ)

ppA (xg, yg|ψ)
= 

p* pA(xg, yg|ψ) + (1-p)* p0(xg, yg|ψ)

^

Where zg indicates the posterior probability of change  
(μgx ≠ μgy), with a prior probability of change 1-p (p 
indicates the probability of no change), and pa and 
po denote the joint marginal density of the measured 
intensities of gene g under the assumption of differential 
expression (μgx ≠ μgy) and no differential expression  
(μgx = μgy), given ψ (vector of unknown hyperparameters).

2.5) Rank-sum statistics
Another statistic that could be formed for differential 

expression is the rank-sum statistics. For example, in 
the two groups comparison, let rji be the rank of the ith 
expression within gene “j”; then, the rank-sum statistics 
for this gene is: rj = group1rji , where the summation is taken 
over the genes in group 1. An extreme rj value in either 
direction would indicate a difference in gene expression. 
The statistics tj tests for a difference in means, whereas rj 

tests for a more general difference in distribution. Usually, 
one is more concerned with a difference in mean gene 
expression, so tj is a more powerful statistics to use for 
this test (32).

2.6) Permutation methods
To control the correlation among genes, it has been 

suggested to use permutation method by estimating the 
t-statistics under the null hypotheses by permutations of 
sample labels (Table 2).

	O riginal Dataset: T=treatment, C=Control

	G ene	 T	 T	 T	 C	C	C 

	 1	 123	 78	 56	 34	 45	 89
	 2	 34	 48	 90	 24	 46	 23
	 3	 23	 78	 56	 58	 78	 15

	O ne possible permutation (change the label, no the data)

	G ene	 C	C 	 T	 C	 T	 T

	 1	 123	 78	 56	 34	 45	 89
	 2	 34	 48	 90	 24	 46	 23
	 3	 23	 78	 56	 58	 78	 15

Table 2. Example of one permutation for pairwise comparison

 



PRHSJ Vol. 28 No. 2
June, 2009

14

A Tutorial in Microarray Data Analysis
Suárez E, et al.

Under this method, the p-value for each gene is given 
as the fraction of permutations yielding a test statistic 
that is at least as extreme as the observed one. If the null 
distribution of tj is calculated on the basis of just the 
data on the jth gene, then it suffers from a granularity 
problem; for example, there are only ten ways to divide six 
microarrays into equal sized groups. The null distribution 
has a resolution on the order of the number of permutation. 
If we perform B permutation, then the p-value will be 
estimated with a resolution of 1/B. When we combine the 
permutations across the genes and assume that each gene 
has the same null distribution, then the resolution will be 
1/(m*B) and the p-value will be (13, 35):

pB
j=

B #{ j:|t0
(  b )

j|>|tj|, j=1,...B}
m*Bb=1

where t0
(  b )

j is the null version tj after the bth permutation 
of the class labels. The drawback of pooling the statistics    
t0

(  b )
j across the genes is that we are assuming that the null 

distribution is true for all genes, but only a proportion of 
πo=

mo
m   are null. Based on this permutation method, Westfall 

and Young (1993) make an adjustment in the p-values to 
control the family-wise error rate, as follows (36):

BppbHppp j
B
kjk

B
mkj

B /}min:{#)|Pr(min~
0,...,2,1 ≤=≤= =

For example, suppose the minimal unadjusted p-value, 
pj, was .00005, then, among the randomized data sets 
(permuted sample labels) count how often the minimal 
p-value is smaller than 0.00005; if this appears in 2% of 
all case, 02.~

min =p =.02 (Table 3). For description of the gene 

	 p-values

Genes	 Ordinary	 Limma	 Permutation	 Westfall/Young

ABL1	 3.76E-14	 2.06E-14	 0.0000010	 0.0000010
ABL1	 4.79E-13	 2.00E-13	 0.0000010	 0.0000010
ABL1	 2.45E-10	 8.62E-11	 0.0000010	 0.0000020
KLF9	 2.79E-08	 7.98E-09	 0.0000010	 0.0000170
AHNAK	 0.0000003	 0.0000001	 0.0000010	 0.0002510
ZNF467	 0.0000005	 0.0000010	 0.0000030	 0.0007310
FYN	 0.0000011	 0.0000006	 0.0000030	 0.0006890
CASP8	 0.0000012	 0.0000006	 0.0000020	 0.0013550
TUBA1	 0.0000013	 0.0000006	 0.0000020	 0.0008240
FHL1	 0.0000060	 0.0000029	 0.0000050	 0.0047650
FYN	 0.0000135	 0.0000099	 0.0000100	 0.0096320
SV2A	 0.0000154	 0.0000108	 0.0000160	 0.0208330
CRIP1	 0.0000326	 0.0000161	 0.0000320	 0.0267770
TPD52L2	 0.0000481	 0.0000365	 0.0000600	 0.0406950
NA	 0.0000511	 0.0000556	 0.0000580	 0.0575760
ENG	 0.0000550	 0.0000393	 0.0000740	 0.0567370
CD97	 0.0000564	 0.0000364	 0.0000550	 0.0448570
SOCS2	 0.0000611	 0.0000355	 0.0000240	 0.0389150
GYPC	 0.0000742	 0.0000491	 0.0001190	 0.0775450
FSCN1	 0.0000829	 0.0000487	 0.0000810	 0.0567310

Table 3. The most significant genes using different methods for 
computing the p-values. Data from figure 6. The permutation 
methods were computed with B=1,000,000.                                       

products in terms of their associated biological processes, 
cellular components, and molecular functions in a species-
independent manner you can visit the web site of the GO 
project (www.geneontology.org).     
2.7) Significance Analysis of Microarrays

The significance analysis of microarray (SAM) 
is another method for group comparison using the 
permutation method, but rather than using the standard 
rule of the form |tj| >c to call genes significant (i.e. 
having symmetric cut points ±t), SAM derives cutoff 
points c1 and c2 and uses the rejection rule tj<c1 or tj> 
c2. The procedure of SAM is described in the following 
steps, using the modified t-statistics (37): i) Compute the 
modified statistics: t1, t2, ….,tm; ii) Compute the ordered 
statistics: t(1), t(2), ….,t(m); iii) Take B sets of permutations 
of the group labels:

Permutation	 Ordered statistics
1	 t*1

(1), t
*1

(2), ….,t*1
(m)

2	 t*2
(1), t

*2
(2), ….,t*2

(m)
:	 :
B	 t*B

(1), t
*B

(2), ….,t*B
(m)

iv) Estimate the expected order statistics by:

B

t
t

B

b

b
j

j

∑
== 1

*
)(

)(  for j=1, 2, ..., m

v) Plot the observed t(j) score versus the expected )( jt  score.
For a fixed threshold Δ, starting at the origin ( )( jt = 0, t(j) 
= 0), and moving up to the right, find the first j = c2 such 
that t(j) - )( jt  < Δ. All genes past c2 are called “significant 
positive”. Similarly, start at the origin, move down to the 
left and find the first j = c1 such that t(j) - )( jt  > Δ. All genes 
past c1 are called “significant negative” (Figure 7). SAM 
is a more powerful test in situations where more genes 
are overexpressed than underexpressed (32). 

Figure 7. SAM plot. Data on Acute Lymphoblastic Leukaemia as 
in figure 7. With Δ=.9 and B=1000, then c1= -3.11, c2= 2.12, and 
173 “significant genes” were found using the SAM method. 
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III) False Discovery Rate
For the purpose of statistically comparing the expressions 

in a single gene,  one is usually concerned with the Type I 
error (probability of rejecting the null hypothesis when it 
is true), and Type II error (probability of accepting the null 
hypothesis when it is false). When differential expressions 
are assessed for multiple genes, multiple tests are 
performed. The most commonly controlled method when 
testing multiple hypotheses is the family wise error rate 
(FWER), which is the probability of yielding one or more 
false positive out of all hypotheses tested. For example, 
the Bonferroni method declared each test significant if p 
<α/m, where m is the total number of tests, it then follows 
that FWER < α.  Although this method is quite generally 
applicable, it is usually not a good choice for microarray 
studies because it has a very low power, i.e. the probability 
of correctly identifying differentially expressed genes is 
very low; so many potentially interesting genes may be 
missed (16). One of the methods for controlling the false 
positives among the genes differentially expressed and 
those declared significant was developed by Benjamin and 
Hochberg (38). To illustrate this method, the following 
contingency table is used:

Genes 	 Declared	 Declareddifferentially	 non-significant	 Significant 	T otal
expressed
	

Non-True	U	  V	 mo
True	 T	 S	 m1
Total	U +T	 V+S	 M

V+S is an observable variable, while U, V, S, and T are 
unobservable random variables. The errors committed by 
falsely rejecting null hypotheses can be viewed through 
the unobserved random variable Q=V/(V+S), proportion 
of the rejected null hypotheses which are erroneously 
rejected. When V+S =0, Q is defined equal to zero. The 
expectation of Q was defined as the False Discovery Rate 
(FDR) by Benjamini, et al. (38):

              
FDR=E(Q)=E{V/(V+S)}

In a critical review on microarray studies for cancer 
outcome, only 9 of 23 studies published in 2004 controlled 
the number of false-positive differentially expressed 
genes (39).

Different approaches have been used to estimate the 
FDR (24, 27, 40). Efron, et al. (24) proposed a mixture 
density of the statistics (Z) to compare the expression of 
two populations (diseased vs. healthy) to estimate the 
local FDR, which is an empirical Bayes version of the 

Benjamini & Hochberg (38) methodology focusing on 
densities, as follows: 

fdr = 
)(
)(0

0 Zf
Zfπ

where π0 is the probability that a gene is unaffected, 
f(Z) = π0 * f0 (Z) + (1 - π1) * f1(Z) is the mixture density,   
f0(Z) the density of Z for unaffected genes (i.e. the normal 
distribution) and f1(Z) the density of Z for affected 
genes. The ratio )(

)(0

Zf
Zf  is taken from the set of {Zi} and the 

empirical distribution of Zi using permutation analysis, 
and }

)(
)(

{ˆ
0

0 min Zf
Zf

Z
≡ππ0 . 

Storey, et al. (41) proposed the following estimation 
of FDR:

}{#
**)(ˆ

)(ˆ 0

α
αλπα

≤
=

ip
mRDF

where )1(
},...,1;{#)(ˆ

λ
λλπ
−
=>

=
m

mipi
, λ is a tuning parameter, and 

α is a threshold to declare significant results when p < α. 
If λ=0, then, π(λ)=1 which is going to be too conservative 
in genome-wide data sets; however, if we set λ close to 1, 
the variance of  π(λ) will increase making the estimate of 
the FDR’s more unreliable. Due to the possibility of no 
significant results (V+S=0), the positive false discovery 
(pFDR) was defined as follows:





 >+

+
= 0| SV

SV
VEpFDR

The positive term of pFDR describes the fact that it 
was conditioned on at least one positive finding having 
occurred. Storey (41) has proposed to use a Bayesian 
approach to estimate pFDR, when m identical tests are 
performed with statistics Ti (i.i.d random variables) to 
assess Ho vs. H1, as follows:

)|0Pr()( Γ∈==Γ THpFDR

)|Pr(*)|Pr(*
)0|Pr(*

1100

0

HTHT
HT

Γ∈+Γ∈
=Γ∈

=
ππ

π

π0 *Pr(Type I error on Γ)
π0 *Pr(Type I error on Γ) + π1 *Pr(Power of Γ)=

where Γ is the significant region, Ti|Hi~(1-Hi)*F0+Hi*F1 
(mixture density) for some null distribution F0 and 
alternative distribution F1,  Hi~Bernoulli(πi), π0 =1 - π1 is 
the implicit prior probability that a group of genes are not 
differentially expressed. To assess the significance of each 
test, an analogous quantity of the p-value was proposed 
by Storey (41) in terms of the pFDR, as follows:

}:{
á ])[pfDR(Ã inf)(

αα Γ∈Γ
=−

t
tvalueq q - value(t) = inf [pFDR(Γα)]
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t
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αα Γ∈Γ
∈=

t
Γα )]

The q-value for a particular gene is the expected 
proportion of false positives incurred when calling that 
gene significant. The q-value, a Bayesian version of the 
p-value (posterior Bayesian p-value), is a measure of 
the strength of an observed statistics with respect to the 
pFDR (41).

Recently, McLachlan, et al. (27) published another 
method to estimate the FDR by using a normal mixture 
approach. The steps to reach this estimation are:
    i)  Assuming that Mr genes are selected as significant with 
the following rule: 00 )(ˆ cz j ≤τ  where  )(ˆ/)(ˆˆ)(ˆ 000 jjj zfzfz πτ =  
is the estimate of the posterior probability that the jth 
gene is not differentially expressed, )1(1

jj pz −Φ= − , pj 
is the p-value of the statistics to be used to assess the 
evidence against the null hypotheses (ordinary t-statistics, 
modified t, moderated t,…) for each gene, Φ is the N(0,1) 
distribution function, π0 is the prior probability of a gene 
belonging to the set of genes that are not differentially 
expressed, fo (zj) is the null density of zj, f(zj) is the mixture 
density of zj defined as (42):

)()1()()( 1000 jjj zfzfzf ππ −+=

ii) Estimate the FDR as follows:

r

M

j jcj

M

wIw
RDF

))(ˆ()(ˆ
ˆ 1 0],0[0 0∑ ==

ττ

where ))(ˆ( 0],0[ 0 jc wI τ ) is an indicator function, which is one 
if 00 )(ˆ cwj ≤τ  otherwise is zero, and ))(ˆ(

1 0],0[ 0∑ =
=

M

j jcr wIM τ  
Usually, it is assumed that fi(zj) follows the normal density 
with parameters µ0 = 0, σ2

0 = 1 for fo(zj) and µ1, σ
2
1 for 

fi(zj); however, this assumption is not always true across 
genes (24). If the fi(zj)’s are the density of the normal 
distribution, the null hypotheses is called the theoretical 
null hypotheses; if fi(zj)’s are the empirical distributions 
of zj, then the null hypotheses is called the empirical null 
hypotheses. In McLachlan, et al. (27), the estimation 
of the parameters (π0,µi,σ

2
i ) were affected by maximum 

likelihood via the EM algorithm, using the EMMIX 
program with the following initial value of π0:

)(*
}:{#

)()0(
0 ξ

ξ
ξπ

Φ

<
=

M
zz jj

for an appropriate value of ξ; as a consequences for the 
theoretical densities, the initial values for the mean and 
the variance of the alternative hypotheses were:

)1/(ˆ )0(
0

)0(
1 πµ −= z )1/(ˆ )0(

0
)0(

1 πµ −= z /(  and

There is a trade-off of the choice of ξ. In most cases, 
as ξ grows smaller, the bias of  grows larger, but the 
variance becomes smaller. When the empirical densities 
are considered, for the initial value of π0, the zj are sorted 
in descending order, then the first Mo smallest zj’s are 
assigned to the non-differential group and the remaining 
M-M0 to the alternative group; the means and the variances 
are taken from the corresponding classes to be formed. 
Based on the data from Figure 6, the theoretical and the 
empirical densities provided different estimation of the 
π0, as a consequence, the number of significant genes 
were different, but only slight changes were observed in 
the RDF ˆ  (Table 4).

		  Theoretical Density 	 Empirical Density
t-statistics	 c0	 # of Sig.	 RDF ˆ 	 0π̂ 	 # of Sig.	 RDF ˆ 	 0π̂  
		G  enes			G   enes	  

Ordinary	 0.1	  89	 .04	 0.532	  6	 .033	 .971
	 0.2	 169	 .097		   8	 .070	
	 0.3	 256	 .16		   9	 .091	
Permutation	 0.1	 147	 .049	 .350	  6	 .080	 .937
	 0.2	 296	 .103		  11	 .102	
	 0.3	 452	 .161		  18	 .174	
Limma	 0.1	  91	 .04	 .533	  8	 .043	 .971
	 0.2	 170	 .096		   9	 .067	
	 0.3	 250	 .151		   9	 .067	

Table 4. FDR estimation, number of significant genes and the 
best estimation of π0 under different conditions: Theoretical 
vs. Empirical densities and different threshold for declaring 
significant results ( 00 )(ˆ cz j ≤τ ). Data from Figure 6 using EMMIX 
program.

Storey, et al. have proposed the following estimation 
of the FDR using the SAM methods (32):
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RMπ  which is the overall proportion 

of true null hypotheses (unchanged genes). The SAM 
methodology takes Δ' such that  R0(Δ') = M/2 (i.e., half 
the null statistics fall in the rejection region defined by  
Δ'). In figure 7, the SAM method estimated that there 
were 173 significant genes out of 1541, and the estimate 
of FDR was 0.114.

IV) Sample Size
The sample size for microarray data is an area of 

continuous research. When a group comparison (i.e., 
diseased vs. healthy) is the objective of the study, several 
methods have been already proposed (40, 43-45). Most of 
these methods determine the sample size controlling the 
FDR with the assumptions of independent observations )ˆ1/(}ˆ)ˆ1(ˆˆ{ˆ )0(

0
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among genes. When controlling the FDR=V/(V+S), 
the following two complementary screening tests  are 
affected: (i) the false negative rate (FNR=T/m1) or the 
proportion of truly DE genes missed by the experiment, 
and (ii) the sensitivity (S/m1), the proportion of truly 
DE genes identified by the experiment, also known as 
the average power. For example, given the following 
contingency table in a microarray setting for pairwise 
comparison:

Genes differentially 	 Declared	 Declared	 Total
expressed	 non-significant	 Significant	
	
No-True	 U+ε	 V-ε	 mo
True	 T-ε	 S+ε	 m1
Total	U +T	 V+S	 M

Assuming ε is an integer number, then FDR’=(V-ε)/
(V+S), FNR’=(T-ε)/m1, and the sensitivity’=(S+ε)/m1=1-
FNR’. As a consequence, 

a) if ε >0, then the FDR’ < FDR, FNR’ < FNR and 
sensitivity’> sensitivity.

b) if ε <0, then the FDR’> FDR, FNR’> FNR and 
sensitivity’ < sensitivity.

Therefore, to determine the most adequate sample size, 
when a microarray experiment is planned to compare 
two groups, a simultaneous assessment of the FDR and 
the sensitivity has to be performed. In order to carry on 
this assessment, Pawitan, et al. (46) have proposed the 
following expressions:

)(1
)}(1{ 00

cF
cFFDR

−
−

=
π ))(1(2 1 cFysensitivit −=

where )()1()()( 1000 cFcFcF ππ −+= , Fo(c) is the central 
t-distribution with 2n-2 degrees of freedom, F1(c) is the 
non-central t-distribution with 2n-2 degrees of freedom 
and non-centrality parameters σ/2 Dn± ,  σ

D  is the assumed 
non-zero log-fold change, π0 is the probability that a 
gene is unaffected, c is a given critical value to declare 
significant differences, and 2(1-F(c)) is the proportion of 
declared DE genes.

This sort of assessment can be performed using the 
R-package OC plus for computing FDR, sensitivity 
curves, and sample size (46). For example, the effect of 
the FDR and sensitivity for two sample sizes (n=10, 50) 
for different critical values of t-statistics are presented 
in Figures 8 and 9 when t-Statistics is the ordinary two-
sample t-statistics with pooled variance and, the Log-fold 
change D=1, which is the mean difference in log2-scale 
and in standard deviation units (‘log-fold change =1’ 
indicates a ratio of 2σ for the mean of Group 1 versus the 
mean of Group 2), and π0=0.9.
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Figure 8. FDR and Sensitivity with n=10 arrays/group
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Figure 9. FDR and Sensitivity with n=50 arrays/group

When the sample size is 10 per group and the sensitivity 
is ~80%, the FDR is very high (>70%). If the critical value 
is > 3, the FDR is reduced (<25%), but the sensitivity 
also is reduced close to 30%. On the contrary, when the 
sample size is 50 per group and the sensitivity is ~80%, 
the FDR is very low (<5%). If the critical value is > 3, 
the same pattern is observed, high sensitivity and very 
low FDR. So, an adequate sample size per group will be 
close to 50.
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V) Software
Several R packages for microarray data analysis are 

available for free at Bioconductor (www.bioconductor.
org). One of these packages is R/maanova, which is 
extensible, interactive environment for microarray 
analysis. R/maanova can be used for data quality checks 
and visualization, data transformation, ANOVA model 
fitting (fixed and mixed effects model), Statistical 
tests including permutation, confidence interval with 
bootstrapping, and cluster analysis. Gentleman, et al. 
(12) is an excellent reference for starting programming 
in R for microarray data analysis. 

DNA-Chip Analyzer (dChip Harvard University) 
and BRB-Array tools are also free microarray analysis 
software. DNA-Chip Analyzer is a Windows software 
package for probe-level (e.g. Affymetrix platform) and 
high-level analysis of gene expression microarrays and 
SNP microarrays. Gene expression or SNP data from 
various microarray platforms can also be analyzed 
by importing as external dataset. At the probe level, 
dChip can display and normalize data, and the model-
based approach allows pooling information across 
multiple arrays and automatic probe selection to 
handle cross-hybridization and image contamination. 
High-level analysis in dChip can be performed, 
among them are: comparing samples, hierarchical 
clustering, view expression and SNP data along 
chromosome,  and linkage analysis (www.dchip.org). 
BRB-ArrayTools have utilities for processing expression 
data from multiple experiments, visualization of data, 
multidimensional scaling, clustering of genes and 
samples, and classification and prediction of samples. 
BRB-ArrayTools features drill-down linkage to NCBI 
databases using clone, GenBank, or UniGene identifiers, 
and drill-down linkage to the NetAffx database using 
Probeset ids. It can be used to analyze both single-
channel and dual-channel experiments. The package 
is implemented as an Excel add-in so that it has an 
interface that is familiar to biologists  (http://linus.nci.
nih.gov/~brb/download.html).

VI) Conclusions
The methodology for pairwise comparison is an area 

in development, there  are still several issues under 
discussion for preprocessing data (different platforms 
to collect microarray data, different segmentation 
procedures, different approaches for normalization, 
use of the mismatched probes?), statistical inference 
(different t-statistics, theoretical vs. empirical densities, 
different methods to control the proportion of false 
positive declarations, or problems in controlling the 
correlation among the genes and among the tissues), 

sample size and power analysis with correlated genes 
(closed formula or sensitivity analysis), and validation 
(Is there a gold standard to measure gene expression?, 
What the criteria under which a finding can be said to 
be validated) (10).

The mixture-model methods seems to be the standard 
procedure in the assessment of differential expressions 
when the proportion of false positive declarations is 
controlled using either the theoretical or empirical 
densities. The Bayesian approach has been used for 
differential expression under the structure of a linear 
model, combining the classical and Bayes approach in 
which the posterior variance has been substituted in the 
ordinary t-statistics in place of the usual sample variance. 
Also, for the FDR estimation, a Bayesian approach has 
been used; however, different methods are still used 
to determine the proportion of null hypotheses (π0). A 
Bayesian version of the p-values has been developed, 
which is called the q-value (posterior Bayesian p-value) 
to estimate the expected proportion of false positives 
incurred when calling a particular gene significant. 
Due to the expected correlation across the genes, the 
permutation methods have been the recommended 
procedure to estimate the p-values for pairwise 
comparison. One of the permutation methods is called 
SAM, which has been recommended when more genes 
are overexpressed than underexpressed.

Overall, there are still several areas of development in 
microarray data analysis. We hope that this introduction 
to microarray data analysis will atract more investrigators 
from different fields to develop new approaches, 
particularly in the areas of quality control and validation. 
Microarray data analysis is a powerful instrument that 
could be used to identify the global expression responses 
of genes in specific environmental conditions in order 
to better understand the social disparity in the health-
disease process.
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Resumen

Análisis de datos en microarreglos relacionados con 
ADN es una tecnología nueva que nos permite evaluar  
simultáneamente la expresión genética de miles de 
genes. Esta tecnología ha sido utilizada para analizar la 
expresión genética entre grupos de células de diferentes 
órganos o de diferentes poblaciones. Con el propósito de 
entender las funciones de los genes, es necesario contar 
con la información sobre las funciones de  las proteínas 
y de la transcripción del mRNA. Desafortunadamente, 
explorar las funciones de las proteínas es muy difícil 
debido a su estructura compleja tridimensional. Para 
resolver esta dificultad, nos podemos  concentrar en las 
moléculas de mRNA a través de la expresión genética. 
En este artículo describimos algunos de los métodos para 
el pre-procesamiento de datos en expresión genéticas y 
el análisis comparativo de dos grupos en un experimento 
genómico. Estudios previos, realizados para evaluar la 
eficiencia de diferentes métodos para  comparar dos 
grupos, han resultado en una limitada concordancia en 
la listas de genes significativos. Finalmente, describimos 
los procedimientos para el control de  la tasa de 
descubrimientos falsos, la determinación de tamaño de 
muestra en estudios comparativos para el análisis de 
datos en microarreglos y los programas de computación 
disponibles para este tipo de análisis. Este artículo está 
escrito  para los profesionales de la salud interesados 
en el análisis comparativo de datos en  microarreglos 
y que deseen tener una introducción de los diferentes 
pasos que se deben realizar para llevar a cabo este tipo 
de análisis.
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