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A multilevel survival frailty model is presented for analyzing clustered and recurrent uri-

nary tract infections among elderly women residing in aged-care institutions. At the subject

level, serial dependence is expected between recurrent events recorded on the same individ-

ual. At the cluster level, correlations of observations within the same institution are present

due to the inherent residential environment and hierarchical setting. Two random compo-

nents are therefore incorporated explicitly within the survival frailty model to account for

the simultaneous heterogeneity and autoregressive structure. A Splus computer program is
ultilevel modelling

andom effects

esidual maximum likelihood

urvival analysis

developed for the estimation of fixed effect and variance component parameters.

© 2007 Elsevier Ireland Ltd. All rights reserved.

tained by a group of elderly women residing in aged-care
rinary tract infections

. Introduction

urvival frailty models are commonly used to analyse survival
ata in different health and biomedical settings, by assuming
amma and log-normal distributions for the random effects
1–3]. Alternatively, random effects Cox models can be defined
y specifying the first and second moments of the frailty dis-
ribution [4]. The advantage of applying log-normal frailty

odel is its flexibility on the correlation structure for the
ailure time data, while keeping the interpretation of regres-
ion coefficients meaningful. For example, in order to handle
ime dependent correlated frailties, Yau and McGilchrist [5]
roposed a log-normal frailty model incorporating an autore-
ressive correlation structure for the frailty term.
Please cite this article in press as: K. Wang et al., Multilevel survival model
Biomed. (2007), doi:10.1016/j.cmpb.2007.05.013

Multilevel models [6] are also available for handling nested
urvival data. A multilevel frailty model with two nested ran-
om effects has been developed, in which the random effects

∗ Corresponding author. Tel.: +61 8 9266 4180; fax: +61 8 9266 2958.
E-mail address: Andy.Lee@curtin.edu.au (A.H. Lee).

169-2607/$ – see front matter © 2007 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2007.05.013
follow a gamma distribution [7]. For log-normal frailty, similar
multilevel models [8] were considered following the gener-
alised linear mixed modelling approach [2]. Zhang and Steele
[9] proposed a semi-parametric multilevel survival model,
with a non-linear effect for the continuous covariate and a lin-
ear effect for categorical covariate in the log-hazard function.
Recently, Ha and Lee [10] used multilevel mixed linear models
to analyse censored survival data. An application of multilevel
frailty modelling of clustered grouped survival data can be
found in [11] where the MCMC method is used for parameter
estimation.

Our modelling of multilevel survival data is motivated by a
longitudinal study of recurrent urinary tract infections sus-
ling of recurrent urinary tract infections, Comput. Methods Programs

institutions. At the facility/cluster level, all subjects from the
same institution share a common random institution effect.
At the subject level, repeated measurements (recurrent times)

erved.

dx.doi.org/10.1016/j.cmpb.2007.05.013
mailto:Andy.Lee@curtin.edu.au
dx.doi.org/10.1016/j.cmpb.2007.05.013
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from the same individual are expected to be correlated. An
autoregressive covariance structure is thus specified as part
of the variance component for the recurrent times.

2. Recurrent urinary tract infections

Urinary tract infection (UTI) is one of the most common bac-
terial infections in women, and one in four of these women
will develop a recurrence. Between 10% and 20% of women
aged 60 years and over are affected by asymptomatic infec-
tion or bacteriuria [12]. Various risk factors predispose women
of different age groups to recurrence [13]. The prevalence
of recurrent UTI also increases for women living in nursing
homes [14].

A retrospective cohort study was conducted in 2003 to
determine the risk factors associated with recurrent UTI
among elderly women in residential aged-care facilities [15].
Eligibility criteria for the subjects were defined to be female
residents aged 60 years or above with an institutionalisation
period of at least 6 months. A total of 201 subjects satisfy-
ing the selection criteria were recruited from six randomly
selected aged-care institutions in Perth, Western Australia.
Women residing in the same institution were likely to be cor-
related in terms of contracting UTI because of their exposure
to the same environment [15].

It was found that 93 of the 201 women experienced at least
one UTI episode during the 2 years follow-up period. For this
subgroup of women, the outcome variable was taken to be the
duration between successive UTI episodes. In addition to age
(in years), available covariates were binary variables indicating
the presence or absence of diabetes mellitus, stroke his-
tory, history of prior UTI, urinary incontinence, hysterectomy,
faecal incontinence, immuno-compromised, and anatomical
abnormalities of the urinary tract. Information on these vari-
ables was retrieved from records or medication charts held at
each institution. The variables were chosen because they are
either established or postulated risk factors for recurrent UTI
[13].

3. Multilevel survival frailty model with
autocorrelation

For the modelling of clustered recurrent times, let T denotes
the duration between successive recurrent events or the time
to end of study, with D being the associated indicator of event
(1) or censor (0). Suppose Tijk is the observed kth recurrent time
of the jth individual nested within the ith institution, with
k = 1, 2,. . ., nij, j = 1, 2, . . ., mi, i = 1, 2, . . ., b. Here, nij is the num-
ber of repeated observations on subject j; mi is the number
of subjects within institution i; and b is the number of ran-
domly selected institutions. There are altogether

∑b

i=1mi =
M subjects,

∑mi
j=1nij = ni observations within the ith institu-

tion, and
∑b

n = N observations in total. In this three-level
Please cite this article in press as: K. Wang et al., Multilevel survival model
Biomed. (2007), doi:10.1016/j.cmpb.2007.05.013

i=1 i

hierarchical setting, conditional on unobservable institution
random effect ui and subject frailties vijk, observations (Tijk,
Dijk) are assumed to be independent. Following the survival
frailty approach [2,5,8], the proportional hazard function may
 PRESS
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be written as:

h(t; i, j, k) = �(t) exp(�ijk), �ijk = x′
ijkˇ + ui + vijk,

where �(t) is the underlying baseline hazard, x′
ijk

is a covariate
vector corresponding to tijk, and ˇ is the associated vec-
tor of regression coefficients. Let u = (u1, . . ., ub)′ and v =
(v111, v112, . . . , v211, v212, . . . , vb11, vb12, . . . )′. The linear predic-
tor can be expressed as:

� = Xˇ + Z1u + Z2v.

Without loss of generality, we assume u to be normally dis-
tributed, N(0, �2Ib), independent of v. To further account for the
time dependent correlated frailties, a first-order autoregres-
sive correlation structure is adopted for the subject random
effects [5,16], so that v follows a N(0, �A(�)) distribution, where
A = diag(A11, A12, . . . , Ab1, . . . , Abmb

) is a block diagonal matrix
with:

Aij(�) = 1
1 − �2

⎛
⎜⎜⎜⎜⎝

1 � · · · �nij−1

� 1 · · · �nij−2

...
...

. . .
...

�nij−1 �nij−2 · · · 1

⎞
⎟⎟⎟⎟⎠ .

The following expressions can be derived as:

A−1
ij

= (1 + �2)Iij − �Jij − �2Kij and trace

(
∂A−1

ij

∂�
Aij

)

= − 2�

1 − �2
,

where Iij, Jij and Kij are nij × nij matrices; Iij is the identity matrix;
Jij has its sub-diagonal entries ones and zeros elsewhere; Kij

takes on the value 1 at the first and last element of its principal
diagonal and zeros elsewhere. To simplify notation, I, J and K
represent the respective block diagonal matrix with element
Iij, Jij and Kij, respectively.

The best linear unbiased prediction (BLUP) log-likelihood is
the sum of two components l = l1 + l2, where l1 is the logarithm
of the partial likelihood of recurrent times conditional on u and
v, and l2 is the logarithm of the probability density function of
u and v, namely:

l2 = −1
2

(b log(2��2) + �−2u′u) − 1
2

(N log(2��)

+ log |A| + �−1v′A−1v).

From now onwards, we use i as the index of observations. By
sorting the recurrent event/censoring times Ti in ascending
order, we have �i = x′

i
ˇ + z′

1i
u + z′

2i
v, where x′

i
is the vector of

fixed covariates, while z′
1i

u and z′
2i

v return the value of u or v

for the ith observation. For the above log-normal frailty model
with u and v conditionally fixed:

N∑ ⎡
N∑ ⎤
ling of recurrent urinary tract infections, Comput. Methods Programs

l1 =
i=1

Di
⎣�i − log

j=i

exp(�j)⎦ .

When the variance parameters �2, � and � are held fixed, the
estimates of ˇ, u and v are given by the Newton–Raphson

dx.doi.org/10.1016/j.cmpb.2007.05.013
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where V =
[

X′

Z′
2

](
− ∂2l1

∂�∂�′

)
[ X Z2 ] +

(
0 0
0 �−1A−1

)
.

Table 1 – Frequency distribution of recurrent UTI of 93
elderly women

Number of recurrent UTI Number of women

0 31
1 23
2 10
3 9
4 5
5 5
6 5
ARTICLE
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quation:

˜̌

ũ

ṽ

⎤
⎥⎦ =

⎡
⎢⎣

ˇ0

u0

v0

⎤
⎥⎦+ V−1

⎡
⎢⎣

∂l/∂ˇ

∂l/∂u

∂l/∂v

⎤
⎥⎦ ,

here

∂l

∂ˇ
= X′ ∂l1

∂�
,

∂l

∂u
= Z′

1
∂l1
∂�

− �−2u,
∂l

∂v
= Z′

2
∂l1
∂�

− �−1A−1v,

and V =

⎡
⎢⎣

X′

Z′
1

Z′
2

⎤
⎥⎦(− ∂2l1

∂�∂�′

)[
X Z1 Z2

]

+

⎛
⎜⎝

0 0 0

0 �−2Ib 0

0 0 �−1A−1

⎞
⎟⎠ .

he method of computing ∂l1/∂� and ∂l1/∂�∂�′ can be found in
ef. [2]. The estimation procedure is iterative. Once estimates

or ˇ, u and v are obtained, then �2, � and � can be replaced
y their REML estimates [17] derived below, which in turn are
sed to update the estimating equation for (ˇ, u, v). The itera-
ive cycle continues until all parameter estimates converge.

To obtain REML estimates for the variance components, let
he block matrix V−1 partitioned conformally to ˇ, u and v as:

−1 =

⎛
⎜⎝

V11 V12 V13

V21 V22 V23

V31 V32 V33

⎞
⎟⎠

he REML estimator of the first variance component is given
y:

ˆ 2 = [trace(V22) + u′u]
b

.

or the second variance component, the REML estimating
quations for � and � are:

�̂ = N−1[trace(A−1(V33 + vv′))],

trace

[
∂A−1

∂�
A

]
= �̂−1

[
trace

(
(V33 + vv′)

∂A−1

∂�

)]
.

he simplification is analogous to that for the log-normal sur-
ival model with correlated frailty [5], viz.:

ˆ = N−1[(1 + �2)L1 − 2�L2 − �2L3],

here L1 = trace(V33 + vv′), L2 = (1/2) trace[J(V33 + vv′)], and

3 = trace[K(V33 + vv′)].
Estimation of the correlation parameter � requires solving

he cubic equation:

(�) = C1�3 + C2�2 + C3� + C4 = 0,

here C1=(N − M)(L1 − L3), C2=(2M − N)L2, C3=NL3 − (N + M)L1,
nd C = NL .
Please cite this article in press as: K. Wang et al., Multilevel survival model
Biomed. (2007), doi:10.1016/j.cmpb.2007.05.013
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Standard numerical algorithms such as Newton–Raphson
ay be used to solve for �̂.
The matrix V11 provides the asymptotic variance and

ovariance of the regression coefficients ˆ̌ . Furthermore,
 PRESS
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asymptotic variances of the variance component estimators
are obtained from the inverse of the REML information matrix
[17], as follows:

var

⎛
⎜⎝

�̂2

�̂

�̂

⎞
⎟⎠ = 2

⎛
⎜⎝

a11 a12 a13

a12 a22 a23

a13 a23 a33

⎞
⎟⎠

−1

,

where

a11 = �−4 trace(Ib − �−2V22)
2
,

a12 = �−4�−2 trace(V23A−1V32),

a13 = −�−4�−1 trace

(
V23

∂A−1

∂�
V32

)
,

a22 = �−2 trace(IN − K1)2,

a23 = −�−1 trace[(IN − K1)2K3],

a33 = trace(K2 − K3)2;

in which K1=�−1V33A−1, K2=�−1V33(∂A−1/∂ϕ) and K3=A(∂A−1/∂ϕ).
Note that the survival frailty model with autocorrelation [5]

can be formulated as a special case of this multilevel survival
frailty model with autocorrelation by setting the first vector of
random effects u = 0. Specifically, l1 and l2 can be modified as
follows:

l1 =
N∑

i=1

Di

⎡
⎣�i − log

N∑
j=i

exp(�j)

⎤
⎦ ,

l2 = −1
2

(N log(2��) + log |A| + �−1v′A−1v)

where �i = x′
i
ˇ + z′

2i
v.

Estimation of ˇ and v can be achieved via the
Newton–Raphson equation:

[
˜̌
]

=
[

ˇ0

]
+ V−1

[
∂l/∂ˇ

]
,

ling of recurrent urinary tract infections, Comput. Methods Programs

7 2
8 0
9 2

≥10 1

dx.doi.org/10.1016/j.cmpb.2007.05.013
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Table 2 – Results from fitting multilevel survival and survival frailty models with autocorrelation to the recurrent UTI data

Risk factor Multilevel survival model
with autocorrelation

Survival frailty model with
autocorrelation

Estimate (S.E.) Hazard ratio Estimate (S.E.) Hazard ratio

Age −0.005 (0.014) 0.995 −0.007 (0.014) 0.993
Diabetes −0.064 (0.294) 0.938 −0.121 (0.312) 0.886
Stroke history 0.074 (0.245) 1.077 0.071 (0.264) 1.074
Prior UTI 0.972 (0.253)* 2.643 0.877 (0.253)* 2.404
Urinary incontinence −0.017 (0.242) 0.983 0.154 (0.252) 1.166
Hysterectomy 0.370 (0.688) 1.448 −0.198 (0.651) 0.820
Faecal incontinence 0.879 (0.402)* 2.408 0.660 (0.434) 1.935
Immuno-compromised 0.250 (0.475) 1.284 0.201 (0.516) 1.223
Anatomical abnormalities 0.590 (0.304) 1.804 0.636 (0.325) 1.889

Institution �2 = 0.265 (0.242)
18)*
Subject � = 0.619 (0.219)*, � = 0.444 (0.2

∗ p-value < 0.05.

Letting the block matrix V−1 partitioned conformally to ˇ and
v as:

V−1 =
(

V11 V13

V31 V33

)
.

The matrix V11 provides the asymptotic variance and covari-
ance of the regression coefficients ˆ̌ . The REML estimator of
the variance component is given by:

�̂ = N−1[trace(A−1(V33 + vv′))],

trace

[
∂A−1

∂�
A

]
= �̂−1

[
trace

(
(V33 + vv′)

∂A−1

∂�

)]
.

4. Application

For the recurrent UTI study, there are altogether N = 285 obser-
vations from M = 93 elderly women nested within the b = 6
randomly selected institutions. The frequency distribution of
recurrent UTI is given in Table 1. One third of the cohort had
no recurrence during the study period. Descriptive statistics of
the covariates were taken at baseline in view of the repeated
measures recorded for each individual. The average age of
the cohort was 85.8 (S.D. 8.4) years. About 16% of them were
diabetic, 28% experienced a stroke and 34.4% had a history
of prior UTI. A large proportion of women (46.2%) suffered
from urinary incontinence, yet only 5.4% had faecal incon-
tinence symptoms. The data also revealed that 13% of the
cohort had anatomical abnormalities of the urinary tract, 5.4%
had undergone hysterectomy but only 4.3% were immuno-
compromised.

With the nine available covariates, results from fitting
multilevel survival and survival frailty models with autocor-
relation to the recurrent UTI data are presented in Table 2.
It appears that the hazard rate of recurrent UTI is signifi-
Please cite this article in press as: K. Wang et al., Multilevel survival model
Biomed. (2007), doi:10.1016/j.cmpb.2007.05.013

cantly associated with the subject’s history of prior UTI. For
both models, a positive coefficient is obtained for this risk
factor, implying an increased hazard of UTI recurrence if the
woman experienced UTI before (adjusted hazard ratio being
� = 0.619 (0.230)*, � = 0.575 (0.170)*

2.643 and 2.404, respectively). However, an additional signifi-
cant risk factor, namely, faecal incontinence, is evident under
the multilevel survival model, with an adjusted hazard ratio
of 2.408. Both models demonstrate significant autocorrelation
and subject frailty. In the multilevel setting, a mild institution
effect is found, which explains the similarity between the two
sets of results. By accommodating institutional effect in the
multilevel model, the association between faecal incontinence
and risk of recurrent UTI becomes more apparent.

5. Conclusion

In this study a multilevel survival frailty model is proposed for
analysing clustered recurrent times. It may be considered as
an extension of the log-normal frailty model for time depen-
dent correlated frailties [5]. An REML approach is adopted to
estimate the parameters of the fixed and random components.
An application to the recurrent UTI study demonstrates the
usefulness of the method in analysing hierarchical survival
data. In particular, an additional risk factor for recurrent UTI
is identified, which may have important clinical implications
to control this common disease for elderly women.

There are several potential extensions of the current
model. One direction is to investigate other correlation struc-
tures of random effects at each level. Another extension is to
generalise the methodology to more than three levels. Because
of the flexibility of the log-normal frailty model in specifying
the correlation structure of the random components, exten-
sions to other multilevel settings are feasible by modifying the
estimation procedure outlined in Section 3, findings of which
will be reported elsewhere.
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