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Abstract

Currently there is much interest in using microarray gene-expression data to form
prediction rules for the diagnosis of patient outcomes. A process of gene selection is
usually carried out first to find those genes that are most useful according to some
criterion for distinguishing between the given classes of tissue samples. However,
there is a bias (selection bias) introduced in the estimate of the final version of a
prediction rule that has been formed from a smaller subset of the genes that have
been selected according to some optimality criterion. In this paper, we focus on the
bias that arises when a full data set is not available in the first instance and the
prediction rule is formed subsequently by working with the top-ranked genes from
the full set. We demonstrate how large the subset of top genes must be before this
selection bias is not of practical consequence.

Key words: gene selection, support vector machine, error rates, cross-validation,
selection bias

1 Introduction

High-density DNA microarray technology allows researchers to monitor the
interactions among thousands of gene transcripts in an organism on a single
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experimental medium, which is often a glass microscope slide or nylon mem-
brane. Prior to the computerization and miniaturization of this technology,
researchers were limited to examinations of much smaller numbers of genetic
units per experiment and were only able to assess interactions among genes
under changing conditions on a much smaller scale. Given the availability of
microarray data, there is increasing interest in changing the emphasis of tumor
classification from morphologic to molecular. In this context, the problem is to
construct a discriminant (prediction) rule r(y; ¢) that can accurately predict
the class of origin of a tumor tissue with feature vector y, which is unclassified
with respect to a known number g (> 2) of distinct tissue classes, denoted
here by (1, ..., C,4. The vector

t = (yf7 Z’{‘? et 7yZ)j7 ZZ)T7 (1)

denotes the training data, where
T
z; = (le, ey Zgj)
is the class-indicator vector, and z;; is one or zero according as y; comes from
the ith class C;ornot (i =1,...,¢9;7=1, ..., n).

Here the feature vector y contains the expression levels on a very large num-
ber N of genes (features); that is, y is the expression signature vector of a
tissue. In applications concerned with the diagnosis of cancer, one class C
may correspond to cancer and the other (C3) to benign tumors. In applica-
tions concerned with patient survival following treatment for cancer, one class
(C1) may correspond to the good-prognosis group and the other Cs to the
poor-prognosis group. Also, there is interest in the identification of “marker”
genes that characterize the different tissue classes. This is the feature selection
problem.

The data set at hand as described above consists of N genes, but usually it
is a subset of a much larger set containing the expression levels of N; genes
over the tissue samples. For example, Ny might be of the order of tens of
thousands, while N will be of the order of thousands. The subset of N genes
is usually obtained by applying some ad hoc filtering process to the N genes.
Having reduced the full data set down to N genes, typically some finer form
of gene selection is employed to reduce this subset down further to a much
smaller number N, for the formation of a discriminant rule. A consequence of
basing the final form of the discriminant rule on a small subset of the genes
selected in some optimal way is that a selection bias has to be allowed for in the
estimation of the generalization error of the rule based on the optimal subset of
N, genes. Otherwise, a false overoptimistic impression will be obtained for the
discriminatory power of the rule. This bias has often been overlooked in the
bioinformatics literature [2]. Also, this bias arises in an unsupervised context



(cluster analysis) with tests and plots on the number of clusters.

Typically in practice, N is not very small relative to the total number of genes
N7, so the only selection bias we have to worry about is that incurred in going
from N to N, genes. However, if N is very small relative to Nz, then there
will be a selection bias in working with the NV genes and not the total number
N7 or a much larger number than N if the total number Np is not used. If
we have access to the full set of Ny genes and know how it was reduced to NV
genes in the first instance, then we can correct for the bias in working with
only the N genes. But if it happens that the available information is limited
to only the N genes, then we will be unable to correct for any possible bias is
not working with the full set of genes V.

In this paper, we demonstrate the bias in working with only /N genes and not
the full set of N genes, where the N genes are the top N ranked genes among
the total number Ny of genes for varying sizes of V. It will be seen that this
bias is of practical significance when N is very small relative to Nr.

Before we proceed to these examples, we shall describe some methods of gene
selection and how the selection bias can be corrected for via cross-validation
if given the full data set.

2 Need for Gene Selection

In a standard discriminant analysis, the number of training observations n is
usually much larger than the number of feature variables p. But in the present
context of microarray data, the number of tissue samples n is typically between
10 and 100, and the number of genes (p = N) is in the thousands. This presents
a number of problems. Firstly, the discriminant rule r(y; ¢) may not be able
to be formed using all the available genes. For example, the pooled within-
class sample covariance matrix S required to form Fisher’s linear discriminant
function is singular if n < g + p, where g is the number of classes. Secondly,
even if all the genes can be used as, say, with the nearest-centroid rule or
a support vector machine (SVM), the use of all the genes may allow the
noise associated with genes of little or no discriminatory power, to inhibit and
degrade the performance of the rule r(y; t) in its application to unclassified
data. That is, although the apparent error rate A(t) (the proportion of the
training tissues misallocated by 7(y; t)) will decrease as it is formed from more
and more genes, its error rate in classifying tissues outside of the training set
will eventually increase. That is, the generalization error of r(y; t) will be
increased if it is formed from a sufficiently large number of genes. Hence, in
practice, consideration has to be given to implementing some procedure for
reducing the dimension of the feature vector of genes to be used in constructing



the rule r(y; t).

2.1 Some Methods

A common approach is to carry out a principal component analysis (PCA) and
work with the leading components. The disadvantages of this approach are
that the PCA does not take into account the class structure of the genes, and
genes that show a large variation across the tissues may not be differentially
expressed. Also, as the principal components are linear combinations of the
original number of genes, biological interpretation of the components is not
straightforward. One method that does take into account the class structure
of the tissue samples in reducing the dimension of the feature space is partial
least squares. However, it still suffers from the same interpretation difficulties
as with principal components, as the components are linear combinations of
all the genes. Nguyen and Rocke [11] demonstrated in their study that if
the top genes for discrimination purposes were selected before performing the
principal component analysis, then it would give similar results to partial least
squares.

One common way of approaching the gene selection problem is to perform
a preliminary ranking of genes on the basis of a fast computable criterion
and then arbitrarily select a number of the best-ranked genes. Then either
a discriminant rule is formed on the basis of these selected genes or further
selection is undertaken before constructing the rule.

A commonly used criterion for ranking the individual genes y, = (y), (v =
1, ..., p) is the ratio of the between-class sum of squares to the within-class
sum of squares,

F, = (B)vv/(W)vva (2)

where B and W are the between and within sums of squares and products
matrices, respectively. Under the null hypothesis that the vth gene has the
same variance in each class, the statistic F;, has an F-distribution with g — 1
and n — g degrees of freedom. The use of (2) is equivalent to the likelihood
ratio statistic —2log A for the test of no differences between the means of
the classes under the assumption of the homoscedastic model for the class-
covariance matrices. Also, in the case of g = 2 classes, it is equivalent to the
usual two-sample (pooled) Studentized t-statistic.

A further criterion is to rank the genes on the basis of the absolute values of
their coefficients in the linear form of r(y; t) for an SVM formed with linear
kernel. This is to be discussed further in the next section. There are also rules



where the ranking is being done implicitly in their construction; for example,
nearest-shrunken centroids [12].

Another way to handle the problem of having to form a discriminant rule
from a very large number of genes is to put the genes into groups either by
some clustering method or by some supervised selection procedure that makes
use of their known class labels. There is now a variety of ways proposed in
the literature for the grouping of the genes. Having so grouped the genes,
a discriminant rule can be formed from the genes (metagenes) selected to
represent each group; see, for example, [9] and [10, Chapter 7].

3 Error-Rate Estimation

It is the conditional or actual error rates of r(y; t) that are of central interest
once the training data ¢ have been obtained. We let ec(t) denote the overall
conditional error rate of r(y; t) in its application to a new observation y sub-
sequent to the training data t. This error rate, which is conditional on the
training data t, also depends on the class-conditional distributions. But this
dependence is suppressed here for simplicity of notation.

3.1 Apparent Error Rate

An obvious and easily computed nonparametric estimator of the conditional
error rate ec(t) of r(y; t) is the apparent error rate A(t) of 7(y; ¢) in its applica-
tion to the observations in ¢. That is, A(t) is the proportion of the observations
in ¢ misallocated by 7(y; t). Thus we can write

= LSS sl ), 3)

1=1j5=1

SI'—‘

where for any u and v, Q[u,v] = 0 for u = v and 1 for u # v.

As the apparent rate is obtained by applying the rule to the same data from
which it has been formed, it provides an optimistic assessment of the true con-
ditional error rates. In particular, for complicated discriminant rules, overfit-
ting is a real danger, resulting in a grossly optimistic apparent error. Although
the optimism of the apparent error rate declines as n increases, it usually is
of practical concern.



3.2  Cross-Validation

One way of avoiding the bias in the apparent error rate as a consequence
of the rule being tested on the same data from which it has been formed
(trained), is to use a holdout method as considered by Highleyman [8], among
others. The available data are split into disjoint training and test subsets. The
discriminant rule is formed from the training subset and then assessed on the
test subset. Clearly, this method is inefficient in its use of the data. Indeed,
it is not practical in the present context where the number of tissue samples
(n) is so small relative to the number of genes. There are, however, methods
of estimation, such as cross-validation, the Quenouille-Tukey jackknife, and
the bootstrap of Efron [3], that obviate the need for a separate test sample.
An excellent account of these three methods has been given by Efron [4], who
has exhibited the close theoretical relationship between them.

The optimism arising from the use of the apparent error rate may be almost
eliminated using cross-validation. The (leave-one-out) cross-validated estimate
is given by

1L
A (¢ = > 2 Qi (yss t)l, (4)
i=1j=1
where #(;) denotes ¢ with the point (y],z])" deleted (j = 1, n). Hence

before the sample rule is applied at y;, it is deleted from the tralmng set and
the rule recalculated on the basis of ¢(;). This procedure at each stage can be
viewed as the extreme version of the holdout method where the size of the
test set is reduced to a single entity.

As remarked by Efron [5], cross-validation is often carried out, removing large
blocks of observations at a time. Suppose, for example, that the training set
is divided into, say ¢ blocks, each consisting of m data points where, thus,
n=qm (m > 1). Let now

_ (T T T T\T.
t(k) - (y17 R y(k—l)maykm—l—l: sy yn) IR

that is, the training set after the deletion of the kth block of m observations.
Then the g-fold cross-validated error rate is given by

g m q
qu Z Z Z ZZJQ i, T y(k Dm+j3 t(k))]/na (5)

i=1j=1k=1

which requires only g recomputations of the rule. The choice of ¢ = n (leave-
one-out) does not perturb the data enough and results in higher variance. In



the present context, this variance can be quite high. The values ¢ = 5 or 10
are a good compromise.

3.3 External Cross-Validation

Caution has to be exercised in estimating the error rate of a discriminant rule
formed by optimally selecting a small number of variables (genes) from a large
set. This is because there will be a selection bias associated with choosing the
optimal of a large number of possible subsets, regardless of the criterion used.
We let y® denote the subvector of y formed from the subset s of the full set
of p variables, and let r(y ) 8)) denote some arbitrary sample discriminant

rule formed from the classn‘ied training data #5) on the subvector ot (s). Sup-
pose that s, defines the subset of feature variables of some specified size ps,

that minimizes some criterion, say, A(¢Y)(¢(*)), over all possible distinct
So

subsets s of size ps,. Although A(CY) (t(s)) may be an (almost) unbiased esti-

mator of the overall conditional error rate of the rule r(y*); ¢()), ACV) (t(SO))

is obviously not providing an almost unbiased estimate of the error rate of

r(y(s"); t(SO)), as it is obtained by taking the smallest of the estimated error

rates after they have been ordered according to their size. Here the (leave-one-
out) cross-validated estimate is given by

g n
A0y = LSS0t a2 ©
i=1j=1

T
where tgf)o) denotes the training data #(50) with (ygso) ;21 )" deleted.

In order to reduce the selection bias which is still present in the estimate (6),
an external cross-validation should be performed whereby the selection process
is undertaken for each deletion of a feature vector from the training set. This
external cross-validated estimate of the overall error rate of r(y(so); t(So)) is
given by

ACTE() = 133 2l ol )L ™)

=1

where s,; denotes the optimal subset, according to the adopted selection cri-
terion applied to the training data ¢(;) without (y], 2 )" .



As the notation implies, the selected subset s,; for the allocation of the jth
entity may be different for each j (j =1, ..., n). We can make use of this fact
to identify potential marker genes. We can note the number of times a gene
is chosen in the selected subset on each split of the training data during the
external cross-validation [10, Chapter 7].

An illustration of this selection bias is to be given for the supervised classifi-
cation of microarray data. But we first consider the support vector machine
as it is the discriminant rule to be adopted in the sequel.

4 Support Vector Machine with Recursive Feature Elimination

Support vector machines are becoming increasingly popular classifiers for mi-
croarray data. Advantages of a support vector machine (SVM) in the present
context, where the number of feature variables (genes) p is so large relative to
the sample size n, are that it is able to be fitted to all the genes and that its
performance appears not to be too affected by using the full set of genes. How-
ever, in practice, some form of gene selection would generally be contemplated.
Another advantage of the SVM (with a linear kernel) is that gene selection
can be undertaken fairly simply using the vector of weights as the criterion.

For an SVM with linear kernel, the rule 7(y; t) can be written as

r(y; t) = sign (Bo + B' ), (8)

where ,31, = (B), denotes the coefficient of the expression level y, for gene v.

As shown by Guyon et al. [7], a good guide to the relative importance of
the genes in this SVM is given by the relative size of the absolute values
of their fitted coefficients /3, (that is, the weights). Hence a ranking of the
discriminatory power of the genes can be given by ranking the genes from top
to bottom on the basis of the absolute values of the weights 3,.

We consider here the selection procedure of Guyon et al. [7], who used a
backward selection procedure, which they termed recursive feature elimination
(RFE). It considers initially all the available genes, which are ranked according
to their weights and the bottom-ranked genes discarded. The SVM is then
refitted to the remaining genes, which are then reranked according to their
new weights. Again, the bottom-ranked genes are discarded, and so on.

In the applications to follow on microarray data, we proceeded as in [7] and
first discarded enough bottom-ranked genes so that the number retained was
the greatest power of 2 (less than the original number of genes). We then



proceeded sequentially to discard half the current number of genes on each
subsequent step. The error rate at any stage can be assessed by undertaking
an external cross-validation as described above.

5 Example of Selection Bias Starting with All the Genes

Ambroise and McLachlan [2] investigated the magnitude of the selection bias
and its correction for an SVM (with linear kernel) and Fisher’s linear discrim-
inant function in their application to two cancer data sets. We give in Figure 1
their results for the SVM applied to the colon data of Alon et al. [1]. They
used Affymetrix oligonucleotide arrays to monitor absolute measurements on
expressions of over 6,500 human genes in 40 tumor and 22 normal colon tis-
sue samples. These samples were taken from 40 different patients, so that 22
patients supplied both a tumor and a normal tissue sample. Alon et al. [1]
focused on the 2000 genes with highest minimal intensity across the samples.

For this illustration, we thus have N = 2000 and Ny > 6500. For these relative
values of N and N7, there would be little bias in working with the N = 2000
genes and not the full set of over 6500 genes. Thus we focus in this example
on the selection bias incurred when the ordinary (internal) stratified cross-
validated estimate (6) as used in Guyon et al. [7] is adopted instead of the
external version (7) when a support vector machine with recursive feature
elimination is applied.

To illustrate the size of the selection bias for the colon data set, Ambroise
and McLachlan [2] split it into a training set and a test set, each of size 31,
by stratied sampling without replacement from the 40 tumor and 22 normal
tissues separately, so that each set contained 20 tumor and 11 normal tissues.
The training set is used to carry out gene selection and to form the apparent er-
ror rate A(t), the (leave-one-out) cross-validated error rate A°Y)(t) using just
internal validation, and the external ten-fold cross-validated rate A(CY10F)(¢)
for a selected subset of genes. An unbiased error-rate estimate is given by the
test error equal to the proportion of tissues in the test set misallocated by
the rule. They calculated these quantities for 50 such splits of the colon data
into training and test sets. The average values of the error-rate estimates are
plotted in Figure 1. The error bars on the test error refer to the 95% confi-
dence limits. The 0.632+ bootstrap error estimate, B(-832%) was formed using
K = 30 bootstrap replications for each of the 50 splits of a full training set.
The latter estimate was proposed by Efron and Tibshirani [6] and first applied
in the context of microarray data by Ambroise and McLachlan [2].

In Figure 1, the apparent error A(t), the (leave-one-out) cross-validated error
ACY)(¢), the external ten-fold cross-validated error ACV105)(¢) the 0.632+
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Fig. 1. Error rates of the SVM rule with RFE procedure averaged over 50 random
splits of the 62 colon tissue samples into training and test subsets of 31 samples
each.

bootstrap error estimate B(6321) and the test error are denoted by A, CV,
CVI10E, B.632+, and T, respectively. It can be seen from Figure 1 that the
true prediction error rate as estimated by T is not negligible, being above 15%
for all selected subsets. The lowest value of 17.5% occurs for a subset of 2°
genes at which the internal cross-validated rate (which ignores the selection
bias) is zero.

6 Selection Bias in Not Working with the Full Set of Genes

6.1 Breast Cancer Data Set

We now demonstrate the selection bias that can occur when we work with only
a small subset of the total number of genes. The data set considered concerns
the breast cancer study of van 't Veer et al. [14]. They used inkjet synthesized
oligonucleotide arrays to measure the expressions of 24881 genes in 98 primary
breast cancers acquired from three groups of patients: 44 representing a good-
prognosis group (that is, those who remained metastasis free after a period
of more than 5 years), 34 from a poor-prognosis group (those who developed
distant metastases within 5 years), and 20 representing a hereditary form of
cancer, due to a BRCA1 (18 tumors) or BRCA2 (2 tumors) germline mutation.
The 78 sporadic (non-BRCA) breast cancer patients were chosen specifically
on the basis of their clinical outcome. van 't Veer et al. [14] applied a filter in
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which only genes with both a P-value of less than 0.01 and at least a two fold
difference in more than five out of the ninety-eight tissues for the gene were
retained. This filter effectively reduced the initial set of genes to 4869. They
subsequently were able to identify a set of 70 genes with expression profiles
associated with the risk of early metastasis. This selection was carried out on
the basis of the correlation between the gene expression profile and the class
label, which is equivalent to using the (pooled) two-sample ¢-statistics; that
is, using (2) in the case of g = 2. They called these 70 genes the prognostic
marker genes.

We illustrate first the selection bias when we work with just these top 70 genes;
that is, N = 70. We applied the same filtering process of van 't Veer et al.
[14] to the 24881 genes but now just to the 78 tissue samples for the sporadic
breast cancer tumours, which resulted in 5422 genes being retained. That is,
we take this set of Ny = 5422 genes on the n = 78 sporadic breast cancer
tumours to be our full data set and demonstrate the bias when we work with
only the top n = 70 genes according to the criterion (2). We ignore here the
bias in reducing the actual full set of 24881 genes by filtering to 5422 genes,
but this bias is negligible which we did confirm.

What motivated us to examine the bias incurred in working with only the top
70 genes is that van de Vijver et al. [13] studied a larger series of breast cancer
patients which consisted of 61 of the sporadic breast cancer 78 patients in the
study of van ’t Veer et al. [14], along with an additional 234 patients. But the
gene expressions in their 295 tumour samples were made available only for the
top 70 genes as defined above. Thus, if one wanted to work with the data set
of van de Vijver et al. [13], there would be no option but to work with this
very small reduced set of N = 70 genes, thereby incurring a selection bias that
could not be corrected for since the expression levels on the full set of 25000
or so genes (or indeed any set other than the 70 genes) was not available.

6.2 Application of SVM with RFE to Breast Cancer Data

We applied the SVM with recursive feature elimination to the 78 tumour
samples from g = 2 classes using just the N = 70 genes. At each stage of the
feature elimination process, the overall error rate was estimated using ten-fold
cross-validation. We performed the latter, using external cross-validation, but
limited to correcting for the selection bias in choosing optimally a subset with
fewer than 70 genes. That is, the top 70 genes were fixed during the validation
process, and so it ignores the selection bias in working with the top 70 genes
from the set of Ny = 5422 genes. In addition, we estimated the error rate
where the external cross-validation is extended to correct also for the bias in
working with the top 70 genes. This latter bias is corrected for by going back

11
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Fig. 2. The solid line is the ten-fold cross-validated error rate of the SVM with
RFE applied to the top 70 genes in the 78 tissue samples in [14], calculated without
correction for selection bias due to using the top 70 genes. The dashed line is the
corresponding rate with correction for this bias.

to the full set of 5422 genes and selecting the top 70 genes on the training
subset at each stage of cross-validation. Then the SVM with RFE is applied
to this selected set of top 70 genes, which may have little in common with
the original set of top 70 genes. The results for these two cross-validated error
rates are listed in Table 1 and plotted in Figure 2. It can be seen from Table 1
and Figure 2 that the (estimated) selection bias in ignoring the fact that the
SVM is being applied to the top N = 70 genes from a total of Ny = 5422
genes can be high as 14%, depending on the size of the final subset of genes.

We have also listed in Table 1 the external cross-validated error for the SVM
with RFE, starting with the full set of N = 5422 genes. It can be seen that it
is similar to that of the external cross-validated error rate of the rule starting
with the top 70 genes. But to provide this latter estimate in practice one would
need to have access to the full data set.

The bias arising from using just the top N genes of the 5422 genes in the
study of van 't Veer et al. [14] will decrease in magnitude as N approaches
the size Ny = 5422 of the full set. To investigate how large N must be before
this bias is not of practical significance, we applied the same process to the
top N genes for N taken (as a multiple of two) to be equal to 64, 128, 256,
512, 1024, 2048, and 4096. The biased (internal cross-validated) and unbiased
(external cross-validated) error rates for each scenario are listed in Figure 3.
The process is repeated with the nearest centroid (NC) classifier modified so
that each gene is weighted by its sample-specific standard deviation rather
than a class-specific standard deviation common for all genes. The results for
this classifier are displayed in Figure 4.

From Figure 3 and Figure 4, we see that the difference between the error rates

12



Table 1. The number of Genes and Error Rates with and without Correction for

Selection Bias.

Number of Genes | Error Rate Error Rate Error Rate
for Top 70 Genes for Top 70 Genes | for 5422 Genes
(without Correction | (with Correction | (with Correction
for Selection Bias for Selection Bias | for Selection Bias)
as Top 70) as Top 70)

1 0.31 0.42 0.44

2 0.32 0.36 0.42

4 0.27 0.45 0.35

8 0.27 0.33 0.31

16 0.23 0.38 0.33

32 0.19 0.38 0.33

64 0.21 0.33 0.37

70 0.21 0.32 —

128 - - 0.44

256 - - 0.45

512 - - 0.44

1024 - - 0.41

2048 - - 0.44

4096 - - 0.42

5422 - - 0.45

starts to decrease as N increases; that is, the selection bias due to working
with just the top N genes is shrinking. When the top N = 4096 genes are
used, which include almost the entire data set, this bias is very small.

7 Discussion

In classifying a microarray gene-expression data with IV genes, it is customary
to reduce the number of genes N by some selection method and to base the
final version of the discriminant rule (prediction rule) on a reduced set N,,
where N, may be much smaller than N. In estimating the error rate of the
rule based on the NN, selected genes, care must be taken that the selection bias

13
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Fig. 3. The solid line is the ten-fold cross-validated error rate of the SVM with RFE
applied to the top N genes (N = 64,128,256, 512,1024,2048,4096) in the 78 tissue
samples [14], calculated without correction for the selection bias due to using the
top N genes. The dashed line is the corresponding rate with correction for this bias.
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top N genes. The dashed line is the corresponding rate with correction for this bias.
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has been corrected for as it can be quite appreciable, as illustrated in Figure 1.

In this paper, we caution that there is another source of selection bias that
arises when the set of NV genes on which gene selection has been performed is
actually a subset of a much larger set of Ny genes. In practice, the Nr genes
are usually reduced in size to N genes using some filtering process before a
more sophisticated gene selection method is applied to the N genes. Now this
will induce a bias as the N retained genes are not randomly chosen, but have
been obtained by some filtering process designed in part to eliminate genes
that appear not to be differentially expressed between the classes of tissue
samples. Typically, N is still sufficiently large relative to the total number
of genes Np that the magnitude of this bias is not of practical importance.
However, as demonstrated in an example involving a breast cancer data set,
this bias is of concern if the set of N genes represents the top genes in some
sense in the full set of Ny genes and N is relatively small. This situation can
occur when an investigator having analysed a data set on a large number of
genes, only makes available the expression levels on the tissue samples studied
for what he/she has found to be the top N genes, say N = 100. This was
almost the situation with the study of van de Vijver et al. [13]. Their study
was on some 25000 genes on 295 breast cancer tumours where, in the reporting
of their results, they have made available only the gene expression levels for
the “top” 70 genes. These 70 genes were the top ranked genes according to
the criterion (2) on the basis of some 78 tumour samples from the study of
van 't Veer et al. [14] of which 61 are included in their larger data set of 295
tumours. Thus there will be bias in the estimate of a discriminant rule formed
from the expression levels of these 70 genes over the 295 tumours, although it
will not be as high as if the 70 genes had been ranked on the basis of all 295
tumours rather than a subset of 61 tumours.

The example we have given also serves to make the point that care must be
exercised in comparing the error rates of two discriminant rules formed from
the same tissue samples of different sets of genes. For example, one rule r; may
be formed from a training set of n = M tissue samples of p = N genes, while
another rule ro might be formed using a subset of these /N genes, say, the top
100 genes. If a fair comparison is to be made between the error rates of these
two rules, then the error rate of the second rule 5 should not be estimated by
just working with the top 100 genes during the cross-validation. Rather, one
should start initially with the full set of NV genes and select the top 100 genes
on each stage of the training of r5 in the cross-validation trials.
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