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Abstract

There has been ever increasing interest in the use of microarray experiments as a basis for the provision of prediction (discriminant)
rules for improved diagnosis of cancer and other diseases. Typically, the microarray cancer studies provide only a limited number
of tissue samples from the specified classes of tumours or patients, whereas each tissue sample may contain the expression levels
of thousands of genes. Thus researchers are faced with the problem of forming a prediction rule on the basis of a small number
of classified tissue samples, which are of very high dimension. Usually, some form of feature (gene) selection is adopted in the
formation of the prediction rule. As the subset of genes used in the final form of the rule have not been randomly selected but
rather chosen according to some criterion designed to reflect the predictive power of the rule, there will be a selection bias inherent
in estimates of the error rates of the rules if care is not taken. We shall present various situations where selection bias arises in
the formation of a prediction rule and where there is a consequent need for the correction of this bias. We describe the design of
cross-validation schemes that are able to correct for the various selection biases.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Gene expression data; Selection bias; Discriminant analysis; Support vector machine; Cross-validation

1. Introduction

Finding a diagnostic test for cancer has been an important goal of cancer diagnosis research for three decades
(Ransohoff, 2005b). Recently, there has been increasing interest in changing the emphasis of tumour classification
from morphologic to molecular. To this end, attention has focussed on the use of data from microarrays to find genes
whose expression profiles are indicative of survival or the type of cancers. For example, accurately differentiating breast
cancers with an inherently bad prognosis from those with a good prognosis could have a major effect on the provision
of tailored and appropriate therapy. A clinically useful diagnostic tool would be based on some smaller set of genes
(marker genes) whose expression profile is related to outcome, chosen from the much larger set of genes measured in
the microarray experiment.

∗ Corresponding author. Department of Mathematics, University of Queensland, St. Lucia, Brisbane 4072, Australia. Tel.: + 61 7 3365 2150; fax:
+ 61 7 3365 1477.

E-mail addresses: j.zhu@imb.uq.edu.au (J.X. Zhu), gjm@maths.uq.edu.au (G.J. McLachlan), liatj@maths.uq.edu.au (L. Ben-Tovim Jones),
i.wood@qut.edu.au (I.A. Wood).

0378-3758/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2007.06.003

http://www.elsevier.com/locate/jspi
mailto:j.zhu@imb.uq.edu.au
mailto:gjm@maths.uq.edu.au
mailto:liatj@maths.uq.edu.au
mailto:i.wood@qut.edu.au


J.X. Zhu et al. / Journal of Statistical Planning and Inference 138 (2008) 374–386 375

Microarrays allow the routine assessment of mRNA transcript levels on a genome-wide scale, and represent a major
technological advance in molecular biology. However, the data-rich and highly dimensional nature of microarray data
means that there are a number of issues to be addressed in using these data to form diagnostic tests. In particular, there is
a need to be able to deal with the curse of dimensionality before microarrays can be used to provide reliable predictions
in medical diagnosis and prognosis applications. Typically, there are only a limited number of tissue samples from the
specified classes of tissues (tumours), whereas each tissue sample may contain the expression levels of thousands of
genes. Thus researchers are faced with the problem of forming a prediction rule on the basis of a small number of
classified tissue samples, which are of very high dimension. Usually, the final form of the prediction rule adopted will
use only a small subset of the originally available genes. As the subset of genes used in the final form of the rule have
not been randomly selected but rather chosen according to some criterion designed to reflect the predictive power of
the rule, there will be a selection bias inherent in estimates of the error rates of the rules if care is not taken.

Indeed, the potential to overlook serious selection biases in the reporting of results on prediction rules formed from
microarray data has led to claims that this may threaten the validity of cancer molecular–marker research (Ransohoff,
2005a). In addition, there have been questions raised in the literature over the validity of marker genes found in several
recent microarray cancer studies. It has been suggested that often the list of genes identified as predictors of prognosis
are highly unstable, and depend on the selection of patients in the training sets (Michiels et al., 2005).

We consider in depth the breast cancer study of van’t Veer et al. (2002), which has generated much discussion in the
literature. We also consider a further study from this group of researchers, which includes a larger set of patients (van
de Vijver et al., 2002). We shall describe various situations where selection bias arises in the formation of a prediction
rule and where there is a consequent need for the correction of this bias.

In presenting the results for selection bias, we shall focus exclusively on the support vector machine (SVM) with
linear kernel as the prediction rule, except in the last example where we also consider Fisher’s linear discriminant rule.
The SVM (with linear kernel) is comparable if not better than any other rule in the case of training data consisting of
a limited number of tissue samples containing the expression levels for thousands of genes (McLachlan et al., 2004,
Chapter 6). In any event, the choice of prediction rule is not crucial in our results on selection bias, as similar biases will
occur for any prediction rule formed on subsets of genes selected in a similar manner to that adopted in our applications
of the SVM.

2. Notation

Before we proceed to discuss the selection bias problem in estimating the accuracy of a prediction rule, we need to
introduce some notation. Also, we need to define formally the prediction rules to be considered and the methods of
error-rate estimation to be adopted.

In the present context, the problem is to construct a prediction (discriminant) rule r(y) that can accurately predict the
class of origin of a tumour tissue with feature vector y, which is unclassified with respect to a known number g(�2)

of distinct tissue types, denoted here by C1, . . . , Cg . Here the feature vector y contains the expression levels of a very
large number p of genes (features). If r(y)= i, then it implies that y should be assigned to the ith class Ci (i =1, . . . , g).
In applications concerned with the diagnosis of cancer, one class C1 may correspond to cancer and the other (C2) to
benign tumours. In applications concerned with patient survival following treatment for cancer, one class (C1) may
correspond to the good-prognosis class and the other C2 to the poor-prognosis class. Also, there is interest in the
identification of “marker” genes that characterize the different tissue classes. This is the feature selection problem. In
the situation where the intention is limited to making an outright assignment to one of the possible classes, it is perhaps
more appropriate to use the term prediction rather than discriminant to describe the rule. However, we shall use either
nomenclature regardless of the underlying situation. In the pattern recognition jargon, such a rule is referred to as a
classifier.

In order to train the prediction rule, there are available training data t consisting of n tissue samples of known
classification. These data are obtained from n microarrays, where the jth microarray experiment gives the expression
levels of the p genes in the jth tissue sample yj of the training set. The vector

t = (yT
1 , zT

1 , . . . , yT
n, zT

n)T, (1)
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denotes the training data, where

zj = (z1j , . . . , zgj )
T

is the class-indicator vector, and zij is one or zero according as yj comes from the ith class Ci or not (i =1, . . . , g; j =
1, . . . , n). We shall write the sample rule formed from the training data t as r(y; t) to show its dependence on the
training data t.

2.1. Different types of error rates

For a given realization t of the training data T, it is the conditional or actual allocation rates of a sample prediction
rule r(y; t) that are of central interest. They are given by

ecij = pr{r(Y; t) = j |Y ∈ Ci, t} (i, j = 1, . . . , g). (2)

That is, ecij is the probability, conditional on t, that a randomly chosen observation from Ci is assigned to Cj by r(y; t).
The unconditional or expected allocation rates of r(y; t) are given by

euij = pr{r(Y; T) = j |Y ∈ Ci}
= E{ecij } (i, j = 1, . . . , g).

The unconditional rates are useful in providing a guide to the performance of the rule before it is actually formed from
the training data.

Concerning the error rates specific to a class, the conditional probability of misallocating a randomly chosen member
from Ci is

eci =
g∑

j �=i

ecij (i = 1, . . . , g).

The overall conditional error rate for an entity drawn randomly from a mixture G of C1, . . . , Cg in proportions
�1, . . . , �g , respectively, is

ec =
g∑

i=1

�ieci .

The individual class and overall unconditional error rates, eui and eu, are defined similarly.
If r(y; t) is constructed from t in a consistent manner with respect to the Bayes rule ro(y), then

lim
n→∞ eu = eo,

where eo denotes the optimal error rate. Interest in the optimal error rate in practice is limited to the extent that it
represents the error of the best obtainable version of the sample-based rule r(y; t). The Bayes or optimal rule ro(y) is
defined by

ro(y) = arg max
i

�i (y), (3)

where

�i (y) = pr{Y ∈ Ci | y}
= �ifi(y)/f (y) (4)

is the posterior probability that y belongs to the ith class Ci(i = 1, . . . , g). Here fi(y) denotes the density of y in class
Ci and

f (y) =
g∑

i=1

�ifi(y) (5)

is the unconditional density of y.
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3. Prediction rule

3.1. Fisher’s linear rule

In presenting the results on selection bias in this paper in the case of g = 2 classes, we shall focus on the use of the
SVM, but we also use Fisher’s linear rule in the last example.

For Fisher’s linear rule, r(y; t) = 1 or 2 according as

�0 + �Ty (6)

is greater or less than zero, where

�0 = − 1
2 (ȳ1 + ȳ2)

TS−1(ȳ1 − ȳ2) (7)

and

� = S−1(ȳ1 − ȳ2). (8)

In (7) and (8), ȳi denotes the sample mean of the ni observations from class Ci(i = 1, 2), and

S =
g∑

i=1

n∑
j=1

zij (yj − ȳi )(yj − ȳi )
T/(n − g) (9)

is the pooled within-class sample covariance matrix.

3.2. Support vector machine (SVM)

For an SVM with linear kernel, the rule r(y; t) is 1 or 2 according as the sign of (6) is positive or negative, where
�0 and the vector � = (�1, . . . , �p)T are chosen to maximize the distance between the separating hyperplane and the
nearest point in any of the classes. When the data are not separable, there is no separating hyperplane; in this case, the
aim is still to try to maximize the margin but allow some classification errors subject to the constraint that the total
error (distance from the hyperplane on the wrong side) is less than a constant (Vapnik, 1998).

4. Feature reduction

As the number of genes is much greater than the number of tissues, consideration is usually given initially to reducing
the number of genes. Frequently, this is undertaken in some ad hoc manner before a more formal method of feature
selection is adopted in conjunction with the choice of prediction rule. Two formal methods of feature selection are
considered in this paper in presenting the results on selection bias. One is based on the ratio of the between-class sum
of squares to the within-class sum of squares, while the other is based on the size of the weights of the SVM.

For a given feature variable (gene), the ratio of the between-class sum of squares to the within-class sum of squares
on their degrees of freedom can be expressed as the following:

Fv = (B)vv/(S)vv , (10)

where

B = 1

g − 1

g∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)T (11)

and S is defined by (9). When g = 2, Fv is equal to the square of the pooled two-sample Studentized t-statistic.
The other method used here to rank the genes with applications of the SVM is based on the size of the magnitude of

the coefficient �v of the expression level of the vth gene in forming the linear combination (6). This is called a wrapping
method, as the gene reduction method is embedded in the prediction rule.
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Guyon et al. (2002) have proposed that the feature variables be selected according to a backward elimination process,
which they call recursive feature elimination (RFE). It starts by considering all available features. Each step consists in
ranking the features according to the order of magnitude of their associated coefficients (weights) �i , and then discarding
the bottom-ranked variables. The SVM is then refitted to the remaining genes, which are then reranked according to
their new weights. Again, the bottom-ranked genes are discarded, and so on. In the examples to be presented here, we
follow the practice adopted by Guyon et al. (2002) and first discard enough bottom-ranked genes so that the number
retained is the greatest power of 2 (less than the original number of genes). We then sequentially proceeded to discard
half the current number of genes on each subsequent step.

As noted by Guyon et al. (2002), the process can be refined at the expense of greater computational time by deleting
fewer variables on each step. One suggested procedure is to apply RFE by removing chunks of features in the first few
iterations and then removing one feature at a time once the feature set size reaches a few hundred.

5. Error-rate estimation

We consider now the estimation of the error rates associated with a discriminant rule r(y; t) formed from some
realized training data t. It is the conditional or actual error rates of r(y; t) that are of central interest once the training
data t have been obtained. We let ec(t) denote the overall conditional error rate of r(y; t). This error rate, which is
conditional on the training data t, also depends on the class-conditional distributions. But this dependence is suppressed
here for simplicity of notation.

5.1. Cross-validation

An obvious and easily computed nonparametric estimator of the conditional error rate ec(t) of r(y; t) is the apparent
error rate A of r(y; t) in its application to the observations in t. That is, A is the proportion of the observations in t
misallocated by r(y; t). Thus we can write

A = 1

n

g∑
i=1

n∑
j=1

zijQ[i, r(yj ; t)], (12)

where for any u and v, Q[u, v] = 0 for u = v and 1 for u �= v.
One way of almost eliminating the bias in the apparent error rate is through the leave-one-out (LOO) technique as

described by Lachenbruch and Mickey (1968) or cross-validation (CV) as discussed in a wider context by Stone (1974)
and Geisser (1975). For the estimation of ec(t) by the apparent error rate A, the LOO cross-validated estimate is given
by

A(CV) = 1

n

g∑
i=1

n∑
j=1

zijQ[i, r(yj ; t(j))], (13)

where t(j) denotes t with the point yj deleted (j = 1, . . . , n). Hence before the sample rule is applied at yj , it is deleted
from the training set and the rule recalculated on the basis of t(j). This procedure at each stage can be viewed as the
extreme version of the holdout method where the size of the test set is reduced to a single entity.

5.2. q-Fold CV

CV is often carried out, removing large blocks of observations at a time. Suppose, for example, that the training set
is divided into, say q blocks, each consisting of m data points where, thus, n = qm(m�1). Let now

t(k) = (yT
1 , . . . , yT

(k−1)m, yT
km+1, . . . , yT

n)T;
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that is, the training set after the deletion of the kth block of m observations. Then the q-fold cross-validated error rate
is given by

A(qCV ) =
g∑

i=1

m∑
j=1

q∑
k=1

zijQ[i, r(y(k−1)m+j ; t(k))]/n, (14)

which requires only q recomputations of the rule.
The choice of q = n (LOO) does not perturb the data enough and results in higher variance. With q = 2, the training

sets are too small relative to the full training sets. The values q = 5 or 10 are a good compromise.
For q-fold CV, there is an easily computed estimate of the standard errors of the estimated error rates A(qCV). It is

given by the standard error of the q error rates that are obtained when the discriminant rule is applied to the q validation
subsamples during the CV. This standard error of A(qCV) is

SE(A(qCV)) =
[

1

q(q − 1)

q∑
h=1

(A
(qCV)
h − A(qCV))2

] 1
2

, (15)

where A
(qCV)
h is the error rate when the rule formed from the hth training subsample is applied to the hth validation

subsample. Similarly, the standard errors of the individual q-fold cross-validated error rates can be formed.

6. Error-rate estimation with selection bias

Caution has to be exercised in selecting a small number of variables from a large set, as there will be a selection
bias associated with choosing the optimal of a large number of possible subsets, regardless of the criterion. In such
situations, it is important to distinguish between what we shall call an ordinary or internal CV of the prediction rule
and a so-called external CV. We shall see that it is by an appropriate external CV that we are able to correct for the
various types of selection bias in forming rules from a very large number of feature variables on the basis of limited
training data points of known classification.

6.1. External CV

We now describe external CV for a rule formed from a subset of the available feature variables. Let y(s) denote
the subvector of y formed from the subset s of the full set of p variables, and let r(y(s); t(s)) denote some arbitrary
prediction rule formed from the classified training data t(s) on the subvector y(s). Suppose that so defines the subset

of feature variables of some specified size pso that minimizes some criterion, say, A(CV)(t(s)), over all possible
(

p
pso

)
distinct subsets s of size pso . Although A(CV)(t(s)) may be an (almost) unbiased estimator of the overall conditional
error rate of the rule r(y(s); t(s)), A(CV)(t(so)) is obviously not providing an almost unbiased estimate of the error rate of
r(y(so); t(so)), as it is obtained by taking the smallest of the estimated error rates after they have been ordered according
to their size. Here the (LOO) cross-validated estimate is given by

A(CV)(t(so)) = 1

n

g∑
i=1

n∑
j=1

zijQ[i, r(y(so)
j ; t(so)(j) )], (16)

where t(so)(j) denotes the training data t(so) with (y(so)
T

j , zT
j )T deleted.

In order to reduce the selection bias which is still present in the estimate (16), an external CV should be performed
whereby the selection process is undertaken for each deletion of a feature vector from the training set. This externally
cross-validated estimate of the overall error rate of r(y(so); t(so)) is given by

A(CVE)(t) = 1

n

g∑
i=1

n∑
j=1

zijQ[i, r(y(soj )

j ; t
(soj )

(j) )], (17)
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where soj denotes the optimal subset, according to the adopted selection criterion applied to the training data t(j) without
(yT

j , zT
j )T. As the notation implies, the selected subset soj for the allocation of the jth observation may be different for

each j (j = 1, . . . , n).
It is this reselection of a new subset soj from the training subsample on the validation trial for the jth tissue that is

crucial in eliminating the selection bias, which would be present in the estimate if the subset so from the full training
set were used on each trial.

7. Selection bias: optimal subset of fixed size

We firstly demonstrate the selection bias that can occur when we estimate the error rate of a prediction rule based on
a subset of the available genes via CV without taking into account that the subset has been selected in some optimal
way. We consider a subset of the data set in van’t Veer et al. (2002). This data set contains the expression levels of
24,881 genes in 98 primary breast cancers acquired from three classes of patients: 44 representing a good-prognosis
class (that is, those who remained metastasis free after a period of more than five years), 34 from a poor-prognosis
class (those who developed distant metastases within five years), and 20 representing a hereditary form of cancer, due
to a BRCA1 (18 tumours) or BRCA2 (two tumours) germline mutation. The 78 sporadic (non-BRCA) breast cancer
patients were chosen specifically on the basis of their clinical outcome and they were used to form the two classes
(good- and poor-prognosis classes) in this example. van’t Veer et al. (2002) identified a set of 70 genes with expression
profiles associated with the risk of early metastasis (the poor-prognosis class) for the 78 patients with sporadic breast
cancer.

After adopting the same filtering procedure used in van’tVeer et al. (2002) for these 78 sporadic breast cancer patients,
the data set to be considered here consisted of the expression levels of some 5422 genes. We applied a SVM with RFE
to these data, and the (10-fold) cross-validated error rates at each stage of the selection procedure are displayed in
Table 1. The first column gives the error rate A(10CV) without an external CV being implemented, while the second
column gives the increased estimate A(10CVE) using an external validation. More specifically, consider the entries of
0.15 and 0.29 for A(10CV) and A(10CVE), respectively, for the SVM formed from the remaining eight genes during the
RFE process. With the former, the subset of eight genes as obtained by RFE applied to the full data set is used on each
of the 10 validation trials. But with the latter, the selection procedure RFE is run on each of the ten validation trials,
starting with all the genes, to obtain a possibly new reduced subset of eight genes. That is, it uses the 10-fold version
of (17). As noted by Ambroise and McLachlan (2002), this selection bias is often overlooked in the bioinformatics
literature.

The fact that we do not always obtain the same eight genes on each on the 10 validation trials can be used to identify
potential marker genes. To look at this for the current example, we have listed in Table 2 the genes obtained on each of

Table 1
Cross-validated error rates of SVM with RFE applied to 5422 genes on n1 = 44 good-prognosis patients (C1) and n2 = 34 poor-prognosis
patients (C2)

Number of genes Internal CV error rate External CV error rate

1 0.28 0.40
2 0.19 0.40
4 0.21 0.42
8 0.15 0.29
16 0.18 0.38
32 0.12 0.38
64 0.10 0.33
128 0.12 0.32
256 0.17 0.29
512 0.15 0.31
1024 0.19 0.32
2048 0.22 0.35
4096 0.31 0.37
5422 0.37 0.37
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Table 2
Selection frequency of genes in external cross-validation of error rate for SVM based on eight genes retained using RFE

Frequency of retention in eight-gene subset Gene labels

8 2510
7 1531
6 2316
5 902 4750
4 1747 2226
3 1416 3386
2 4401 4953
1 355 416 1055 1269 1360 1609 1680 1732

2191 2207 2287 2469 2719 2876 3027
3112 3362 3389 3518 3925 4156 4474
4624 4660 4861 4972 5001 5060 5115
5134 5334

Table 3
Cross-validated error rates of SVM with RFE applied to the top 70 genes on n1 = 44 good-prognosis patients (C1) and n2 = 34 poor-prognosis
patients (C2) without bias correction for starting with a top subset of the genes

Number of genes Internal CV error rate External CV error rate

1 0.28 0.40
2 0.19 0.31
4 0.17 0.24
8 0.17 0.23
16 0.18 0.22
32 0.19 0.19
64 0.23 0.23
70 0.23 0.23

the 10 validation trials during CV. The gene labels simply refer to the position of that gene in the set of 5422 genes and,
for the genes discussed below, the gene identifier or gene name where known is given in parentheses. The eight-gene set
obtained for SVM with RFE on the full data set consists of the genes labelled 3979 (Contig50129_RC), 902 (U72507),
1747 (WISP1), 1269 (LOC57110), 1531 (ALDH4), 4750 (OXCT), 2226 (Contig48328_RC), and 2510 (AL080059).
Except for the first gene, all of these are included in the van’t Veer subset of 70 genes.

It can be seen from Table 2 that there is one gene (2510, AL080059) that is selected on eight of 10 validation trials.
Gene 1531 (ALDH4) is selected on seven of the 10 validation trials, while gene 2316 (AA555029_RC) is selected on
six of the 10 trials. The genes 2510, 1531 and 2316 are ranked 1, 6 and 5, respectively, in the 70 genes of van’t Veer et
al. (2002). In Table 2, we have listed in boldface those genes (six in number) that are among this top 70 subset.

8. Additional selection bias from preliminary screening

The selection of the 70 genes by van’t Veer et al. (2002) was carried out on the basis of the correlation between the
gene expression profile and the class label, which is equivalent to using the (pooled) two-sample t-statistics; that is,
using (10) in the case of g = 2. They called these 70 genes the prognostic marker genes. In Table 3, we list the ordinary
10-fold cross-validated error rate A(10CV) and the 10-fold externally cross-validated rate A(10CVE) for the SVM with
RFE applied to these 70 “top” genes. These error rates are plotted in Fig. 1.

On comparing the values for the externally cross-validated error rate A(10CVE) for the SVM based on less than 70
genes with those obtained from starting with the full set of 5422 genes as in Table 3, it would appear that it is beneficial
for predictive purposes to first select a top set of genes according to the t-statistic and then run SVM with RFE on this
top subset rather than starting with all the genes. This is contrary, however, to the widely held view that the performance
of the SVM is not unduly affected by forming it on the basis of the set of all available genes, even though the latter
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Fig. 1. Plot of internally and externally cross-validated error rates for SVM applied with RFE to the top 70 genes.

Table 4
Cross-validated error rates of SVM with RFE applied to the top 70 genes on n1 = 44 good-prognosis patients (C1) and n2 = 34 poor-prognosis
patients (C2) with bias correction for starting with a top subset of the genes

Number of genes External CV error rate using top 70 genes with External CV error rate using 5422 genes
bias correction for using just this subset

1 0.40 0.40
2 0.37 0.40
4 0.40 0.42
8 0.32 0.29
16 0.33 0.38
32 0.35 0.38
64 0.32 0.33
70 0.32
128 0.32
256 0.29
512 0.31
1024 0.32
2048 0.35
4096 0.37
5422 0.37

may be very large in magnitude. This apparent conflict is resolved on realizing as in Zhu et al. (2005) that there is a
selection bias due to working with a relatively small subset of the available genes selected in some “optimal” way.

To demonstrate this selection bias for this data set, we list in Table 4 the values of A(10CVE) for the SVM with RFE
applied to the 70 top genes, but where now the external CV is implemented to remove the bias due to starting with an
optimally selected subset. That is, on each of the 10 validation trials, the t-statistics for the 5422 genes were calculated
for the training subsample and the top 70 genes selected for the subsequent application of RFE to them.

It could be argued that there is still a residual selection bias in the externally cross-validated estimates in Table 4,
since the 5422 genes are a subset of the full set of 24,481 genes, which have not been randomly selected but have been
chosen to be useful in some sense. This has been investigated in Zhu et al. (2005), who concluded that the initial set of
genes has to be relatively small relative to the total number of genes available for this bias to be of practical significance.
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Table 5
Cross-validated error rates starting with 70 genes versus all available genes with missing values in the latter handled by either substituting zero or
k-NN estimate

Number of genes External CV error External CV error External CV error rate
rate using 70 genes rate using original using original 24,481
(without correction for bias from 24,481 genes (missing genes (using k-NN for
using just these 70 genes) values set to 0) missing values, k = 10)

1 0.29 0.40 0.42
2 0.17 0.39 0.38
4 0.20 0.37 0.38
8 0.13 0.30 0.31
16 0.11 0.23 0.23
32 0.09 0.20 0.22
64 0.10 0.20 0.19
70 0.10
128 0.16 0.16
256 0.15 0.15
512 0.14 0.14
1024 0.13 0.15
2048 0.15 0.14
4096 0.15 0.14
8192 0.16 0.16
16,384 0.17 0.17
24,481 0.17 0.18

But this example does serve to make the point that in studies concerning classification results for microarray gene
expression data it is important that the expression levels of a sufficient number of the full set of genes be made available.
Otherwise, it would not be possible to confirm that the selection bias due to working with a top subset of genes is not
of practical significance.

It can be seen from Table 1 that the data in van’t Veer et al. (2002) consisting of the sporadic 78 breast cancers are of
limited discriminatory value. Subsequently, van’t Veer and colleagues (van de Vijver et al., 2002) considered a larger
set of 295 breast cancer tissue samples, which consisted of 61 of the 78 patients in van’t Veer et al. (2002) who were
lymph-node negative. The good- and poor-prognosis training samples were not based on outcomes but were actually
obtained by assigning them to the two classes on the basis of the gene-expression signatures for these 61 patients. More
precisely, each of the 234 new tissues was assigned to class C1 or C2 according to whether the correlation between its
gene-signature vector and the mean of the good-prognosis class C1 was greater or less than 0.4. Each of the 61 original
tissues was reassigned to C1 to C2 according to whether the (cross-validated) correlation between its gene-signature
vector and the mean of C1 was greater or less than 0.55 (a threshold that resulted in a 10% rate of false negatives in the
study of van’t Veer et al. (2002)).

For their expanded data set of 295 breast cancers, van de Vijver et al. (2002) listed only the expression levels for
the top 70 genes as found in the previous study of van’t Veer et al. (2002). In Table 5, we list in the first column
the externally cross-validated error rates at each stage of the RFE procedure applied to the 70 genes. However, as
the process is being started from a small subset of a much larger number (24,481) of available genes, there will be a
selection bias unaccounted for. But this bias would not be as large if the 70 genes being used were the top 70 for the
t-statistic based on all the 295 tissue samples rather than on 61 of them. The expression levels of all 24,481 genes were
later made available at http://microarray-pubs.stanford.edu/wound_NKI/ in the study by van’t Veer and van de Vijver
(Chang et al., 2005). Thus it is now possible to correct for this bias. The estimated error rates corrected for this bias are
listed in the last two columns of Table 5 for two methods of allowing for many missing values in the full data set. It can
be seen that this bias due to starting with the 70 genes is around 0.05 since the smallest error using them is 0.084 in
contrast to 0.136 by starting with all the genes (and using 10-NN neighbour estimates for missing values). Given that
the majority of the training samples in this data set of van de Vijver et al. (2002) are not based on outcomes and are not
random samples from the two classes, there will be a bias due to this, but we are unable to correct for it.

http://microarray-pubs.stanford.edu/woundNKI/
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Table 6
Ten-fold cross-validated error rates for SVM based on subset with minimum error rate in RFE process with and without bias correction for
optimization over subsets of varying sizes

Data set Error rate without bias correction for varying size Error rate with bias correction for varying size
of optimal subset of optimal subset

van’t Veer (5422 genes) 0.29 0.37
van’t Veer (70 genes) 0.093 0.11
Sharma 0.156 0.18
Alon 0.108 0.12

9. Selection bias: optimal subset of unrestricted size

In the previous examples, we have focussed on the need to correct for selection bias in estimating via CV the error
rate of a prediction rule based on subsets of a specified size (that is, specified a priori). We now consider the case where
the size of the selected subset is not specified a priori, but where the final form of the rule is based on the subset of
genes yielding the lowest estimated error rate over the subsets of different sizes considered. Given this minimization
over subsets of varying sizes, there is a further selection bias that needs to be corrected for. For example, in Table 1, the
externally cross-validated error rate has its lowest value of 0.29 for subsets with 8 and 256 genes. In this situation in
practice, the final form of the SVM would be based on the eight-gene subset. Hence if we are to use the SVM based on
the subset of genes that minimizes the externally cross-validated error rate over the retained subsets of genes of powers
of 2, we need to correct also for this bias. Thus on each of the 10 validation trials, we have to determine the subset of
genes that has smallest externally cross-validated error rate. That is, we have to carry out an external CV of the error
rate of the SVM for each training subsample in order to determine the subset of genes on which to base the SVM for
its application to the test subsample. There are thus two layers of CV being performed. The optimal subset of retained
genes may be of a different size on each validation trial.

On undertaking these two layers of CV, we find that the cross-validated error rate of the SVM based on the subset
with smallest error rate is 0.37, which is larger than the uncorrected value of 0.29. This result is given in Table 6 where
we also have listed the corresponding result for the van’t Veer et al. (2002) data set using only 70 genes and for two
other data sets from Alon et al. (1999) and Sharma et al. (2005). The former consists of the expression levels of 2000
genes in 62 tissue samples for 40 colon cancer and 22 normal patients. The latter consists of the expression levels of
1368 genes in 102 tissue samples for 40 breast cancer and 62 normal patients. It can be seen that this bias is of some
practical significance.

10. Selection bias: use of test set in selection

One way of avoiding the bias in the error rate as a consequence of the rule being tested on the same data from
which it has been formed (trained), is to use a holdout method. The available data are split into disjoint training and
test subsamples. The prediction rule is formed from the training subsample and then assessed on the test subsample.
Clearly, this method is inefficient in its use of the data, particularly in the context of microarray data, where the number
of tissue samples is usually limited.

The holdout method has been used in feature selection. The prediction rule is formed for various subsets from the
training subset and applied to the test subsample to provide estimates of the error rate for each subset of variables
(genes) under consideration. The subset having the lowest error rate is then chosen as the optimal subset and the final
version of the prediction rule is based on it. However, the error rate for this rule is not estimated unbiasedly by its error
rate on the holdout subsample. In order for the holdout method to provide an unbiased estimate, the test subsample
should play no role in the formation of the prediction rule. In the aforementioned selection method, the test subsample
plays a role in leading to the choice of the final form of the prediction rule. However, this is frequently overlooked in
the bioinformatics literature (Somorjai et al., 2003). It often leads to claims that a prediction rule can be formed from
only a few genes that has almost zero error rate.

To demonstrate this selection bias in using the test subsample to play a role in the choice of the genes, we first perform
a simple simulation experiment. The training subsample was taken to consist of n1 = n2 = 10 observations from each
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Table 7
Comparison of error rates with and without bias correction for selection bias for univariate version of Fisher’s linear rule

p Error rate (with bias correction) Error rate (without bias correction)

50 0.32 0.10
100 0.32 0.08
250 0.29 0.06
500 0.30 0.04

Table 8
Comparison of error rates with and without bias correction for selection bias for univariate version of SVM

p Error rate (with bias correction) Error rate (without bias correction)

50 0.33 0.10
100 0.33 0.09
250 0.31 0.06
500 0.29 0.04

of two classes in which the feature vector was taken to be multivariate normal with common covariance matrix equal
to the identity matrix and with mean zero in class C1 and mean (1, 1, . . . , 1)T in class C2. The dimension p of the
feature vector was taken to be equal to 50, 100, 250, and 500, and 200 simulations were performed for each value of
p. On each simulation, a univariate prediction rule was formed for each feature variable and its error rate estimated by
its application to the test subsample. The final form of the prediction rule was taken to be the version for that variable
leading to the lowest error rate on the test subsample. The error rate so obtained over the 200 simulations is given for
Fisher’s linear rule in Table 7 and for the SVM in Table 8. We also list in these tables an unbiased estimate of the error
rate obtained by an external LOO CV. With the latter, on each validation trial, the prediction rule is formed for the gene
that leads to the lowest error rate on the test subsample after deletion of an observation from the training subsample.

It can be seen from Tables 7 and 8 that, as one would anticipate, the selection bias becomes more marked as the
number of available genes for selection of the singleton subset grows in size. Even for a set of 100 genes, the selection
bias is large, as an external CV shows that the error rate for Fisher’s rule or the SVM rule formed from the optimal
selection of a single gene is approximately 33%, whereas the error rate without bias correction is 8%.

In this situation the selection bias is a serious issue since the separation between the classes is poor. The bias will be
of less importance if the classes are widely separated. To demonstrate this, we attempted to find the gene that minimizes
the error rate of the SVM applied to the test data of the leukaemia data set of Golub et al. (1999). They considered the
use of microarray data for differentiating between two different human acute leukaemias, namely acute lymphoblastic
leukaemia (ALL) and acute myeloid leukaemia (AML). These data consisted of the expression levels of some 7129
genes for 38 training tissues (27 from AML and 11 from AML) and 34 test tissues (20 from AML and 14 from ALL).
Using the SVM with linear kernel, it was found that three genes (1685, 2288, and 6855) gave the lowest error rate of
0.029 among all singleton gene subsets in their application to the test data set. On correction for bias, this error rate
estimate was increased to 0.059.

This leukaemia data set of Golub et al. (1999) has been widely studied, and we know that AML and ALL classes
are easily distinguished using expression levels, due to the nature of these cancers. Thus the selection bias is less of an
issue here. However, in reality, the problem of using prediction rules to separate known classes of cancer is rarely of
interest; rather the goal is to classify patients according to outcome. In addition, in the case of solid tumours, such as
breast cancers, the tissues are of a heterogeneous nature, making the gene expression profiles more difficult to interpret.
In these cases the subclasses are not so clear cut, and so the selection bias is an important issue in reporting the results
of prediction rules.
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11. Discussion

We have illustrated here the selection biases that can arise in practice when a prediction rule is formed from a subset
of a very large number of genes. Attention has concentrated on the use of the SVM as the prediction rule, but the choice
of this rule is incidental to the existence of the selection bias. The focus has been on the design of CV schemes to
correct for these selection biases. We have demonstrated how it is possible to correct for selection bias by using an
appropriate form of CV (an external CV) where the choice of subset is reconsidered on each validation trial of the CV
process. A situation where it is not possible to completely correct for the selection bias occurs when the user-supplied
data set gives only the expression levels of a subset of the leading genes according to some criterion and not the full set
of genes. It can been seen from the size of the biases exhibited in the examples that selection bias is a serious issue. If it
is overlooked with applications of prediction rules for diagnosis and prognosis, it can lead to a grossly overoptimistic
assessment of their accuracy and hence of their usefulness in the detection and management of diseases.
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