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Abstract

We study Reed-Muller codes and ‘Berman’ codes as abelian codes. We show that the duals
of Berman codes and Reed-Muller codes can be considered as belonging to the same family
of abelian codes. We also determine the minimum distance and state complexity (SC) of
the duals of Berman codes. Each of the classical parameters generalizes that of Reed-Muller
codes in the obvious way, but the state complexity does not. We conclude by comparing
the asymptotic behaviour of the SC of the duals of Berman codes with that of the obvious
generalization of the SC of Reed-Muller codes.
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1 Introduction

1.1 Abelian codes. All the codes that we consider are binary (linear block) codes. Abelian codes
can be thought of as ‘m-dimensional cyclic codes’. Thus a cyclic code is an ideal in F» [X]/(X™—1)
and an abelian code is an ideal in

F>[X1,. .., X
(Xm —1,...,Xm —1)°

Abelian codes were introduced by Berman in [4, 5]. They have been studied in [1, 11, 12, 13, 17, 20]
and elsewhere; for an overview see [9, Section 4.8]. The abelian codes that we are interested in
have ny = --- = n,, = p, where p is prime. Such an abelian code is semisimple if p is odd and

modular if p = 2.

In [4] Berman shows that Reed-Muller (RM) codes are modular abelian codes. Evidence that

the generalization from semisimple cyclic codes to semisimple abelian codes is a valuable one is
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presented in [5]. In particular, Berman gives an explicit description of a family of semisimple
abelian codes, which he shows contains codes which are asymptotically better than any family of
semisimple cyclic codes with the same lengths. In showing this, Berman determines the rates and
minimum distances of the family of codes containing the asymptotically superior codes. We refer
to this family of codes as Berman (B) codes. We give Berman’s definition of B codes in Section 2.
Here we note that a B code with parameters [p™, > 7 .| (%) (p—1)%,2"""] exists for each odd prime
p and integers m > 1, 0 < r < m. We denote this code by B,(r,m). We show that the minimum
distance of By (r,m)* is p™~". Thus the parameters of B,(r,m)* are [p™, >, (7)(p—1),p™ "],

generalizing the parameters of RM codes from the case p is 2 to the case p is an odd prime.

1.2 State complexity. Subsequent to Berman’s papers, the state complexity (SC) of a code has
been introduced and considered as the fourth code parameter, [21]. SC is used as a measure of the
complexity of trellis decoding algorithms, such as the Viterbi and sequential decoding algorithms,
[22]. Thus it is desirable that the SC of a code be small. It is known that the SC of a code is equal
to the SC of its dual, [15]. The Wolf bound, implicit in [23], says that the SC of an [n, k] code
is no more than min{k,n — k}. Unlike the classical code parameters, the SC of a code can differ

according to the way that the coordinates are ordered.

The SCs of cyclic, shortened cyclic and extended cyclic codes reach the Wolf bound, [18]. However,
the SC of composite length cyclic codes can be reduced by considering them as two-dimensional
cyclic codes, [3]. The SC of RM codes can also be reduced by regarding them as abelian codes
rather than as extended cyclic codes. In fact, the standard coordinate order of an RM code as an
abelian code is optimal with respect to SC, [19]. Thus, as well as the generalization from cyclic
to abelian codes being valuable with regard to the classical code parameters, abelian codes can
also have lower SC than cyclic codes. Here we consider the SC of B codes with their standard

coordinate order.

Ever since the early days of trellis theory, the trellis structure of RM and related codes has received
a lot of attention, [2, 8, 6, 7, 15, 16, 19, 22] among others. In particular, a closed form for the
SC of RM codes (with their their standard coordinate order as abelian codes) is given in [2] and
a closed form for the SC of g-ary RM codes is given in [6]. Since the classical parameters of B+
codes generalize those of RM codes it is natural to consider the SC of B,(r,m)*. Since a code

and its dual have the same SC, this will also give the SC of B,(r, m).

1.3 Organization of the paper. In Section 2 we describe B,(r,m), B,(r,m)* and the close
connection between these codes and RM codes as abelian codes. We also show here that the

L is p™~" so that the parameters of B,(r,m)* generalize those of

minimum distance of B (r,m)
RM(r,m). In Section 3, we give a closed form for the SC of B, (r, m)* with its standard coordinate
order as an abelian code. The closed form is a combinatorial sum depending on p, r and m, which
we denote s2(r,m). In Section 4 we compare the asymptotic behaviour of s2(r,m) and another

combinatorial sum, s.(r,m); s.(r,m) yields the SC of RM(r,m) when p = 2. The comparison



is done for r = |Am|, where 0 < A < 1. Our analysis in particular applies to the asymptotic

behaviour of the SC of RM codes. We are led to a new measure of the asymptotic behaviour

of SC that may prove useful for other codes. With this measure, the asymptotic behaviours of
1

sp(r,m) and s2(r,m) are both equal to H,()), where H, is the p-ary entropy function.

A preliminary account of these results and some others appeared in [7].

2 Berman codes, their duals and Reed-Muller codes

We begin this section by describing ‘Berman’ (B) codes and their duals, B+ codes. As noted in
the Introduction, our original interest in B codes is as a family of semisimple abelian codes that
contains codes asymptotically superior to any family of semisimple cyclic codes with the same

lengths. More precisely, it is shown in [5] (see also [9]) that

o if (C;);>1 is a sequence of semisimple cyclic codes with parameters ([n;, ks, d;])i>1 such that

x1i

(i) ni = p;
then there exists a K such that d; < K for all ¢; and

-p%=i for some fixed primes p1,...,ps and (ii) k;/n; is asymptotically non-zero,

e for each odd prime p, there exist a sequence (Bz')z'31 of semisimple abelian codes with pa-

rameters ([p, ki, d;])i>1 such that k;/p* — 1 and d; — oc.

We continue by showing that RM codes and B codes are together those abelian codes generated
by Ep(r,m) (defined below) for all primes p. Of these codes, RM codes are the modular ones
(p = 2) and B codes are the semisimple ones (p an odd prime). We also determine the minimum
distance of B+ codes, thus showing that their parameters generalize those of RM codes from the
case p = 2 to the case p is an odd prime in the obvious way. Most of the results of this section are

stated and proved in the appendix.

2.1 B, B+ and RM codes as abelian codes. For a prime p and integer m > 1 we write Apm

for
Fo[X1,..., Xm)

XP—1,.. ,Xo 1)

We identify a polynomial
p—1 p—1
S S o XiT - X € Ay

41=0 im=0

with its vector of coefficients ordered lexicographically with X; < X < --- < Xy,

(f00~~~03 s 5f(p71)0~~~05 L) fi1~~~im PR fO(pfl)m(pfl)) R f(pfl)(pfl)“{pfl))‘
Then an ideal of A, is an abelian code.

For an abelian code C, we write CV for the check code of C,

CV={g€eApm:f-g=0foral feC}.



Also, for G C Ay, we write (G) for the ideal of A, ,,, generated by G.

Now, for 1 < j < m, we put e,(X;) =1+ X; +---+X]’.’_1. Then, for m > 1 and 0 < r < m we
define Ep(r,m) to be the set of all products of the form

(1+ep(X5,)) -~ (1 +ep(X5,)) - ep(Xj i) - (€n(Xin),

where {j1,...,Jm} = {1,...,m} and 0 < s < r. For odd primes p, the codes (E,(r,m))" are
studied in [5]. Thus, when p is an odd prime, we call (E,(r,m))" a Berman (B) code and denote
it by B,(r,m). In fact, (E,(r,m))V = (E,(r,m))" (Proposition A.1 in the appendix), so that
B,(r,m)* = (E,(r,m)). Since we have a set of ideal generators for B,(r,m)", it is easier to
work with B,(r,m)* than with B,(r,m). Thus, for example, in Section 3 we determine the state

complexity of B,(r,m) by finding the state complexity of B,(r,m)*.

EXAMPLE 2.1 We takep=3, m =2 andr =1. Then

E3(1,2) = (+X1+ X))+ Xo+ XD, (X1 + XH(1+ X2+ X2),(Xo + X2)(1 + X1 + XP))
= TFy-Span{(1+ X; + X?)(1 + Xo + X3), (X1 + X?)(1 + X2 + X3),
(Xo+ XA+ X1+ XD), 1+ X1)A + X0+ X3), (14 Xo)(1 + X1 + XD)}.
Thus _ -
111111111
011011011
000111111
101101101
11100011 1

is a generator matriz for B3(1,2) and Bs(1,2)* is a [9,5,3] code. Since e,(X)(1+ X) = 0 in
A3, we have that (1 + X1)(1+ X») € E5(1,2)Y = Bs(1,2). Since B3(1,2) is a [9,4] code, we get

the generator matrix

110110000
011011000
000110110
000011011
for B3(1,2) (by multiplying (1+ X1)(1+ X2) by 1, X1, Xy and X1X5). Thus B3(1,2) is a [9,4,4]

code.

As well as being a useful tool for the study of the state complexity of B codes, Bt codes are
a natural generalization of RM codes. Firstly RM(r,m) = (Ea(r,m)) (Proposition A.2 of the
appendix). Thus RM codes and B+ codes can be considered together as a single family of binary
abelian codes—those generated by E,(r,m) in A, ., for all primes p. Secondly we will show that

the parameters of B+ codes generalize those of RM codes.



2.2 The minimum distance of B,(r,m)-. We begin by giving an iterative description of
B,(r,m)* that allows us to easily determine its minimum distance by induction. This iterative
description is also convenient for the determination of the state complexity of B,(r,m)*, which we
do in Section 3. As usual, for vector spaces V,W C A4, ,, with VNW = {0} we write V @ W for
the direct sum of V and W.

It is well-known that RM codes can be defined iteratively by means of the (u|u + v) construction.
Thus
RM(r,m) = {(ulu) : w € RM(r,m —1)} & {(0|v) : v € RM(r—1,m —1)},

where (a|b) denotes the concatenation of a and b. It is not immediately clear how the (u|u + v)
construction should be generalized for the concatenation of ay, ..., a, when p > 3. For our purposes

it is better to rewrite the decomposition of RM(r,m) as

RM(r,m) = {(ulu):u € (E2(r,m —1)\ Ex(r—1,m —1))}
&{(v1|v2) 1 v1,v2 € RM(r —1,m —1)}.

(That the sum is direct is easy to show using the facts that e2(X;)? = 0 and e2(X;)(1 +e2(X;)) =

e2(X;).) We generalize this decomposition to B+ codes.

We adopt the conventions that B,(—1,m)* = {0} and By(m + 1,m)* = A, ,,. Then for m > 2
and 0 <r < m we put

p—1
B (r,m) = {Zf, XL fore ooy foo1 € Bp(r —1,m — 1)l}
=0

and
By(r,m) ={f - ep(Xm) : f € (Bp(r,m = 1)\ By(r — 1,m —1))}.
In terms of vectors we have that

Bgl)(Tam) = {(f0| |fz)) : an"'Jf;D € BP(T -1,m- l)J_}

and
By (r,m) = {(f|---[f) : f € (Bp(r,m = 1)\ By(r —1,m —1))}.

Then, (Lemma A.3 of the appendix),

B,(r,m)* = le,(r, m) ® Bf,(r, m).

EXAMPLE 2.2 We have that B1(1,2) = {212:0 fi- X% fo, f1, fo € B3(0,1)1}. Since B3(0,1)+ =
{0, e3(X1)} = {(000), (111)} we get

B§(172) = {ep(X1)(ao + a1 Xo + 042X§) tag,ar,a €}

{(050060()&0|(110£1041|(12042042) L Qp,01,09 € ]FQ}



Also B2(1,2) = {f - ep(Xp) : f € (E3(1,1)\ E5(0,1))}. Since E3(1,1)\ E5(0,1) = (I +e3(X1)) =
{(000), (011), (101), (110)}, we get

B2(1,2) (X1 +ep(X1)(1 +ep(X2)) : 0< iy <2}

{(000000000), (011011011), (101101101), (110110110)},

and B3(1,2)*+ = Bi(1,2) ® B2(1,2).
We conclude this section by determining the minimum distance of B, (r,m)*.
PROPOSITION 2.3 Form > 1 and 0 < r < m, the minimum distance of By(r,m) is p™ .

PRrooOF. The proof is by induction on m. The result clearly holds for m = 1, so we assume that

the minimum distance of B, (r, k)" is p*~" for all 0 < r < k.

Take 0 < r < k+1. We show that, for fo,..., f, 1 € Bp(r—1,k)* and f € (E,(r,k)\ E,(r—1,k)),
not all zero, the weight of f' = ( b fi -X,lc+1) + f - ep(Xk41) is at least pF+1~7 and that some

such f’ has weight p*+1=". The result then follows from Lemma A.3. There are two cases.

(i) If f # 0 then 0 < r < k. We can write f' = ;D;()l(fl + f) - X}, and since each of the f; + f
are in By(r, k)1 and non-zero, the weight of f is at least p - pF=".

(ii) If f = 0 then f; # 0 for some 0 < ! < p — 1 and the weight of f' = Ef’;ol fi - X' is at least

k—(r—1) k+1—r

. Moreover taking a single non-zero f; of weight p gives an f' of this weight. O

p

In [5] it is shown that, for all odd primes p and integers m > 1, 0 < r < m, By(r,m) is a
™, >, 1 (7)) (p — 1)%,271] code. Thus, for all primes p, the classical code parameters of the
abelian code (E,(r,m)) are [p™, > 7_o (") (p—1)",p™ "] and those of its dual are [p™, Yt (™) (-
1)1', 2r+1]‘

REMARK 2.4 The proofs of Lemma A.3 and Proposition 2.3 do not use the fact that p is odd or
prime. Thus starting with [n,1,n] and [n,n,1] codes and defining BL(r,m) and B2(r,m) analo-
gously to Bll, (r,m) and Bf, (r,m), we could iteratively construct a family of codes having parameters

[n™, Yo (7)(n —1)",n™"] for eachn >2,m>1and 0 <r < m.

i=

3 State complexity of Berman codes

Let C be a length n linear code. For 1 < i < n the i* past truncated code of C is P;(C) =
{(c1,---,¢i) = (c1,---,¢,) € C} and the ith future truncated code of C is F;(C) = {(ciy1,---,¢n) :
(c1y--.,¢n) € C}, [15]. The state space dimension of C at level i is then given by

5;(C) = dim(P;(C)) + dim(F;(C)) — dim(C). 1)



The state complezity (SC) of C, s(C), is defined by

s(C) = max{s;(C):1<i<n}.

It is known that the SC of RM codes is minimised by their standard coordinate order and that
under this coordinate order s(RM(r,m)) = si(r,m), where

min{r,m—r—1} (m —9i—1

szl,(r, m) = Z

i=0

>(p -1

r—1

[18, 19]. The coordinate order of abelian codes given in Section 2 (given by ordering the monomials
of A, , lexicographically with X7 < Xy < --- < X,,,), generalizes the standard coordinate order of
RM codes, and so we refer to it as the standard coordinate order of abelian codes. Given the results
of Section 2, it could be expected that the SC of B, (r, m)* with its standard coordinate order would
be s;(r,m). We show here that, in fact, the SC of By (r,m)* with its standard coordinate order is

T

sanmw=§j(mﬁf23yp—n“f

=0
It seems important that the dual of a RM code is a RM code, but that the dual of B code is not a

B+ code. We always have that s} (r,m) < s2(r,m) and the inequality is strict when 2 < r <m—1.

2

5(r,m) is less than the Wolf bound and, as we shall see, is asymptotically similar to

However, s

sp(r,m).

We use the decomposition of By (r,m)* as B} (r,m) @ BZ(r,m) described in Section 2 by applying
the following easily-proved lemma.
LEMMA 3.1 If Cy and Cy are length n linear codes over Fy and C1 N Cy = {0} then

5i(C1 ® C2) < 53(C1) + 5i(Co),
with equality if and only if P;(C1) N P;(Cy) = {0} and F;(Cy) N F;(Cy) = {0}.
Now for each i, 5;(C) = s;(C*) and hence s(C) = s(C1), [15]. When B,(r,m) and B,(r,m)* have
their standard coordinate order, we write s;(p,r, m) for s;(Bp(r,m)) = s;(Bp(r,m)1) and s(p,r,m)

for s(Bp(r,m)) = s(Bp(r,m)*). We determine s(p,r,m) by considering B,(r,m)L. The proof uses

Lemmas A.3 and 3.1 and induction on m. The main inductive step is given by
LEMMA 3.2 For p an odd prime, m > 2 and 0 <71 < m,
m—1
stprrm) = spr =L =1+ (" o= 1

ProoF. For 1 < i < p™, we can uniquely write i = Qp™ ! + R for some 0 < @ < p—1 and
1< R<p™ ! Then

dim (P;(B}(r,m))) = Q - ( 3 (mz— 1) (p— 1)’) + dim (Pg(B,(r — 1,m — 1)*))

i=0



and

r—1

dim (F(B)(r,m) = (=1~ Q) (Z ("7 e- 1)") +dim (Fa(By(r —1,m — 1)),

=0
so that from (1), s; (By(r,m)) = sg(p,r —1,m —1). Also

m—1

dim (P;(BZ(r,m))) < ( )(p— 1,

r
with equality if 1 < Q <p-—1,

m—1

dim (R(B3rom) < (") -1

r

with equality if 0 < @ < p— 2. Thus from (1), s; (Bg(r, m)) < (m;l) (p — 1)", with equality if
1<Q<p-2.
Now, if 1< Q < p—2 then Py(BY(r,m)) N Pi(B3(r,m)) = {0} and Fi(B}(r,m)) O Fy(B2(r,m)) =

{0}. Hence from the decomposition of B,(r,m)* (Lemma A.3) and Lemma 3.1 we have
-1
si(p,r,m) < sg(p,r —1,m—1)+ (mr )(p— 1)7,

with equality if 1 < @ < p — 2. Thus clearly s(p,r,m) < s(p,r —1,m — 1) + (mr_l) and taking
i=Qp™ !+ Rwith1<Q <p-2and R such that sg(p,r —1,m — 1) = s(p,r — 1,m — 1) gives
equality. O

The determination of the following closed form for s(p,r,m) follows easily from Lemma 3.2 by

induction.
PROPOSITION 3.3 For p an odd prime, m > 1 and 0 <1 <m, s(p,r,m) = sf,(r, m).

Table 1 gives s(3,r,m) for small values of » and m (cf. [22, Table 2] for RM codes). We include
the Wolf bound for comparison. The first component of each entry is s(3,7,m) and the second

component is the Wolf bound.

REMARKS 3.4 1. For 1 < i < p™ we have the p-ezpansion of i, i = Y -, iip' 1, where 0 <
i <p—1forl <1< m. Itis clear from the proofs of Lemma 3.2 and Proposition 3.3 that
si(p,r,m) = s(p,r,m) for all i with p-expansion Y - i;p'~' such that 1 < iy < p—2 for all
1<I<m.

2. The proofs of Lemma 8.2 and Proposition 3.3 used Lemma A.3 and the fact that p > 3. Thus
forn >3 the [n™, >0 () (n — 1), ™) code of Remark 2.4 has SC equal to s2(r,m).

3. We recall that s,(r,m), defined in the Introduction, generalizes the SC of RM(r,m) from p =2
to any prime p. It is quite straightforward to see that if 2 < r < m — 1 then s3(r,m) > sL(r,m).

For all other values of m and r, s3(r,m) = s,(r,m).



Table 1: s(3,7,m) and Wolf bound for Bs(r, m)

Order Length m
T 1 2 3 4 5 6 7
0 (L) (1,1) (1,1 (L1 (1,1) (1,1) (1,1)
1 (34) (57 (79  (911)  (11,13)  (13,15)
2 (7,8) (17,33) (31,51) (49,73) (71,99)
3 (15,16) (49,112) (111,233) (209,379)
4 (31,32) (129,256) (351,939)
5 (63,64)  (321,576)
6 (127,128)

Although the standard coordinate order of RM codes is known to minimise their SC, we do not
know whether the same is true for B and B+ codes. (According to [22], RM codes were the only
infinite family of codes for which a ‘uniformly optimum’ coordinate order was known, although a
uniformly optimum coordinate order for g-ary RM codes is also now known, [16]. Both of these
results depend on complete knowledge of the weight hierarchies for these codes.) However, the
results of [7] suggest that the discrepancy between s(B,(r,m)*) and s}(r,m) is due to the codes,
rather than their coordinate order. Thus in [7] the SC of another generalization of RM codes, due
to Dwork and Heller in [14], is given. A ‘Dwork-Heller’ code, DHY(r,m), is defined over F,, for
integers n > 1, m > 1 and 0 < r < m. For ¢ = n = 2 they correspond to RM codes. Generally
DHI(r,m) is an [n™,3°1_o () (n — 1)¢,2™7"] code, so that for p an odd prime, DH(r,m) and
By (r,m)* both have dimension }_7_, (") (p— 1)? but their minimum distances are 2™~" and p™~"
respectively. In [7] an outline of a proof that s (DHJ(r,m)) = si(r,m) is given (where DHZ(r, m)
has its natural coordinate order generalizing the standard coordinate order of RM codes). Thus,

it is DH codes, rather then B+ codes, that generalize R M codes with respect to SC.

4 Asymptotic analysis

The asymptotic behaviour of SCs has received some attention, [22] and work cited there. However,
little seems to be known about the asymptotic behaviour of SCs for particular families of codes.
Here we investigate the asymptotic behaviour of the SCs of RM(|Am],m) and By(|Am],m),
where 0 < A < 1. In fact it is no harder to look at the asymptotic behaviours of sl (|Am], m) and

s2(|Am],m) for all n > 2.

For a sequence of linear codes (C;);>1 with parameters ([n;, ki, d;])i>1, the asymptotic measure of
SC used in [22] is relative SC, lim;_,oo $(C;)/n;. Our first result of this section (Proposition 4.1)

shows that relative SC fails to distinguish between the asymptotic behaviours of s, (|Am], m) and



s2(|Am], m). We begin with some preliminaries.

Firstly, we recall that for each n we have an entropy function, H, : (0,1) — (0, 1], defined by

H,()\) = Alog,,(n —1) — Aog,, A — (1 — X) log,, (1 — A).
Also we recall Stirling’s formula, which can be written

: 1 1

log,, m! = (m + 5) log,, m —mlog, e + 3 log,, 27 + o(1).

A simple consequence of Stirling’s formula is that, for 0 < A < 1,
m 1
log,, ) = —m(Alog, A+ (1 — X)log, (1 —A)) — 2 log,, m + O(1). (2)

The O(1) term in Equation (2) accounts for terms due to the discrepancy between Am and [Am],
as well as —1log, 2m, —1log, A and —%log,(1 — ) terms. (Our use of 0 and O is standard e.g.

[10], where Stirling’s formula can also be found.)

ProPOSITION 4.1 Forn>2 and 0 < A < 1,

S(lmlm) _ - sh(LAm)m)

lim = =0.
m— o0 n m— o0 nm
PRroOF. It follows from (2) that
m 1
1 Mm( = )Nm) = 2 1).
o, (( Ym0 =% S log,m+0(1) ®)

Since the limit on the right-hand side of (3) is —oo0 as m — oo we have that

lim (L;;J),\*mu —N)E=m — . (4)

m—o0
Now, using the identity 35 (“£%) = ("*¥*1), we have that

T

sm <=1 3 (") = (M-

=0
Thus, since n~mHr»(\) = W, we have
2 —mHa(A) < m Am (1 _ \)A-Nm
2 (Lml, m)n < () ma =

so that

Si(L)‘mJim) n(Hn(/\)fl)m m Am1 _ WA= A)m m Am1 _ WA= XA)m
: e () B

nm

Therefore, the proposition follows from (4) and the fact that 0 < sL(|Am],m) < s2(|Am],m) (as
noted in Remark 3.4.3). O

10



We note that the limit involving s2(|Am|,m)/n™ in Proposition 4.1 trivially implies the limit
involving s&(|Am],m)/n™. Thus Proposition 4.1 does not really provide a comparison of the

asymptotic behaviours of s.(|Am|,m) and s%(|Am],m). It is also possible to show that

A(Am)m) | sh(Bmlom)

m m

which similarly does not provide a real comparison. A non-trivial comparison is given by

PROPOSITION 4.2 Forn>2 and 0 < A < 1,

1 2
i Tog sh([m,m) _ | log, s3(L\m),m)
m—oo m m—o0 m

= H,()).

ProOF. We first show that
m—1 " (m—kr—1+ki i m
-1)r< -1 < -1
("7 Ho-o _g( T e (Mm- Q
The lower-bound in (5) follows from the i = r term of the sum and the upper-bound follows from

i(m_kri_1+ki>(n_1)i < (n_l)ri(m—kr—l-li-(k—l)i+z‘)

i=j i=0

(n_l)Ti(m—kr—l-;(k—l)r-i-i) _ (T)(n—l)T.

=0

IN

Now with 5 = 0 and k = 1, the middle expression of (5) is s2 (r,m) and with j = r—min{r,m—r—1}
and k = 2, the middle expression of (5) is s}(r,m). Thus to prove the proposition it suffices to
show that
log,, (ﬁ;nﬁ) (n —1)Lxm] . log, (LATHJ) (n—1)lAml
m = lim

m—00 m m—0o m

= H,()).

The first equality follows from the fact that (™ ') = ™="(™) and the second equality follows

m

directly from (2). O
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A Proofs for Section 2

Here we collect the formal statements and proofs of the results of Section 2.

PROPOSITION A.1 For all primes p and integers m > 1, 0 <r < m, (E,(r,m))¥ = (E,(r,m))*.
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PROOF. First we show that (E,(r,m))* = w({(E,(r,m))"), where 7 is the permutation (i) = p™—
i+1 (so that 7 reverses the codewords of {(E,(r,m))). Since dim((E,(r,m))*1) = dim(x({E,(r,m))V))
it suffices to show that (E,(r,m))* C 7((E,(r,m))V), i.e. that if

p—1 p—1
=YY fin X X € (By(r,m))
i1=0 im =0
and
p—1 p—1 ) ]
=3 S G XT - X € (By(r,m))Y
Jj1=0 Jm=0
then
p—1 p—1
D D0 fuin Y1) (p-1-im) = 0.
41=0 im=0

This follows from the coefficient of Xf_l - XP=lin f.g, since 2p — 2 = p — 2 mod p. Hence
(Ep(r,m))* C n({E,(r,m))V) and so (E,(r,m))* = w((E,(r,m))V). Therefore 7({E,(r,m))*) =
(Ep(r,m))".

Next we show that (E,(r,m)) = 7({E,(r,m))), so that (E,(r,m))* = 7((E,(r,m))%) = (E,(r,m))",

as required. As = is linear, it suffices to show that if

ho= X{t---Xor - (T4 ep(XG0) - (14 ep(X5)) - €p(Xioyn) -+~ ep(XG)
= X7 X (L (X)) - (1 (X)) - (X ) - ep(XG,),

where {j1,...,dm} ={1,...,m} and 0 < s < r, then w(h) € (E,(r,m)). Writing

p—1 p—1
h=Y " iy, Xt X

i1=0 im=0

we have that h;,...;,, = 0 if and only if i;, = a;, for some 1 <k <s. We put
* —1-a; —1-aj,
h ZX.;)I “ "'X;; ¢ (I+ep(Xjy)) - (L4 ep(X5,)) - €p(Xjysa) -+ - €p(X5,)-

We note that h* € (E,(r,m)). Writing

p—1 p—1
Wr= )0 D ki, X X € (By(r,m)

i1=0 im=0
we have that h{, ; ;. 4 ; y=0ifandonlyif (p—1-1i;)=p-1-a,, forsomel <k <s
if and only if i;, = a;, for some 1 < k < s if and only if h;,...;,,, = 0, so that h* = 7(h). O

PROPOSITION A.2 For 0 <r <m, RM(r,m) = (Ex(r,m)).

PROOF. Since Ay, is modular it has a radical, R,,. In [4] it is stated that R~ " is equal to
RM(r,m)—an elementary proof of this appears in [1]. Thus it suffices to show that R™ " is
generated by Ea(r,m).

12



It is known (e.g. [4]) that R™~" = (G(m — r,m)), where
Gm—r,m)={Q1+X,,)---1+X;,):m—r<t<m, 1<j <---<js <m}.

Thus it suffices to show that G(m — r,m) C (E2(r,m)) and that Es(r,m) C (G(m — r,m)), which

we do by induction on r.

For r = 0 we have G(m,m) = {(1+ X31)--- (1 + X;)} = E2(0,m). Thus we assume that G(m —
k,m) C (Ez(k,m)) and Ea(k,m) C (G(m — k,m)) for some k < m — 1. Since Ex(k,m) C
Ex(k+1,m) and G(m —k —1,m) C G(m — k,m), it is enough to show that (i) G(m —k —1,m) \
G(m — k,m) C (E2(k + 1,m)) and (ii) E2(k + 1,m) \ Ez(k,m) C (G(m — k — 1,m)).

Now, for {i1,...,is} C {1,...,m}, it is straightforward to see by induction that

=1

Thus taking g = (1+ Xj,)--- 1+ Xj,,_._,) € G(m —k —1,m) \ G(m — k,m) we can write

- Xa,) =14 X5, - X,

9 = (+X;) -+ X t) Xjos - Xjin
m
+ (1+X]'1)"'(1+ij—k—1)' Z ((1+ij)'ij+1"'ij)a
I=m—k

so that g € Ex(k + 1,m) + (G(m — k,m)) C (E2(k + 1,m)) by the inductive hypothesis and (i) is
proven. Also takinge =X, ... X, ., -(14+Xj,,.)---(1+Xj,,) € E2(k+1,m) \ Ex(k,m) we can

write
k+1
e=(1 +Xjk+2) (14 X5,)+ (1 +Xjk+2) 1+ X5,) Z ((1 + X)) - Xijrpr o 'Xjk+1) )
=1
so that e € (G(m — k — 1,m)) and (ii) is proven. O

LEMMA A.3 Form >2 and 0 <r < m, By(r,m)* = B}(r,m) ® B%(r,m).

PRrOOF. First, the fact that e,(X;) and 1+ e,(X;) are orthogonal idempotents easily implies that
B} (r,m) N B2(r,m) = {0}. Now, it follows directly from the definition of B,(r,m)* that if f €
(Ep(r,m—1)) then f-e,(Xm) € By(r,m)*. Also, since X!, = e,(X.m) + (1 +ep(Xm))- XL, in Ap m,
fi € By(r —1,m — 1)+ implies that f; - X, € B,(r,m)*. Hence B} (r,m) ® B2 (r,m) C By(r,m)*.

Now, dim(B}(r,m)) = p- Z:;Ol (ml_l)(p —1)* and dim(B2(r,m)) = (™Y (p — 1)". The identity

r

(™) + (7)) = (7) then implies that dim(BL(r,m) & B2(r,m)) = dim(B,(r,m)"). a

% i—1
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