On the complexity of finding shortest linear recurrences.

G. H. Norton, Dept. Mathematics, University of Queensland, Brisbane 4072.

April 26, 2002

Abstract

The Berlekamp-Massey Algorithm finds shortest linear-feedback shift register which gen-
erates a given sequence over a finite field. We show that it requires at most 2|n?/4] —n + 1
multiplications for a sequence of length n. This improves a result of Gustavson by | (3n—1)/2].

A shortest linear recurrence can be obtained using Algorithm MR, due to the author.
This algorithm is algebraic and independent of any particular application. We derive a monic
version of it and show that at most 2|n? /4| —n multiplications are required. However since the
monic Algorithm MR has a simpler control structure and admits parallelism, it is a practical
improvement on the Berlekamp-Massey Algorithm.

Both analyses follow directly from a tight upper bound on the sum of the linear complexities

of a sequence of length n: .7~ ' L; < |n?/4], which may be of independent interest.

MR classification: 11B37, 12-04, 12Y05.

Keywords: linear recurrence, linear complexity, Berlekamp-Massey Algorithm, minimal realization.

1 Introduction

1.1 The Berlekamp-Massey Algorithm

Applications of finding a shortest linear recurrence or linear-feedback shift register (LFSR) via
the Berlekamp-Massey (or LFSR synthesis) Algorithm [5, p. 124] are manifold in Coding Theory,
Cryptography, Mathematical Systems Theory and Algebraic Computation. For a survey, see [9,

Introduction]. We begin by discussing the worst-case complexity of this algorithm.

Recall that for n > 1, the linear complexity L, of a finite sequence (Sg,...,Sp,—1) over a field
is the least non-negative integer such that (Sp,...,S,_1) are the first n terms of an order L,
linear recurrence (or the first n outputs of an LFSR of shortest length L,, [5]); by convention,
Lo = 0. Our analysis is based on an algorithm-free lemma that E?;ll L; < B, defo [n?/4]. Here
the sequence is over any domain. Our inequality is tight and may be of independent interest. We

note that in [2, Proof of Lemma 2.1], it was claimed that Y >';" L; < t2.

We deduce that the Berlekamp-Massey algorithm requires at most 2B,, — n + 1 multiplications for
a sequence of length n. Our result improves the bound n(n + 1)/2 of [4] (which was claimed to
be tight) by |(3n — 1)/2]|. Some additional remarks concerning [4] appear in the Appendix. We
include an elementary inductive proof of the distribution of fixed-length sequences of prescribed

linear complexity over a finite field, proved in [4] using the Berlekamp-Massey Algorithm.

1.2 Algorithm MR

Next we discuss the worst-case complexity of finding a shortest linear recurrence via Algorithm
MR of [7, 9], where we developed a theory of shortest linear recurrences for finite sequences over
a commutative integral domain R from first principles. (We viewed linear recurring sequences as
torsion elements in the standard R[X]-module of Laurent series in X ~!, R((X~!)); a shortest linear
recurrence of the sequence then corresponds to a generator of its annihilator ideal in R[X]. The
standard R[X]-module of Laurent polynomials R[X ~!, X] then formed the basis of our approach
to finite sequences. Thus our algebraic approach is independent of LFRS’s and any particular

application.)

The linear complexity L, is now the degree of any non-zero 'minimal polynomial’ u € R[X] of the
given finite sequence (and we no longer require the convention Ly = 0). For a precise statement
of the equivalence of shortest LFRS’s and minimal polynomials, see [9, Proposition 2.1, Corollary
2.3]. Algorithm MR actually computes a 'minimal realization’ (i, 3) € R[X] x X R[X] of the
sequence; the original sequence coincides with the initial coefficients of 3/u € R[[X ~!]] when p is

monic.

We summarise the theory underlying Algorithm MR in Section 3.2; a simple counting argument ([7,
Proposition 3.23]) showed that it is O(n?). However, using our linear complexity bound, we deduce
that Algorithm MR computes a minimal polynomial in at most 3B,, + 2n — 7 R-multiplications,
Proposition 3.5.

When R = F is a field, we derive a version of Algorithm MR which computes a monic minimal
polynomial at each iteration, in such a way that the multiplications always involve the polynomials

of smaller degree. This monic algorithm requires at most 2B,, — n multiplications.

We also show that computing 8 requires at most B, —n+1 more F-multiplications. We remark that
B could also be obtained by simply multiplying and the 'generating function’ of the sequence in
F[X 1, X], for at most ndeg(u) < n? ~ 2B,, multiplications. However, from a circuitry viewpoint,
Algorithm MR computes 3 using the same control logic as for y, differing only in the initialization.
Thus p and S could be computed in parallel, and so using Algorithm MR to compute 8 (without
additional F[X ~!, X]-multiplication circuitry) seems preferable.

1.3 Conclusions

Compared to the Berlekamp-Massey Algorithm, Algorithm MR has a simpler derivation, it is
structured, valid over any integral domain, admits parallelism and generalizes readily to finite

chain rings, [8] and to multiple sequences, [10].

We have shown that the monic Algorithm MR and the Berlekamp-Massey Algorithm have virtually
identical worst-case complexity. Algorithm MR also has storage and logic-circuit advantages over
the Berlekamp-Massey Algorithm. Thus we have made both conceptual and implementation gains

by being mathematical rather than application-oriented, with no loss in run-time efficiency.

Average-case analyses of Algorithm MR for sequences of integers (perhaps adapting the techniques

of [3]) and of the monic Algorithm MR for sequences over a finite field would be interesting.

2 The linear complexity bound B,

Linear complexity is usually computed algorithmically, but to emphasize that our bound is in-
dependent of any particular algorithm, we use the following definition suggested by [5, Theorem
2]:

DEFINITION 2.1 Let D be a domain and dy,...,d_1 € D. Put L_1 =Ly =0. For0<i<n-—2
we inductively define L;11 € {0,1,2,...} by

L; if diy1 =0

Li, = ,
max{Li,z +1-— L,’} 1,f d,’+1 75 0.

Now Z?:_ll L; < |n?/4] is trivially satisfied if L; < | (i + 1)/2] for 0 < i < n — 1 since it is easy
to check that 77" |(i +1)/2) = |n?/4]. However, L; < | (i + 1)/2] does not hold in general:

consider a sequence of length n > 2 which is zero except for its last term for example.

On the other hand, if (Sp,...,Sp—1) is such that dy,...,d,—1 are non-zero, then L; = |(i + 1)/2]
for 0<i<mn—1,s0 Y1 Li = [n?/4] in this case.

LEMMA 2.2 We have E:.L:_ll L; < B,,, where B, defn [n?/4].

Proor. It is enough to show that

S L < YU+ /) 0

It is convenient to call j stable if it is odd, L; = [(j +1)/2] and S37_, L; < S0, 1(i + 1)/2].

Clearly —1 is stable, so suppose inductively that s e oy — 1 > —1 is stable, so that Ly = u.

Then Lsy1 = u independently of dsi1. If dsyo # O then Lyyga = u+1 = [(s +2+1)/2] and

we can replace s by s + 2. Hence we can assume that ds12 = 0, so that Lo = u and for some

t>2 Leyy =+ = Lsgyy =u. If n—1=s+1t, the result clearly holds. Otherwise, we can
assume that Lgis41 # u. Then dsyi41 # 0 and Lgys41 = u + t. Assume for the moment that
n—1>s+2t Sinceu +t =max{u+t,s+2t— (u+1t)}, wehave Lyyy41 = - =Lsyoy =u+t
and Lyyo = [(s+ 2t +1)/2]. Now Y552 | L = tu + t(u + t) while
s+2t t—1
S LG+1/2] = S (Us+t—k+1)/2+ (s +t+1+k+1)/2))
j=s+1 k=0
t—1
= > (s+t—k+1)/2+(s+t+1+k+1)/2—1/2) (2)
k=0
= t(2u+t)

where the equality (2) follows since s + ¢t £+ k have the same parity, so that the two numerators
have opposite parity. Thus s + 2t is stable. By induction there is a maximal stable j. If n — 1 is
stable, we are done. Otherwise, if n — 1 =s+t+ 14+ m for 0 < m < ¢t — 1, then the pairs with
indices s+t —k,s+t+ 1+ k for k =0,...,m still satisfy (2), while each of the remaining terms
Li=ufor j=s+1,...,s+t—m—1is less or equal to the corresponding |(j +1)/2]. D

3 Worst-case analyses

3.1 The Berlekamp-Massey Algorithm

First we rewrite this algorithm slightly:

AvcoriteMm 3.1 ([5, p. 124])

Input: n > 1, sequence (Sp, ..., S,_1) over F.
Output: L, and connection polynomial ¢ = 1+¢; X +---+ ¢, X" € F[X] of (So,...,Sn-1), 7 < Ly.
Auxiliaries: ¢/, t € F[X], d,d’ € F\ {0}, integer e.

L:=0;c¢c:=1;e:=1; ¢ :=1; d :=1;
fori:=0ton—14do
d:=Yj ¢ Sij;
if(d=0)e:=e+1;
else if (2L >i){ c:=c—(d/d') - X°; e:=e+1;}
else {L:=i+1—L; t:=¢; c:=c—(d/d")-Xe; ¢ :=t; d' :=d; e:=1;}

return L, c.

PROPOSITION 3.2 If (So,...,Sn—_1) is a sequence of elements from a field F, the Berlekamp-Massey

Algorithm requires at most 2B,, — n + 1 multiplications.

PROOF. For 0 < i < n—1, we write L;;1 and ¢t for the (i+1)** connection polynomial formed at
the end of iteration i from ¢ and ¢®. Computing the discrepancy requires at most > 'L < B,

multiplications. For additional multiplications to accrue, we need deg(¢'®) > 0 for i > j > 0. Now
A® =1=¢"® ande > 0, s0 ¢/ always has constant term 1. Also, deg(c(?)) < L; and deg(c'?) > 0
implies that deg(c'®) < deg(c?). So at most Y ! (deg(¢D) < S0 1(deg(c(’)) — 1) additional
multiplications can occur, for some j. Examination of the initial iterations shows that the minimal
value of j is 3, with deg(c(")) = deg(c(?) = 1 and deg(c®) = 2 (and ¢/® =1 — S, X). This gives

at most an additional

n—1 2
Z(deg Z deg(c) Z deg(c") —n+3< B, —n+1.
1=3 1=0

3.2 Algorithm MR

We recall some of the key notions which underly the main constructive result of [9], Theorem 7.3.

Let R be a commutative integral domain with 1 # 0. A finite sequence over R is written
(So, - - -, Sm) with m < 0 (so the length of the sequence is 1—m). Then (S, ..., S,) satisfies a linear
recurrence of order d if for some monic f € R[X] with deg(f) =d, S; = —fa—1Sj+1 + -+ foSj+d
for m < j < —d (and d > 1 — m is allowed).

With S = Sg + -+ + S, X™ € R[X '], this is equivalent to (f - S); = 0 for m + deg(f) <
i < 0 for some monic f, where - denotes multiplication in R[X~1, X]. We call such an f an
annihilator of (So,. .., Sm), without insisting that f be monic. Clearly f extends to an annihilator
of (So,...,Sm—1) if and only if the obstruction Of "= defn (f - S")m—1+deg(s) € R vanishes, where
S"' =8+ 8,1 X™ 1. Two annihilators of (Sy,...,Sm) were constructed inductively from first

principles in [9, Section 4] using commutators [Of, So], [Of, Og] € R for certain annihilators f, g.

For any f € R[X] the polynomial 3(f,S) = Z?igl(f)(f -8)iX* € XR[X] plays a useful role in
developing the theory. Clearly f is an annihilator of (So,...,Sm) if and only if f-S = B(f,S).
Further, if f is monic, the first 1 —m coefficients of 3(f, S)/f € R[[X ~!]] coincide with the original

sequence (see [9, Proposition 2.12]).

A non-zero annihilator of (Sy,...,Sm) is minimal if its degree is minimal. We write u(™ for a
typical minimal polynomial of (Sy,...,Sn) and k,, for deg(u(™); in the notation of Section 1,

Km = L1_p. For example, if (Sp,...,Sm) = (0,...,0,1), we can take u(™ = X1-™,

The inductive proof that the second construction yields a minimal polynomial required the key
notion of the antecedent a;,4+1 of Kpmt1, defined when kg < Kpmy1 (50 m + 1 < 0); @pe1 is the
smallest value of i, m + 1 < i < 0 such that &; < Kmy1, [9, Definition 5.2]. (We think of plom+1)

as a 'best previous minimal polynomial’ with deg(u(®=+1)) < deg(ftm+1).) The minimality of

the constructions was proved in [9, Proposition 5.1, 5.3], which have the following immediate

consequence
COROLLARY 3.3 (Cf [5, Theorem 2]) If Ou™t1) £ 0 for some p(™+t)) then
deg(u™) = max{deg(u™*V),1 - m — deg(u™ 1)}

Motivated by Mathematical Systems Theory, we called (f,3(f,S)) a realization of (So,...,Sm);
if further deg(f) is minimal, we call (f,3(f,S)) a minimal realization (MR) of (Sp,...,Sm). It

follows that minimal realization is closely related to rational approximation with minimal-degree
denominator. We write an MR of (So, ..., Sm) as g(™ = (u(™, (™). It was shown that B(™)

could also be constructed inductively in [9, Section 6].
Finally, in [9, Theorem 7.3], the two inductive MR constructions were simplified and combined by
i) supressing a,, 41 and using p(*m+1) instead;

(
(ii) subsuming the case m +1 < 0 and kpq1 = ko by defining 7{®m+1) to be (0, —X) if Sy = 0 and
(1,0) otherwise; see [9, Definition 7.2];

(iii) using the variable d,, 1 defn 26my1 +m — 1, which satisfies d,, 11 < 0 if and only if k,, =

1 — M — K1 > Kmat if and only if 7(*m) must be updated (by m(™*1).

This combined construction directly suggested the body of Algorithm MR (writing current values
alom+) Oplem+1) and d,, . as @', O and d respectively) as well as how to initialize the algorithm,
[9, Section 7.2]. (We have negated 7z so that (™ = X1=™ if (S,,...,S,) = (0,...,0,1).)

ALGorITEM 3.4 ([7, 9, Algorithm MR])

Input: m <0, R an integral domain, (Sp,...,Sm) € R.
Output: &, an MR for (Sp,-..,Sm)-
Auxiliaries: MR’s @', t € R[X] x XR[X], O,0" € R\ {0}, integer d.

7= (1,0); @' :=(0,-X); O :=1; d:=—1;
for ¢ := 0 downto m do
{0:= Z}iigo(u) Wi - Sitdeg(u)—j> / * compute O x [
if (O #£0) {if (d<0) {d:=—d;swap(z, i');swap(0, 0'); } / * update @', 0" x |
=0 X% -0 -1} / * update T /
d:=d-1;} / *xupdate d * |

return u.

PROPOSITION 3.5 Let (Sg,...,Sm) be a sequence of elements from a domain R andn =1 — m.
The number of R-multiplications required to compute a minimal polynomial is at most 3B,,+2n—7

and to compute an MR is at most 5B,, + n — 6.

ProOF. For m < i < 0, itV is obtained using O; = Opl™), diyq, @0+, Of,; and mi+h.
Computing O; requires at most > .- (kit1 + 1) = Z?:_OI L; + n < B,, + n multiplications. To
maximise the number of updating multiplications, we want O; # 0 for m < i < 0. Initially, we
have (¥ = (X, SoX), @® = (1,0) and do = 0; then 7Y = (—=SoX+85 1,-S2X)andd | = —1.
Next, O_y = 82, — SoS_o, 52 = 0" | Xu"Y — 0_5(1,0) and @2 = (=Y,

For computing minimal polynomials, 7(®) and 7i{~Y) require no multiplications and pu(=2) at most
2. Form <i < -3, 1 < deg(u'"tY) < deg(u'™") — 1, giving at most 3" (deg(p'(")) +

deg(p(t1)) + 2) more multiplications. In all therefore, there are at most

m m —2
2+ Z (2ki31+1) =2 (Zﬂi+1 —ZKZH_l) —-—m<2B,+n-—"1.
i=0 1=0

i=—3

For computing an MR, f(-Y = S2X and (-2 = O' ;XY each require at most one multi-
plication. Tn general, deg(80*1) < deg(u(i*) and X|B0+Y. Similarly for '+, Hence this

updating requires at most another

2+ Z (deg(ﬂ'(i“)) + deg(ﬁ(”l))) <2+ Z (2ki41 —1) < 2B, —n+1

i=—3 i=—3

for a total of at most 5B,, + n — 6 multiplications. >

4 A monic Algorithm MR

When R = GF(2), Algorithm MR clearly computes a monic minimal polynomial, the multiplica-

tions reduce to additions and the updating becomes:

deg(u)
if | Y p5- Sivacguy—j #0 | {if (d<0) {d:= —d;swap(m,); } 7 := + X7'; }.
j=0

We now show how to compute a monic minimal polynomial when R is a field F in such a way that

the polynomials ', 5’ (of strictly smaller degree) are multiplied by an element of F.

THEOREM 4.1 Let (So,-..,Sm) be a sequence over a field F. Put

i = (1,0), a0 = (0,-X) and Op*) =1 if S =0
A0 = (X,5X), @ =(1,00 andOul*) =S, if So#0.

Form < i< —1 let @ € F[X] be defined inductively by 5 = gl+Y if Oplt) =0 and

ﬁ(i+1) —q Xdi+1ﬁ(ai+1) if dig1 >0

—(1) _
Y = .
X’—di+1ﬁ(z+1) —q;- ﬁ(ai‘*'l) if dit1 <0

otherwise, where ¢; = OpltY JOul@i+1), Then T is a monic MR and

(@) = { Ee+) ifdiy >0 d: = { dig1—1 if Oplit) =0

ali+D) if diyr <0 |dit1]| —1 otherwise.

PROOF. Tt was noted in [9] that the initial values are natural. The proof that 7*) is as claimed
is by induction on i. Assume that x(9) is monic for i +1 < j < 0 and that Ouit!) #£ 0. Since a
non-zero multiple of an MR is clearly an MR, [9, Theorem 7.3](i) implies that 7Y is an MR and

we need only show that (¥ is monic.

We consider two cases: ;11 = kg and k11 > Ko If K9 = Ki41, then as in the proof of loc. cit.,
Theorem 7.3(i), u) is precisely the minimal polynomial of [9, Proposition 5.3] made monic, and

we are done.

Suppose now that r;11 > ko, so that p(®+1) £ 0. Put @ = a;11. If diyy < 0 then u(is monic
since (") is monic and —d;;1 + deg(u(*+?)) > deg(ul*+) > deg(u(®). For d;y1 > 0, we show
that deg(u(t1) > di; 1 + deg(u(®), which will imply that u(? is monic.

By construction, we have i + 1 < a < 0 and deg(u(*V) = deg(u(® V) > deg(u(¥). Now
deg(u® 1) =1~ (a — 1) — deg(u(®)) by Corollary 3.3. Thus deg(u'+1)) = 2 — a — deg(u(¥)) and
dip1 = 2deg(u(*D) +4i — 1 =4 — 2a — 2deg(u'?) 4+ i — 1. Hence if deg(ptV) < diq1 + deg(p(®),
then 2 — a — deg(u(?) < 3 — 2a — deg(u(¥) + i and a < i + 1, for a contradiction. The remainder

of the proof is the same as part (ii) of loc. cit., Theorem 7.3. >

As in loc. cit., Section 7.2, Theorem 4.1 yields

ALGORITHM 4.2 (monic Algorithm MR) (cf. [1, p. 184], [5, p- 124].)

Input: m < 0, sequence (Sp, . .., Spy) over F.
Output: &, a monic MR for (Sp,...,Snm)-
Auxiliaries: MR’s 7', T € F[X] x XF[X], O,0' € F\ {0}, integer d.

w:=(1,0); d:=-1; @' := (0,-X); O :=1;
for ¢ := 0 downto m do
0:= E?igo(”) W - Sitdeg(u)—j3
if (O#£0){if (d>0)a:=m—(0/0) XF;
else {d:=—d; t:=1; 5:=Xu—(0/O")-w; W =1 O :=0;}}
d:=d-1;}

return u.

We show the algorithm at work when O; # 0 for ¢ = 0,—1,—2. Writing ¢; = O;/0O;,;, we have
Op = So, ﬁ(o) = (X,qX), ﬁl(o) = (1,0), Oy = So and dy = 0. Next, O_; = S_y, ﬁ(il) =
(X —q_1,¢90X), @Y = (1,0) and d_; = —1. On the third iteration, O_y = S_5 — S2,/So,

A2 = (X2 — .1 X — q_2,q0X?), @72 = (X — q_1,¢X) and d_ = 0. Note that the only

multiplication is to compute O_s.

The reader may check that when F = GF(2), the updating of and ' in the monic version reduces

to that given at the beginning of this section.

PROPOSITION 4.3 Let (So,-..,Sm) be a sequence of elements from a field F and n =1—m. The
number of F-multiplications required to compute a monic minimal polynomial is at most 2B,, — n

and to compute a monic MR is at most 3B, — 2n.

PROOF. This is similar to the proof of Proposition 3.5. Computing O; requires at most Y . Kit1 =
S L; < B, multiplications since u(*t1) is monic. To maximise the multiplications arising dur-
ing updating, we want O; # 0 for m < i < 0. None arise for i = 0,—1,—2 and for i < —3,
1 < deg(p'(i+Y) < deg(u(1)) — 1, so computing u(™ requires at most > v 4 (kjt1 —1) < B, —n
multiplications. Similarly, computing 3(™) requires at most Y ;- , deg(u'“+Y) < B,, — n multi-

plications. >

Appendix: Three remarks on [4]

According to [4, p.209], the number of multiplications required by the Berlekamp-Massey algorithm

for a sequence of length n > 1 over a field F is

Wn,=n(n+1)/2 at worst
Agn=n(n+1)/2—g¢'n?/4+0(g7?) on the average,

where the average is for uniformly and independently distributed (u.i.d.) sequences and |F| = q.

Both results were proved using the Berlekamp-Massey algorithm.

1. It was claimed on [4, p. 209] that W, is a tight upper bound, but W,, = 2B, —n+1+[(3n—1)/2|

and so it cannot be tight.

2. Since A, , +0(g7') =W, =2B, —n+ 1+ [(3n —1)/2], we have 2B,, —n > A,, > 2B, —n.

Thus the value of A, ,, found in [4] is incorrect.

3. The proof of [4, Proposition 1] used the Berlekamp-Massey algorithm under the hypothesis that
‘there is one formula for a sequence of length zero’. We now give an elementary inductive proof of
[4, Proposition 1], independent of any particular algorithm and which avoids ’sequences of length
zero’. Our inductive basis is simply that for n = 1, there is a unique sequence of linear complexity
0 and that there are ¢ — 1 sequences of linear complexity 1. We then continue with Definition 2.1

and elementary properties of linear complexity.

Proposition Let F be a field with ¢ elements and n > 1. If sequences of length n are u.i.d., then

r

0 ifL<0
g ifL =0

Pr[L, =L =<¢ @t 1(q-1) if1<L<|n/2|
"2 (g-1) if [n/2] <L<n
0 if L >n.

\

Proor. Clearly Pr[L,, = L] = 0 for L < 0 or L > n. It is convenient to put N(n,L) =
[{(So,.-.,Sn-1) : Lp = L}|. We will show by induction on n that N(n,L) coincides with the
stated probabilities multiplied by ¢™ . Let n = 1. It is clear that Sy = 0 is the unique sequence with
L, = 0 and that there are ¢ — 1 sequences Sy of complexity 1, which agrees. Suppose inductively
that the result is true for sequences of length n — 1 > 1. We consider three cases.

(a) L =0,n. Let L = 0. Then clearly N(n,L) > 1. If L,(So,...,Sn—1) = 0 then (Sp,...,Sn—2)
is the all-zero sequence by the inductive hypothesis since 0 < L,,_; < L, = L and so N(n,L) = 1.
Suppose now that L = n. We show that N(n,L) = ¢ — 1. If (So,...,Sn_2) is the all-zero
sequence and d,, = S,—1 # 0 then L, = n, so N(n,L) > ¢ — 1. Moreover, L,,_1 < n —1 and
n = L, =max{Ly_1,n — Ly_1} forces L,_; =0, so (Sp,...,Sp—2) is the all-zero sequence. Thus
N(n,n) =¢q—1.

(b) 1 < L < |n/2]. Suppose first that 2L <n —1. Then L,y < L, = L < |(n —1)/2] and we
can apply the inductive hypothesis to any (So,...,Sn—2). If S,—1 is such that d,, = 0 for some
(Soy--+ySn_2),then1 < L =L, = L, ; < |(n—1)/2], and we obtain N(n—1,L) = ¢*'~(¢—1)
sequences in this way. We also have L < n — L, so L cannot result from some (Sg, ..., S, o) with
d, #0. Thus N(n,L) = N(n—1,L) = ¢*~'(g — 1) as required.

Suppose now that 2L = n. Then L > |(n —1)/2]. If S,y is such that L, = L and d,, =
0, the inductive hypothesis yields N(n — 1,L) = ¢ 1=L)(g — 1) sequences. There are also
(g —1)N(n —1,L) = ¢*»1-L)(g — 1)? sequences resulting from d,, # 0. Thus

N(n,L)=N(n-1,L)+(¢g—1)N(n—1,L),

and substituting the inductive values and n = 2L yields the result.

(¢) In/2] < L <n. Then (n—1)/2 < L and max{L,n— L} = L. If S,,_; is such that d,, = 0, then
|[(n—1)/2]| < L = L, 1 <n—1 and we can apply the inductive hypothesis to (So,...,Sn_2),
giving N(n—1,L) = ¢*™=1=L) (¢ — 1) sequences. We also get a sequence of complexity L if d,, # 0
and either (i) L,—1 = L or (ii) Lp,—1 = n — L. Since |[(n —1)/2] < L =L,_1 <n-—1, (i) gives
(g—1)N(n —1,L) = ¢*»1-L)(q — 1)? sequences. For (ii), we have 1 <n — L < [(n — 1)/2] and
so we obtain an additional (¢ — 1)N(n — 1,n — L) = ¢*L)~1(g — 1) sequences. Thus

N(n,L)=N(n-1,L)+(¢q—1)Nn-1,L)+ (¢g—1)N(n—1,n— L)

and on substituting the inductive values, we easily get N(n, L) = ¢>(»%) (¢ — 1) as required.

10

For an equivalent result derived from the number of sequences (Sp, - .., Si,—1) over F with prescribed

linear and jump complexity, see [6].

The author would like to thank Tim Blackmore for his interest and an anonymous referee for

simplifying an earlier proof of Lemma 2.2.

We take this opportunity to correct several typographical errors in [9]:

p. 335, line 7: delete €(g) + deg(g) < —m

p. 336, lines 2,3 should read O(X? — X) = (X? = X)oFlg s =Fl 3 —F =1

p- 336 line 13 n < m should be m < n.

References
[1] E. R. Berlekamp. Algebraic Coding Theory. Series in Systems Science. McGraw Hill, New
York-Toronto, 1968.

[2] P. Fitzpatrick and S. Jennings. Comparison of two algorithms for decoding alternant codes.

Applicable Algebra in Engineering, Communications and Computing, 9:211-220, 1998.

[3] P. Flajolet and B. Vallée. Continued fractions, comparison algorithms and fine structure con-
stants, in Constructive, Experimental and Nonlinear Analysis. Proceedings Canadian Mathe-

matical Society, 27:53—-82, 2000.

[4] F.G. Gustavson. Analysis of the Berlekamp-Massey linear feedback shift-register synthesis
algorithm. IBM J. Res. Dev., 20:204-212, 1976.

[5] J. L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory,
15:122-127, 1969.

[6] H. Niederreiter. The linear complexity profile and the jump complexity of keystream sequences.
Lecture Notes in Computer Science, 473:174-188, 1990.

[7] G. H. Norton. On the minimal realizations of a finite sequence. J. Symbolic Computation,

20:93-115, 1995.

[8] G. H. Norton. On minimal realization over a finite chain ring. Designs, Codes and Cryptog-

raphy, 16:161-178, 1999.
[9] G. H. Norton. On shortest linear recurrences. J. Symbolic Computation, 27:323-347, 1999.

[10] G.H. Norton. Some decoding applications of minimal realization. In Cryptography and Coding,
volume 1025, pages 53—62. Lecture Notes in Computer Science. Springer, 1995.

11

