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Abstract

We reinterpret the state space dimension equations for geometric Goppa codes. An easy
consequence is that if deg G < ”T_Q or deg G > "T_z + 2g then the state complexity of
Cc(D,G) is equal to the Wolf bound. For deg G € [25%, 252 + 2¢], we use Clifford’s theorem
to give a simple lower bound on the state complexity of C¢(D, G). We then derive two further
lower bounds on the state space dimensions of Cz(D, G) in terms of the gonality sequence of
F/F,. (The gonality sequence is known for many of the function fields of interest for defining
geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised
weight hierarchy of Cr(D, G) and one follows in a straightforward way from first principles;
often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower
bound on state space dimensions. We conclude by using these results to calculate the DLP

lower bound on state complexity for Hermitian codes.

Keywords. Geometric Goppa codes, Hermitian codes, state complexity, gonality sequence, di-
mension / length profiles, Clifford’s theorem.

1 Introduction

Geometric Goppa codes have attracted much attention. They generalise Reed-Solomon codes and,
although not maximum distance separable, can be longer than Reed-Solomon codes and have very
good parameters for their lengths. The best known geometric Goppa codes, other than Reed-
Solomon codes, are the Hermitian codes.

Let C be a linear code of length n. Many soft-decision decoding algorithms, such as the Viterbi
algorithm, take place along a minimal trellis for C. The speed of such a decoding algorithm
is determined by the structure of the trellis. The state complexity s(C) of C is the most-used
trellis feature for measuring the complexity of trellis decoding algorithms for C. Therefore it is
desirable that s(C) be small. A well-known upper bound on s(C) is the Wolf bound W(C) =
min{dim(C"),n — dim(C)}. It is well-known that s(C) = W(C) if C is a Reed-Solomon code.

Recall that a trellis for C has its vertices placed at n+1 depths, here labelled 0, ..., n. The number
of vertices at each depth is a key determinant of the complexity of Viterbi-like algorithms. The
code C' has a minimal trellis with the least possible number of vertices at each depth. The set of
vertices at each depth ¢ of a minimal trellis forms a vector space, the dimension of which is called
the state space dimension at depth 4, denoted s;(C). Then s(C) = max{s;(C) : 0<1i <n}. Also,
$;(C) can be characterised in terms of the dimensions of past- and future-punctured codes of C.
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We follow the notation of [10] for a geometric Goppa code, written Cz(D,G). Thus D, G are in
the divisor group Dr of a function field F/F,, D = 2;21 P; where Py, ..., P, are places of degree
one and k = dim G — dim(G — D). The genus of F/F, is always denoted g. Hermitian codes are

defined using D,G € Dy, where H/F,2 is the Hermitian function field, D = Z?; Qj, G =mQ«
and Q1,...,Q4s,Q are the places of H/F, of degree one. Section 2 is a table of frequently-used
notation.

We determine lower bounds on s(C(D,G)). Our lower bounds imply the known bad behaviour
of state complexity for Reed-Solomon codes, but allow s(C-(D,G)) < W(Cz(D,Q)) for certain
geometric Goppa codes, including some Hermitian codes. The scope of this paper does not allow
for calculating the actual state complexity of any of these codes, but elsewhere we show that our
lower bounds can be tight, [3, 4].

We begin Section 3 by reinterpreting the characterisation of s;(Cz (D, G)) in terms of the dimensions
of past- and future-punctured codes. An easy consequence is that for deg G < "T_z or deg G >
=2 + 29, s(Cc(D,G)) = W(C:(D,@)). In particular if g = 0 (so that Cz(D,G) is maximum
distance separable) we recover the known result that s(C,(D,G)) always reaches the Wolf bound.
For g > 0 we are left to consider s(C(D,@)) for deg G € I(n,g) = [%51, %52 + 2g]. We conclude
Section 3 by using Clifford’s theorem to give a simple lower bound on s(Cz(D,G)) when deg G €
I(n,g).

The dimension/length profile (DLP) of a code C' can be used to bound the dimensions of past-
and future-punctured codes of C' and can thus be used to derive lower bounds on s(C), [6]. We
write V;(C) for the DLP bound for s;(C) and V(C) for the DLP bound on s(C). The DLP of C
is equivalent to the generalised weight hierarchy (GWH) of C.

Section 4 discusses the DLP of C' and two gonality bounds. The DLP lower bound and the ’point
of gain and fall’ approach of [2, 5] suggest the notions of "DLP points of gain and fall’ (for use in
Theorem 5.5).

In [13], the gonality sequence of a function field is introduced in order to determine a lower bound
on the GWH of C (D, G). The first result of Section 4, Proposition 4.3, uses an improvement of the
bound of [13], given in [8], to give a lower bound on V;(C(D,G)) (and hence on s;(Cz(D,G))) in
terms of the gonality sequence of F/F,. Since it uses all this machinery, Proposition 4.3 could
be considered to be quite deep. We then derive a second gonality sequence lower bound on
$:(Cc(D,@)) in a straightforward way from first principles. We show that the two gonality bounds
are often equal.

We should note that the gonality sequence for many function fields of interest for defining geometric
Goppa codes has been determined in [9]. In any case the gonality bounds can be used to easily
recover the results of Section 3, except that the resulting ‘Clifford bound’ is slightly weaker than
that of Section 3. A consequence of [9] is that the gonality sequence of H/F,> is equal to the
pole number sequence of (). Thus we conclude Section 4 by expressing the gonality bounds for
Hermitian codes in terms of the pole number sequence of @ .

The equality of the gonality sequence of H/F,2 and the pole number sequence of o, and results
of [13] imply that, for Hermitian codes, the gonality bounds of Section 4 are equal to the DLP
bound. Thus, we begin Section 5 by characterising V;(Cz (D, mQ)) in terms of the pole number
sequence of (), (Proposition 5.1). We use this characterisation of V;(Cz(D,mQs)) and DLP
points of gain and fall to determine V(C(D,mQ))) explicitly (Theorem 5.5, Corollary 5.6). This
is always below the Wolf bound. In [4], we showed that s(Cz(D,mQw)) = V(Cr(D,mQ)) for
over half of m € I(n,g), so that the gonality bounds of Section 4 can be tight in a non-trivial way.

The GWH of all Hermitian codes has been completely determined in [1], so that Proposition 5.1
could also be proved using the results of [1]. A summary of this paper and [4] appeared in [3].



2 Frequently Used-Notation

F/F, Function field of one variable over F,
g Genus of F/F,
I(n, g) ned, ns3 4 2g)
J(n,g) n B2+ g)
Dr The divisor group of F/F,
deg G, dim G The degree and dimension of G € Dp
P,...,P, Places of degree one in F/F,
D Z?:l P
Cc(D,G) Geometric Goppa code over F; with length n, dimension k¥ and abundance a
s:(C), s(C) State space dimension at depth i and state complexity of C
(d-)k_, Generalised weight hierarchy (GWH) of [n, k] code C
Vi(C), V(C) DLP bounds on state space dimensions and state complexity of C
[b, ] {b,b+1,...,¢}
I':N— NU{0} Gonality sequence of F/IF,
m
ﬁfl) Egﬁ Eg: gg; Gonality bounds of Definition 4.2
(2)
222) Egﬁ Eg: gg; Gonality bounds of Definition 4.6
H/F, Hermitian function field
Qo Place of degree one at infinity of H/F,»
Q1,---,Qys Other places of degree one of H/F,»
D Also E;’; Q;
Cr(D,mQ ) Hermitan code over F 2 with length ¢*, dimension k and abundance a

II:N— NU{0} Pole number sequence of Q.

By a slight abuse of notation we allow the notation for F'//F, to carry over to H/F,, as we have

for D above. So the genus of H/F,. is also denoted g, when considering C (D, mQ) we have
3

n = q°, etc.

3 Initial Results

Preliminaries. We begin this section with a more formal description of state complexity and
geometric Goppa codes.

Let 0 < i <mn and let C be a linear code of length n. The state space dimension at depth i of C' is
5;(C) = dim(Pu;,_(C)) + dim(Pu; 4+ (C)) — dim(C), 1)

where
Pu,-,_(C) = {(Cl,...,Ci) : (Cl,...,Cn) S C}
and
Pu; +(C) = {(cit1,---,¢n) : (c1,-..,¢n) € C}

are respectively the ith past- and future-punctured codes of C. The state complexity of C' is then
s(C) = max{s;(C) : 0 <i <n}.
A well-known upper bound on s(C) is the Wolf bound, W(C) = min{dim(C),n — dim(C)}.

Our terminology and notation for geometric Goppa codes will for the most part follow [10].
Throughout, F/F, is a function field (of one variable) over F, with genus g, Pr is the set of
places of F/F,; and Dr is the divisor group of F,. We assume throughout that F/F, has a place



of degree one. For P € Pr and x € F/F,; we have the valuation of z at P, vp(z). For G € Dr we
have the associated linear subspace of F/IF,,

L(G) = {z € FJF, : (z) > -G} U {0}.

Let Py, ..., P, be pairwise distinct places of F//IF, of degree one and D = Z?Zl P;. A geometric
Goppa code is defined by means of D and a divisor G of F//F, such that supp(D) N supp(G) = 0.
The geometric Goppa code associated with D and G is

Ce(D,G) = {z(P1),...,x(Py) : z € L(G)}.

We note that Cz(D,G) is a linear code over F,. The abundance of Cz(D,G) is a = dim(G — D)
and if @ > 0 then Cr(D,G) is called abundant, [8]. It is well-known that the dimension, k, of
Cc(D,@G) is given by k = dim G — a and that the minimum distance, d, of Cc(D,G) satisfies
d>mn—deg G. If deg G < n (so that the bound on d has some meaning) then a = 0 (so that
k = dim G). We always have dim G > deg G — g + 1 and if deg G > 2g — 2 then there is equality,
by the Riemann-Roch theorem. It is usual to pay particular attention to the cases that a = 0
and/or deg G > 29 — 2. In any case we are only interested in 0 < deg G < n + 2g — 2, since for
deg G < 0, Cr(D,G) = {0} and for deg G > n + 29 — 2, Cc(D,G) = Fy (and the trellises for
these trivial codes are themselves trivial). Throughout, the geometric Goppa code associated with
D and G, Crz(D,G), has length n, dimension k and abundance a.

First Consequences. We begin by reinterpreting (1) for geometric Goppa codes. For 0 < i < n,

we put D;_ = Z;.:l P; and D; . = Z;‘:Z.H P;, where an empty sum is taken to be the zero

divisor. Then our first observation is that the past- and future-punctured codes of Cz(D,G) are
again geometric Goppa codes and

Pui,,(CL(D,G)) = C[,(Di,f,G) and Pui,+(Cg(D,G)) = Cﬁ(Di,+,G). (2)
Thus (1) becomes

5;(Cc(D, @) = dim(Ce(D;—,Q)) +dim(Cg(D;+,QR)) — dim(Cg (D, @)
dim G +a — dim(G - D; ) — dim(G — D; 4)
dim(Cz(D,@)) + 2a — dim(G — D;,_) — dim(G — D; 4 ). (3)

A simple consequence of (3) is
PROPOSITION 3.1 If0 < deg G < 252, then s(Cz(D,G)) = k.

Proor. We always have s(C.(D, Q)

) < k. Also, by hypothesis, deg G + 1 < n —deg G — 1, and
fordegG+1<i<n—degG—1, (3)

<

becomes s;(C(D,G)) > k. |
Now C¢(D,G)* = C(D, H) for some divisor H with deg H = n — deg G + 2g — 2, [10, Corollary
L.5.16, Proposition I1.2.10]. Also s(C) = s(C*), e.g. [6, Theorem 7). Since 0 < deg H < 252 if
andonlyif”T_2+Zg§degG§n+2g—2, we get

PROPOSITION 3.2 If 252 + 2g < deg G < n + 2g — 2 then s(Cz(D,G)) =n — k.

It follows from Propositions 3.1 and 3.2 and the Wolf bound that if 0 < deg G < "7_2 then k < 3
and if "T’Q +2g < deg G < n+2g—2then k > 7. In fact we can show this directly from the
conditions on deg G. First, 0 < deg G < ”T’2 implies that dim(C¢(D,G)) = dimG < % by [10,
Equation I(4.4)]. Next deg G > 52 + 2g implies that dim G > % + g by the definition of genus.
Also deg G < n+2g—2implies that deg (G—D) < 2g—2, so by Clifford’s theorem dim(G—D) < g.
Thus, for 252 + 2g < deg G < n + 2g — 2, dim(Cz(D,G)) > 2 + g — g = 2. Propositions 3.1 and
3.2 can be summarised as



PROPOSITION 3.3 For deg G € [0, 252] U [252 + 2g,n + 29 — 2], s(C(D,G)) = W(C(D, G)).

In particular if g = 0 (so that C,(D,G) is MDS), we have the known result that s(Cz(D,Q))
always reaches the Wolf bound.

The Clifford Bound. In view of Proposition 3.3 we need to determine s(C,(D, G)) when deg G €
I(n,g). Here we give a simple numerical lower bound on s(C (D, R)) for deg G in this range. The

proof of this lower bound is an application of Clifford’s theorem so we refer to it as the Clifford
bound.

PROPOSITION 3.4 (CLIFFORD BOUND) Ifdeg G € I(n,g), then
s(Cc(D,G)) > k+2a—deg G+ [n%" .
Moreover if n is odd, F/F, is not hyperelliptic and deg G ¢ {25+, 2L n=5 4 29 73 4 29} then

2

-1
S(Ce(D,G)) > k + 2a — deg G+”2 .

PROOF. We begin by recalling that Clifford’s theorem states that for A € Dp with —1 < deg A <
29 - 17

dimA <1+ %deg A.

(In fact Clifford’s theorem is normally only stated for 0 < deg A < 2g — 2 but is easily seen to
hold when deg A = —1 and deg A = 2g — 1.) The version of Clifford’s theorem given in [7] also
gives that the inequality is strict unless A is (i) a principle divisor or (ii) a canonical divisor or (iii)
F/F, is hyperelliptic (and A is an hyperelliptic divisor).

We first show that we can apply Clifford’s theorem to G — D; _ and to G — D; 1 whenever L"T’IJ <
i < |2, Now for [251] < ¢ < 2], we have n —deg G —1 < i < deg G + 1 (since
deg G > [251]) so that deg (G — D;_) > —1 and deg (G — D; 4) > —1. Also we have deg G —
29+1<i<n—deg G+2g—1 (since deg G < |253] + 2g) so that deg (G — D;_) <2g—1 and
deg (G—D; ) < 2g—1. For n even we can choose i, y —1 < i < & +1 such that both of deg G —i
and deg G — n + i are odd (if deg G is even then choose ¢ odd and if deg G is odd then choose i
even). Then the inequality in Clifford’s Theorem is strict for A= G — D; _ and for A=G — D, 4
and (3) gives

—k+2a— n—s
5 5 k+2a—deg G+ 5

Si(CE(DaG))Zk-i-Qa—(degG Lt +degG n+z+> n

For n odd we have that one of deg G —i and deg G —n +i is odd and one is even and for simplicity

we can choose which one by taking either ¢ = "T_l ori = "T“ We take deg G — i even. Thus,

from (3),

):k+2a—degG+n_3.

deg G—i+2 degG—n+i+1
+ 2

2 2

5(Ce(D,G)) >+ 2a (

Moreover if deg G ¢ {251, 2, 225 4 29, 223 4 29} then deg G — i # 0 and deg G —i # 29 — 2
so that G — D; _ is neither principle nor canonical. Thus if F//F, is not hyperelliptic then

n—1

degG—i+degG—n+i+1

$:(Ce(D,G)) > k +2a— ( ‘ .

)zk—l—Qa—degG—{—

In the case that 2g — 2 < deg G < n, the Clifford bound can be simplified to



COROLLARY 3.5 (CLIFFORD BOUND) If max{251,2g — 1} < deg G < min{253 + 2g,n — 1} then

S(Ce(D,G)) > [";ﬂ —g.

Moreover if n is odd, F[F, is not hyperelliptic and deg G ¢ {"T_l, ”T“, ”7_5 + 2g, "T_3 +2g} then
n+1
-9

S(CE(D7 G)) >

PROOF. For 29 —2 < deg G < n, dim G = deg G — g+ 1 and dim(G — D) = 0. The result follows
from Proposition 3.4. O

4 Gonality Bounds

In this section we determine two lower bounds on s;(C.(D,G)) for 0 < i < n in terms of the
gonality sequence of F/IF;,. The gonality sequence was introduced in [13] to give a lower bound
on the generalised weight hierarchy (GWH) of Cr(D,G). The GWH of a length n linear code C
is equivalent to the dimension/length profile (DLP) of C, [6]. It is known that the DLP of C can
be used to underbound s;(C) for 0 < i < n, [6] again. Therefore, our first gonality sequence lower
bound on s;(C(D,@A)) is an application of the results of [8, 13] on the GWH of C,(D,G). The
second gonality sequence lower bound is derived from first principles in a straightforward way and
is often equal to the first bound.

Gonality Sequence. As usual N = {1,2,3,...} and for b,c € NU {0} we put [b,c] = {b,b+
1,...,c}. The gonality sequence, I' : N — N U {0}, of F/IF, is defined in [13] by

[(r) = min{deg A: A € Dr and dim A > r}.

We will also need the translate I'y of T', given by I'y(r) = I'(r +b), for b € NU{0}. In [13], 7, is used
rather than T'(r). However, we use yPLF below in a different context. Also, the function notation
is useful since we are particularly interested in sets of the form {r : Ty(r) < R} =T;'[0, R]. It is
obvious from the definition of T' that I'(dim 4) < deg A.

Clearly T is non-decreasing, which implies that |[[' 1[0, R]| = max(T'![0, R]). In fact [13, Propo-
sition 11] implies that I' is increasing, since F/F, contains a place of degree one. In particular
T is injective and so I'~! can be regarded as the inverse of T' on Im(T) in the natural way (by
composing it with the map 2 — N taking {r} to r). Moreover, since T is increasing on N, I'~!
is increasing on Im(T). Using these facts we get

LEMMA 4.1 Since F/F, contains a place of degree one, dim A < [T 1[0, deg A]| for all A € Dp.

ProoF. We put R4 = max{R € Im(T") : R < deg A}. Since I is increasing, we have
I Y(R4) = max(T~'[0,deg A]) = |T~'[0,deg A]|.

Now, I'(dim A) < deg A implies that ['(dim A) < Ra. Thus, since ™! : Im(T') — N is increasing
we have
dim A =T7}(T'(dim 4)) < T} (R4) = [T [0, deg A]|,

as required. O

GWHs, DLPs and the First Gonality Bound. The dimension/length profile (DLP) and
inverse DLP of a linear code were introduced in [6]. We take an [n, k] code, C. If J C {1,...,n}
with |J| = ¢ then we put

Cy={(c1,...,cn) €C:cj=0forall j ¢ J}



and
Pus(C) = {(¢cjys---»¢5) : (e1y...,¢n) € C and j1,...,j5; € J}.

The DLP of C'is (ko(C), ..., kn(C)), where k;(C) = max{dim(Cy) : |J| = i} and the inverse DLP

of C is (ko(Q),...,kn(C)), where k;(C) = min{dim(Puy(C)) : |J| = i}, [6]. (We note that the
punctured code, Pu;(C), is isomorphic to Forney’s projected code, P;(C).) The DLP and inverse
DLP are related by k,—;(C) = k — k;(C), [6, Theorem 2]. Clearly dim(Pu;_(C)) > k;(C) and
dim(Pu; 4 (C)) > kn_i(C). Thus we have from (1) that for 0 < i < n,

5i(C) > ki(C) + kn—i(C) — k = ki(C) — ki (). (4)

The right-hand side of (4), which we denote by V;(C), is the DLP bound on s;(C), [6, Theorem
8]. The DLP bound on s(C) is then given by

s(C) > V(C) := max{V;(C) : 0 <i <n}.

The generalised weight hierarchy (GWH), 1 < d; < --- < dr < n, of C was introduced in
[12]. It can be defined in terms of the DLP of C as follows. First we note that for 1 < j < n,
k;(C) = k;j—1(C)+1 for exactly k values of j (and otherwise k;(C) = k;—1C). Then, for 1 <r <k,
d, can be defined as the rth value of j such that k;(C) = k;—1(C) + 1, see [6]. We note also, since
k;(C) = k — kn_;(0), [6, Theorem 2], that k;(C) = k;_1(C) + 1 if and only if j = n — d, + 1 for
some 1 < r < k. Thus, led by (4) and the terminology of [2], we refer to a j for which j =n—d,.+1
for some 1 < r < k as a DLP point of gain and a j for which j = d,. for some 1 < r < k as DLP
point of fall. (These concepts will be of use to us in Section 5.) We put

yPEP(C) = |{j : j is a DLP point of gain of C and j < i}|

and
6;"P(C) = |{j : j is a DLP point of fall of C and j < 4}|.

Since ko (C) = ko(C) = 0 we have that k;(C) = yP*F(C) and k;(C) = 6PLF(C). Then, from (4),
Vi(0) = ) - O)=|{r:n—d, +1< i}~ |{r:d. < i}
= k—|{r:d, <n—i}|-|{r:d, <} (5)

In [13, Theorem 12], it is shown that the GWH of C (D, G) is underbounded by d, > n—deg G +
I'(r), for 1 < r < k. This is improved on for abundant codes in [8, Corollary 2] to

dr>n—deg G+T,(r), for1<r<k.
Thus, for R > 0,
{r:d, <RYC{r:n—degG+T,(r)<Rand1<r <k} =T,'0,deg G+ R—n]N[L,k], (6)
which together with (5) suggests the following definition.
DEFINITION 4.2 For 0 < i < n, we put

LY(Ce(D, @) = k = [T;1[0,deg G — 4] N [1, k]| = [T 1[0, deg G +i —n] N [1, k]].

Also we put
LO(Ce(D,G)) = max{L(CL(D,G)) : 0 < i < n}.

Summarising



PROPOSITION 4.3 For 0 <i<n,
5:(Cc(D, @) > Vi(Ce(D,G)) > LV (Cr(D, G)).
Hence

s(Cc(D,G)) > V(Ce(D,G)) > LW(C.(D,G)).

PROOF. The result follows from (5) and two applications of (6); one with R = n — i and the other
with R =i. O

For many function fields, it is straightforward to calculate Lgl) (Ce(D,@)) from [9, Corollary 2.4],
provided that a and k are known. It is also possible to underbound V;(C (D, G)) from Proposition
4.3 even if a is not known and/or only a lower bound on & is known, since |T'; 1[0, R]| < |T~1[0, R]]|
and [T, 1[0, R] N[1,k]| < T, [0, R]|. In Example 4.10 we calculate L(Y)(C(D,G)) when F/F, is
hyperelliptic and in Section 5 we calculate LM (C(D,G)) when Cz(D, Q) is an Hermitian code.

The Second Gonality Bound. We derive a result similar to Proposition 4.3 without reference
to GWHs. In fact, since deg (G — D;_) = deg G — i and deg (G — D; 4) = deg G — (n — i), we
immediately get from (3) and Lemma 4.1

PROPOSITION 4.4 For 0 <i <n,
$i(Cc(D,Q)) > k+2a—|T7'0,deg G —i]| — [T*[0,deg G + i — n]|.

In the case that a = 0, the lower bound in Proposition 4.4 is easily modified to agree with that in
Proposition 4.3.

PROPOSITION 4.5 Ifa =0 then for 0 < i <n,
si(Cc(D,G)) > k— |T710,deg G —i] N [1,k]| — [T710,deg G +i —n] N [L, k]|
PRrROOF. If a = 0 then k = dim G so that dim(G — D;,_) < k and dim(G — D; ) < k. Thus, from
(3) and Lemma 4.1,
si(Cz(D,Q)) > k —min{|T![0,deg G —i]|, ¥} — min{|T 1[0, deg G — n + ]|, k}.

O

We note that the proof of Proposition 4.5, like the proof of Proposition 4.4, essentially only uses
(3) and Lemma 4.1 (and in particular is independent of Proposition 4.3). Thus it is natural to
consider Propositions 4.4 and 4.5 together and so we make the following definition.

DEFINITION 4.6 For 0 < ¢ < n we put

k— 1[0, deg G — ] N [1,k]| — [0~1[0,deg G +i—n]N[L,K]| ifa=0

) _
L7(Ce (D, ) —{ k+ 24— |0-1[0,deg G — ]| — [T~[0, deg G +i — n]| if a>0.

Also we put
L(Ce(D,G)) = max{L®(CL(D,G)) : 0 <i < n}.

Thus Propositions 4.4 and 4.5 yield s;(Cc(D,G)) > Lz(.2) (Ce(D,@)) for 0 < i < n and hence
s(C2(D, @) 2 L{P (CL(D, G)).

Clearly if a = 0 then Lgl)(Cg (D,Q@)) = ng)(CL (D, @)) for 0 < i <n. Our next result shows that,
even when a > 0, Lgl)(CL(D, @)) and L§2) (Cr(D,@)) usually agree.



PROPOSITION 4.7 For deg G —T'(dimG+1)+1<i<I(dimG +1) —deg G+ n —1,
LV(Ce(D, @) = LP(CL(D,G)) = k +2a — |T71[0,deg G —i]| — [T 1[0, deg G +i —n]|.
In particular if T(dim G + 1) = deg G + 1 then L (C(D,G)) = L (C(D,G)) for 0 <i < n.
PRrROOF. We first note that it suffices to show that, for 7 in the given range,
LM(CL(D,G)) =k +2a— [T 10,deg G —i]| — [T 1[0, deg G + i — n]|

(since for a = 0, L{?(C.(D, G)) = LIV (CL(D,Q))).
Now dimG+1=k+a+1. Thusifi>deg G—I(dimG+1)+1then To(k+1) >deg G—i+1
and if i <D(dimG +1) —deg G+n—1then Ty(k+1) >deg G+i—n+1 and
I (CL(D,@)) = k — T;'[0,deg G — ]| — [T '[0,deg G +i — 7.
Thus it remains to show that
[T, 1[0,deg G —i]| + |T;'[0,deg G + i —n]| = |T71[0,deg G —i]| + [T"*[0,deg G + i — n]| — 2a.

It is straightforward to see that if [T ~'[0, R]| > a then [T, [0, R]| = |T~'[0, R]| — a. Thus it suffices
to show that [T '[0,deg G —i]| > a and [T '[0,deg G + i — n]| > a. Using Lemma 4.1 we have,
for i < n,

IT7!0,deg G —i]| > [T*[0,deg G — n]| > dim(G — D) = a

and for ¢ > 0,
[T'0,deg G +1i —n]| > |T7'[0,deg G — n]| > dim(G — D) = a,

which completes the proof. O

COROLLARY 4.8 Ifdeg G > 29 — 2 then for 0 < i < n,
LM(Ce(D,G)) = LP(C(D,G)) = k + 2a— [T71[0,deg G — i]| — [T [0, deg G + i — n])-

PRrOOF. If deg G > 2g — 2 then dimG + 1 = deg G — g+ 2 > g, so that by [13, Proposition 11(b)],
I'(dim G + 1) = dim G + g = deg G + 1. Thus the result follows from Proposition 4.7. m|

We also note that if I'(dimG + 1) < deg G + 1 then I'(dimG) < deg G. Since, ['(dimG) =
min{deg A : dim A > dim G}, this implies that there exists A with dim A > dim G and deg A <
deg G, so that n —deg A > n —deg G. Thus when constructing geometric Goppa codes, it is often
best to choose G with I'(dim G) = deg G.

We now give two examples. The first example shows that L(®(C,(D,G)) can be used to prove
Proposition 3.3 and a slightly weaker version of the Clifford bound (Proposition 3.4 and Corollary
3.5). In the second example we show how L") (Cz(D,G)) and L®)(C(D,)) can be determined
when the gonality sequence of F/F, is known, by considering the case that F/F, is hyperelliptic.

EXAMPLE 4.9 (cf. Proposition 8.3 and Proposition 3.4):

k if 0<deg G <232

L0(Ce(D,G)) = ER(Ce(D, G ={ n—k if22+25—2<deg G <n-+2—2
. < deg G < .

Also, if deg G € I(n,g) then

L@ (CL(D,G)) > k+2a—deg G+ [n;f‘ i



PrOOF. Firstly if deg G < 252 then deg G + 1 < n —deg G — 1 and taking deg G +1 < i <
n — deg G — 1 we have

T, '[0,deg G —i] N [L, k]| = |T,'[0,deg G —i]| = 0
and
IT;10,deg G + i —n] N[1,k]| = |T4[0,deg G + i —n]| =0,
so that LW (C(D,G)) = L®(Cr(D,G)) = k.
Next we take deg G > "T’2 + 2g, so that n —deg G + 29 — 1 < deg G — 2¢g + 1. By Corollary 4.8
we have

L(Ce(D, @) = L (CL(D,G)) = k+2a— [T 1[0,deg G —i]| — [T 1[0,deg G +i — n]|.

Now, by [13, Proposition 11], we have that for R > 2g — 1, [T7![0,R]| = R — g + 1. Taking
n—degG+29—1<i<degG—2g9g+1, wegetdegG—i>29g—1anddegG+i—n>2g9g—1,
so that

L¥(C(D,G)) = L' (CL(D,G)) = k + 2a — 2deg G +n + 29 — 2. (7)

Since deg G > 2g — 2, the Riemann-Roch theorem gives that dimG = deg G — g + 1, so that
k= deg G — g+ 1 — a and the right-hand side of (7) is n — k.

Finally we take deg G € I(n,g). The second inequality (which is all we use) implies that deg G —
29+ 1 < n—deg G +2g — 1. By [13, Proposition 11], we have that for R < 2g — 1, [T~![0, R]| <
|£] + 1. Taking deg G —2g+1<i<n—degG+2g—1, we have deg G — i < 2g — 1 and
deg G +i—n < 2g—1so that

ng)(C[,(D,G)) S k42— {degG—zJ 3 {degG%—z—nJ 5

2 2

Now, for n even we can choose i, deg G —2g+1 < i <n—deg G+ 2¢g — 1 such that deg G —¢ and
deg G + ¢ — n are both odd, and for n odd, one of deg G — i and deg G + i — n is odd and one is
even. Thus

LP(C(D,G)) > k+2a — deg G + [nT—S" .
O
In Example 4.9, L(V(C,(D,G)) and L®(C,(D,G)) are determined whenever deg G < 252 or

deg G > "T_2 + 2g. Thus we are left to determine them for deg G € I(n,g). In Example 4.10, we
do this when F/F; is hyperelliptic and I'(dim G + 1) = deg G + 1.

EXAMPLE 4.10 If F/F, is hyperelliptic, deg G < "52 + 2g and T'(dim G + 1) = deg G + 1 then

LO(CL(D,G)) = L (CL(D,G)) =k + 2a — deg G + ["T_ﬂ .

PRrOOF. We work from Proposition 4.7. In particular L) (C(D,G)) = L?(C(D,G)). We note
that deg G < "T’3 + 2¢ implies deg G —2g + 1 < n —deg G + 2g — 1. The gonality sequence of
F/F, is given by

B 2r—2 forl1<r<gyg
F(T)_{T—}-g—l forr>g+1,
[8, 11]. Thus

R - _
|F1[0,R]|={L2J+1 if0<KR<29-1

R—g+1 ifR>2g—1,
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and ng) (Cc(D,@G)) takes the following values:

k+2a—degG+_i+g—Ld—eg.G;+ﬂJ—2 for0<i<deg G—2g9-—1
k+2a—[deg2G7"J—[degG;”*"J—2 fordeg G+29—1<i<n-—degG+2g—1
k+2a—[d—eg%J—degG—i+n+g—2 forn—degG+29g—-1<i<n.

It is straightforward to see that Lz@) (Cz(D,@)) is maximised over 0 < i < deg G — 29 — 1 at
i =deg G —2¢ — 1 and is maximised over n —deg G +29g—1<i<nati=n—deg G+ 29— 1.
Thus ng)(C[,(D,G)) is maximised over 0 < i < n, for some deg G+2g9—1<1i <n—deg G+29—1.
Now, for even n, Lz@ (Ce(D,@)) is maximised over deg G —29g — 1 <i<n—deg G+2g9—1by
taking ¢ such that both deg G — i and deg G + i — n are odd (noting that there exist both even
and odd 4 in this range). For such i,

-2
LO(C(D,G)) =k +2a — deg G + —.

For odd n, one of deg G —i and deg G +i—n will be odd and one even, so that for deg G—2g—1 <
i<n—deg G+29—1,
n—3

L®(Ce(D,G)) = k +2a — deg G + 5

Thus

LA(Cr(D,G)) = k + 2a — deg G + ’Vn;?)-‘ ,

and the proof is complete. O

We note that, when F/F, is hyperelliptic and I'(dim G + 1) = deg G + 1, the Clifford bound
(Proposition 3.4) and both gonality bounds agree.

A pole number sequence and the gonality bounds for Hermitian codes. The Hermitian
function field, H/F,» has genus g = (g) and ¢® + 1 places of degree one. One of the places of degree
one is the place at infinity, denoted (), and the other places of degree one we denote (1, ..., Qgs.
The Hermitian codes are of the form Cr(D,mQ ), where D = E?; ;. Thus Hermitian codes
are defined over 2 and have n = ¢°, which is much longer than Reed-Solomon codes over Fg2.
As is usual, we write C,,, for Cz(D,mQ ). When m is understood we write k for dim(C,,).

We conclude this section by showing that, for Hermitian codes, the gonality bounds can be ex-
pressed in terms of the pole number sequence of Q. We shall see in Section 5 that the DLP
bound for Hermitian codes often has an identical expression.

From [10, Proposition VI.4.1], ¢ is a pole number of @ if and only if ¢ = ig + j(g + 1) for some
it >0 and 0 < j <q—1. This quickly translates to

LEMMA 4.11 The set of pole numbers of Qoo is {iq+7:0<i<q—1,0<j <i}U{i:i>2g+¢q}.

PROOF. First we note that ig+j = (i — j)g+j(¢g+ 1), so that if 0 < j <4 < q—1 then ig+j is
a pole number. Similarly for t > 29+ ¢ = ¢, we can write t = i'q+j = (i’ — j)g + j(g + 1), where
i' >qand 0 < j <qg—1<17, so that ¢ is a pole number.

For the reverse inclusion we take t = i'g+j(¢g+1), with¢' > 0and 0 < j < ¢g—1. For 0 <¢' < ¢g—1—j
weput ¢ = (' +j) and have t =ig+ j where 0 <i<g—1and 0 < j <i. For ¢ > ¢ — j we have
t=("+j)a+j>¢ =29+q m

We write IT : N — NU{0} for the pole number sequence of Q. We note that dim G = |II71[0, m]|.
Writing I" for the gonality sequence of H/F,2, it follows easily from Lemma 4.11 that for » > g,
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II(r) =r+g—1=T(r), ¢f [13, Remark 17(c) and Proposition 11]. In fact, it follows from [9,
Corollary 2.4] that IT =T and hence [T~1[0, R]| = |II7![0, R]| for all R > 0. Thus Definitions 4.2
and 4.6 can be rephrased using II. In fact

PROPOSITION 4.12 For 0 <i <n,
L(Cp) = L (Cp) = k + 20 — [TT71[0,m — i]| — |T~1[0,m + i —n]|.
ProOF. First we take m < n, so that a = 0 and
LM(Cr) = L (Cm) = k — min{[TT [0, m — 4|, k} — min{|TT 1[0, m + i — n]|, k}.

Also, for 0 <i <mn, k= [II710,m]| > |[I1[0,m — i]| and similarly k& > [II71[0,m + i — n]|.
The result for m > n follows from Corollary 4.8. O

5 The DLP bound for Hermitian codes

Proposition 4.3 and Example 4.9 imply that V(C,,) = W(C,,) for m € [0, ”T’Z] U ["T_z +29—-2,n+
29 — 2]. In this section we calculate V(C,,) for m € I(n, g).

A first step is to show that for m € I(n,g), V;(Cy,) is equal the expression for the gonality bounds
on s;(Cy,) calculated in Proposition 4.12. The proof of Proposition 5.1 uses the results of [13] on
the GWH of Hermitian codes and the fact that II = I', which follows from [9, Corollary 2.4], as
noted in the last section.

PROPOSITION 5.1 If m € [29 + ¢ — 2,n — 1] and n — m is a pole number then for 0 <i <n,
Vi(Cm) =k — [II7H0,m — ]| — [IL[0,m + i — n]|. (8)
In particular (8) holds for m € I(n,g).

PRrOOF. First we recall that [13, Theorem 12] states that d, > n—m+T(r) for 1 <r < k. Next [13,
Theorem 21] states that, if 29 +¢>—2 < m < n and n—m is a pole number then d, < n—m+1I(r)
for 1 <r < g. Also [13, Corollary 6] and k = m — g + 1 (since m > 2g + ¢> — 2 > 2g — 2) imply
thatd,. =n—m+g—1+r=n—-m+I(r) for g+ 1 <r < k. Thus, since IT =T', we have that

d-=n—m+1I(r) forl<r<k.

Thus (5) becomes
Vi(Cm) =k — [IT10,m —4]| — [TT[0,m + i —n]|.

It remains to show that if m € I(n,g) then 29+ ¢> —2 < m < n and n — m is a pole number.
Noting that g > 1, it suffices to show that 2g + ¢> — 2 < m < n — 2g (since then n —m > 2g is a
pole number). First, 251 > 2¢% — ¢ —2if and only if ¢* > 4¢° —2¢— 3. This is clearly true for ¢ > 4
(since then ¢ > 4¢®) and holds with equality for ¢ = 3. For ¢ = 2 we have that m > "T_l implies
that m > % =4 and 2¢> —q—2 = 4. Thus m > 2g + ¢*> — 2 for ¢ > 2. Next, "T_2+2g§n—2g
if and only if ¢° > 4¢® — 4q — 2. Again this clearly holds for ¢ > 4 and can be checked directly for

qg=2and ¢g=3. Thus m <n —2g for ¢ > 2. O

COROLLARY 5.2 For0<m <n+29g—2and 0<i<n,
Vi(Cp) = LMY (Cr) = LP(Cp).

In particular
V(Cp) = LV (Cp) = L (Cpa).
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PROOF. This follows from Example 4.9 and Propositions 4.12 and 5.1. O

For the rest of this section we only refer to the DLP bound. We note here that Corollary 5.2 means
that all results and calculations apply equally to the gonality bounds.

EXAMPLES 5.3 1. For ¢ = 2 we have n = 8 and g = 1, so that for 0 < m < 3, V(Cy,) = k and
for5 <m <8, V(Cp,) =n—k. Thus it remains to calculate s(Cy,) for m = 4. From Lemma 4.11
we have 1[1,4] = {0,2,3,4}. Thus dim(Cy) = |II71[0,4]| = 4 and from Proposition 5.1 we have

i 0123456 7 8
M10,4—4|4 3 2 1 1 0 0 0 0
Im-1[0,i—4]]|0 0 0 0 1 1 2 3 4
ViC:) |0 1 2 3 2 3 2 1 0

Thus V(C4) = 3 and V;(C4) = V(Cy) fori € {3,5}.

2. For q = 3 we have n = 27 and g = 3, so that for 0 < m <12, V(C,,) = k and for 19 < m < 31,
V(Cw) = n — k. We note, by [10, Proposition VIL.4.2], that C;- = C31_p,. Thus Ciz = Cis,
Ciz = Ci4 and Ciy = Ci13. Since V(C) = V(C*) by [6, Theorem 3], it remains to calculate
V(Cp) for m € {13,14,15}. Since V;(C) = V,—;(C) (this is well-known or follows for Hermitian
codes from Proposition 5.1), it suffices to find max{V;(Cp,) : 0 <i < 13}.

We have from Lemma 4.11 that TI[1,13] = {0, 3,4,6,7,8,9,10,11,12,13,14,15}. Thus for m = 13
we have k = [ITI71[0,13]| = 11 and from Proposition 5.1 we get,

i 0 1 2 3 45 6 7 89 10 11 12 13
MT-T0,13—4][[11 10 9 8 7 6 5 4 3 3 2 1 1 1
T—*[0,i—14]]{ 0 0 0 0 0 0 0 0 0O O 0 O O O
Vi(Ci3) 0 1 2 3 45 6 7 8 8 9 10 10 10

Thus, for m =13 and m = 18, V(Cy,) = 10 and V;(Cy,) = V(Cy,) for i € [11,16].
For m = 14 we have k =12 and

i 0 1 2 3456 7 89 10 11 12 13
M-10,14—4] |12 11 10 9 8 7 6 5 4 3 3 2 1 1
m-'0,i—13]]|0 0 0 00 00000 O 0 0 1

Vi(Cis) 0 1 2 3456 7 89 9 10 11 10

Thus, for for m = 14 and m =17, V(Cy,) = 11 and V;(Cy,) = V(Cy,) for i € {12,15}.
Finally for m = 15 we have k = 13 and

i 0 1 2 3 456 7 8 9 10 11 12 13
m-'0,15—4]] |13 12 11 10 9 8 7 6 5 4 3 3 2 1
m—t[0,i—12)J]|0 0 0 0 00 0000 O 0 1 1

Vi(C1s) 0 1 2 3 45 6 7 & 9 10 10 10 11

Thus, for m =15 and m = 16, V(Cy,) = 11 and V;(Cy,) = V(Cy,) fori € [13,14].
To calculate V(Cy,) for m € [251, 252 + 2g — 2] from Proposition 5.1 we need to determine an ¢
for which V;(C;,) is maximised. To do this we use the notions of DLP points of gain and DLP

points of fall introduced in Section 4. We put DLPg,in(m) and DLPgay(m) respectively equal to
the set of DLP points of gain of C,, and set of DLP points of fall of C,,.

LEMMA 5.4 Form € [251, 253 4 29 — 2],

DLPguin(m) = [1,m =29 —q+1]U{m-29—q+2+ig+j:0<i<q-1,i<j<qg-1}
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and

DLPga(m)={n—-m+29+q—1—-ig—j:0<i<q¢g—-1,i<j<qg—-1}U[n—m+29+q,n].

PROOF. As in the proof of Proposition 5.1, if m € I(n,g) then d, =n —m + II(r) for 1 <r < k.

Thus, for m € I(n,g), j € DLPgain(m) if and only if j = m —II(r) + 1 for some 1 <7 < k (if and

only if |[II7[0,m — j + 1]| = [T71[0,m — j]| + 1) and j € DLPgu(m) if and only if j =n —m+1II(r)

for some 1 < r < k (if and only if |[II7*[0,n — m + j]| = [IT![0,n — m + j — 1]| + 1). Thus
DLPgain(m) ={m —1II(r) +1:1<r <k} and DLPgu(m) =n — DLPgin(m) + 1.

Now, for m < n we have k = |[II=1[0,m]| and so for 29+ ¢ —1 < m < n we have from Lemma 4.11,

M1,k ={ig+j:0<i<q—-1,0<j <i}U[29 + ¢, m].
Thus, since 29+ ¢ —1 < m < n,

DLPgin(m) = [I,m—29g—q+1U{m+1-iq—j:0<i <q—-1,0<j" <i'}
= [Llm—-29—qg+1JUu{m—29—q+2+ig+j:0<i<qg-1,i<j<q-1},

where the second equality follows with i = q—1—4" and j = ¢ — 1 — j'. Also then,

DLPg(m)={n—-m+29+q—1—ig—j:0<i<q¢-1,i<j<qg—-1}U[n—m+2g+q,n].

O
To begin with we restrict our attention to m € J(n,g) = [, %52 + g] The DLP bound for
m € I(n,g) will follow since V;(C) = V;(C*) by [6, Theorem 3] and (0= 'nt29—2—m by [10,

Proposition VII.4.2] (as already noted in Example 5.3.2).
We recall from Section 4 that yPF(C,,) = DLPgain(m) N[1,4], 6°“F(Cp) = DLPg(m) N[1,4] and

vi(cm) DLP( m) 6DLP( m)‘

THEOREM 5.5 For m € J(n,g) writen —2m +4g+q—2 = uq + v, where 0 <v < q— 1. Then
V(Cm) is attained at m —2g + 14 | §]q and equals

k- (q _2L%J) - (q _2[%]) _min{q_ f%W ’q_”}'

Proor. If h € DLPgain(m) then s,(Cr,) > 8p—1(Cm). Thus V(Cy,) is attained (not necessarily
uniquely) at an h for which h € DLPgain(m) and h + 1 ¢ DLPgain(m). Therefore Lemma (5.4)
implies that V(C),) is attained at

hi=m—29g—q+2+ig+q—1=m—2g9+1+iq forsome0<i<gqg-—1.
Also

i .

. q—1

TP (Cm) =m—29—q+1+ (q—J)=m—g+1—< 5 )
i=0

We also write h; =n —m + 29+ q—1—14'q— j' for some integers i’ and 0 < j' < ¢ — 1. Then,
(i+i)g+7 =n—-2m+ 49+ q— 2, so that with v and v as in the statement of the theorem,

i' =u—1iand j' =v. Now for m € J(n,g),

¢ =29+q<n-2m+29+q-2<4g+q-1=2¢—-2)g+(¢—1). 9)
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In particular, u > g, so that i > 0. Now Lemma 5.4 implies that for i’ > ¢, 6p¥ = 0 and for
0<i'<qg-1,

q—1—14

: ; . . —i . . )
JRLP(Cm)Z Z j+min{g—i,q—j'} = <q2 )+m1n{q—z’,q—g’}.
j=1
Thus
§DLP _ ' 0 ifo<i<u-—gq
hi T (YY) 4 min{g-u+i,g—v} fu—g+1<i<g-—1.
Hence with
; (%59) if0<i<u—gq
M(Z) = q—1 qg—u+i 2. . . K
(130 + (737) +min{g—u+i,g-v} ifu—g+1<i<qg-1,
we have

Vhi(Cm) =m—g+1—p(i).
Therefore to find an 4, 0 < i < ¢ — 1, that maximises V},(Cy,) (and hence an h that maximises
Vi(Cr)) it suffices to find an 4, 0 <14 < g — 1, that minimises pu(7).

Now
i—q for1<i<u-—gq
u(@) —pi—1) = 2i—u foru—gq+1<i<u—vw
2l—u—1 foru—v+1<i<g-1.

Thus, for 1 <i <wu—gq, pu() < (¢ —1) and p(4) is minimised over 0 <i <wu—gqat i =u—gq. Also
foru—q+1<i<q—1,2i—u—1< p(i)— p(E—1) <2 —u,sothat, foru —g+1<i <[],
(i) —p(i —1) < 0and foru+1 < [§] <i < qg—1, p(i) —p(i —1) > 0. Thus, provided
u—q+1< %] <q—1, p(i) is minimised over u —q <i < g—1at i = [§]. Now from (9), we
have u < 2¢ — 2 so that 2u — 2¢+ 2 < w and hence || > u —q+ 1. Also u < 2¢ — 2 implies that
|§] < q—1. Thus p(i) is minimised over 0 <4 < ¢—1at i = || and is equal to

(q _2L%J> + (q _2[%]) + min {q— [%1 ’q_”}'

The theorem follows from the definitions of h; and (i) and the fact that m > 251 > 29 — 2 so
that k = m — g + 1 by the Riemann-Roch Theorem. O

COROLLARY 5.6 Form € ["Tfl +9, "T’3+2g], write 2m —n+q+2 = uq+v, where 0 <v < qg—1.
Then V(Cr,) is attained at n —m — 14 | ¥ |q and equals

n-k- (q _2L%J> - (q _2[%1> _min{q_ [g] ’q_”}‘

PROOF. We put m* = n+2g —2 —m, so that Ci; = C,,». For m € [251 + g, %2 + 2g] we have
ol <mt < 223 4 g, We write
2m—n+q+2=n—-2m* +49+q—2=uq+v.

Then by Theorem 5.5, and the fact that V;(C+) = V;(C), V(Cy,) is attained at m* +2g + 1 +
[$lg=n—m—1+[%]qand is equal to

dim(Cpn) - (q _2L%J) - (q _2(%5 ~ min {q - [31 4= ”} :
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EXAMPLES 5.7 1. For ¢ = 2 (so that n = 8 and g = 1), Theorem 5.5 applies to m = 4. For
m=4,n—-2m+4g9+q—2=4=2-2, so that u = 2 and v = 0. Thus from Theorem 5.5,
V5(Cy) = V(Cy) and V(C4) = 3, both of which agree with Example 5.5.1.

2. For q = 3 (so that n = 27 and g = 3), Theorem 5.5 applies to 13 < m < 15. For m = 13,
n—2m+49+q—2=14=4-3+2, so that u = 4 and v = 2. Thus from Theorem 5.5, for m = 13,
V11(Cm) = V(Cr) and V(Cy,) = 10. For m = 14, we have u = 4 and v = 0 so that Theorem
5.5 gives V12(Cp,) = V(Cp,) and V(Cy,) = 11. For m = 15, we have v = 3 and v = 1 so that
Theorem 5.5 gives V13(Cr) = V(Cr) and V(Cy,) = 11. These are all in agreement with Example
5.3.2.

Table 1 shows the DLP bounds given by Theorem 5.5, for small values of g not covered in Examples
5.7.

Table 1: DLP Bounds for ¢ € [4, 8] and m € J(n,g).

32 33 34 35 36 37

26 27 27 28 27 28

62 63 64 65 66 67 68 69 T0 T1

52 53 54 54 55 55 H55 56 55 56

171 172 173 174 175 176 177 178 179 180

150 151 152 153 153 154 155 155 155 156

181 182 183 184 185 186 187 188 189 190 191

157 156 157 158 158 157 158 159 158 158 159

256 257 258 259 260 261 262 263 264 265 266 267 268 269
228 229 230 231 231 232 233 234 233 234 235 236 235 236
270 271 272 273 274 275 276 277 278 279 280 281 282 283
237 238 237 237 238 239 238 238 239 240 239 238 239 240

4
§S

o
3

B
ch

4
§S

4
§S

4
\3?3

3

B
ch

We conclude by comparing the DLP bounds for Hermitian codes given in Examples 5.7 and Table
1 with the Clifford bound given by Corollary 3.5. We note that Hermitian function fields are not
hyperelliptic (since if g > 2 then ¢ > 3 and ['(2) = ¢ > 3). The Clifford bounds for ¢ € [2, 8] and
m € J(n,g) are given in Table 2. For q € {2,4,5,7,8}, the Clifford bound is equal to the DLP
bound for m = | %] and inferior to it otherwise. For ¢ = 3, the Clifford bound is equal to the DLP
bound for m € {13,15} and inferior to it for m = 14.

Acknowledgements The authors gratefully acknowledge financial support from the U.K. Engineering
and Physical Sciences Research Council under Grant L88764. The first author was supported was
the EPSRC.

Note added in proof. The state complexity of Hermitian codes has also been studied in Shany, Y.
and Be’ery, Y: ‘Bounds on the state complexity of codes from the Hermitian function field and its
subfields’, TEEE Trans. Info. Theory, 46, 1523-1527 (2000). Proposition 3.4 above is a sharper
version of Proposition 1, loc. cit. and [4, Example 5.11] generalizes their main result to arbitrary
self-dual Hermitian codes.
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Table 2: Clifford Bounds for g € [2,8] and m € J(n,g).

q

2 m 4
Clifford bound 3

3 m [13,14] 15
Clifford bound 10 11

4 m [32,37]
Clifford bound 26

5 m [62,63] [64,71]
Clifford bound 52 53

7 m [171,172] [173,191]
Clifford bound 150 151

8 m [256, 283]
Clifford bound 228.
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