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Abstract

Let R be a finite chain ring, e.g. a Galois ring. We give a compact recursive formula for
a minimal realization of a finite R—sequence. In particular, we show how to obtain a monic
minimal polynomial and a rational approximation of a finite R—sequence. We also show how

to solve the classical key equation of Algebraic Coding Theory over R.
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1 Introduction

We consider the problem of determining a ’minimal realization’ of a finite sequence sq,..., s,
over a commutative ring R (minimal realization was introduced in [11] and is related to rational
approximation). For general commutative rings, division-based techniques (such as the Euclidean
algorithm) fail. We show that minimal realization is possible over finite chain rings and their finite
products. In particular, we can now do rational approximation over such rings. We show how
to construct a minimal solution of the key equation So = w (mod g), where g € R[X] is monic
(Algorithm 8.3).

Recall that a chain ring is a ring in which all its ideals are linearly ordered by inclusion, [7, p.
184]. It is well-known that a finite chain ring R is a local ring and that its maximal ideal M say,

is principal. The nilpotency index v of R and a (fixed) generator of M play an important role in
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our approach. It is also well-known that a Galois ring of characteristic p® is a finite chain ring; in

this case v = e and p generates M.

For a characterization of finite chain rings, see Theorem 5.1. Suppose that Fj is a finite field,
f € Fy[X]is reducible and factorises as fi"* - -- f;'*, where f; € F;[X] is irreducible for i = 1,... k.
Then the ring F,[X]/(f) is a finite product of finite chain rings, as of course is Z/(m). Trivially,

any finite field is a finite chain ring.

Our approach is based on simplifying and generalizing [14] along the lines of [11], [12]. That is, we
exploit R[X !, X], its subrings R[X '], R[X] and deal with negatively indexed sequences. For
m < 0, s|m denotes the sequence sg, ..., Sy, with last term s,,. It turns out that the case m =0
is trivial and that the case m < 0 splits naturally into (i) s|m + 1 ‘has constant complexity’ and
(if) s|m + 1 ‘does not have constant complexity’. The corresponding (polynomial) constructions
are (i) Example 3.2 and Proposition 3.4 and (ii) Proposition 3.6. Theorems 6.2 and 6.4 establish

the minimality of certain special constructions for cases (i) and (ii) respectively.

These theorems immediately yield Algorithm 6.6 which computes a minimal polynomial of a finite
sequence over a finite chain ring. (An improved version is given in Section 7.3 below.) Algo-
rithm 6.6 differs from [14] in a number of ways: (i) it is valid over more general rings; (ii) it
computes a minimal polynomial at each iteration, without using pairs of polynomials; (iii) it is an
immediate consequence of Theorem 6.4, not requiring separate ‘theorem—proving’ and ‘computer—

implementation’ versions; (iv) our theory generalizes results of [11] when R is a finite field.

Section 7 extends Section 6 to minimal realizations (M R's) and contains the main result of this
paper, Theorem 7.9. This theorem gives a compact formula for an MR of a finite sequence over
a finite chain ring and improves Theorems 6.2, 6.4. In Section 7.3, we develop the corresponding

compact algorithm to compute a minimal realization, Algorithm M R.

Restricting to first components in Algorithm MR yields an improved minimal polynomial al-
gorithm, which we call Algorithm M P. This algorithm reduces to the monic version of Algo-
rithm M P of [11] when R is a finite field. Proposition 7.13 tabulates the algebraic— and storage—
complexity of Algorithms M P and M R. For example, Algorithm M P requires at most v(1 —m)?

R-multiplications when applied to s|m.

A ‘Modified Berlekamp—Massey algorithm for shift-register synthesis’ over a Galois ring appears
in [6]. The authors note ‘This procedure leads to a solution; however, not necessarily minimal. So
one additional step had to be introduced to check for the minimality of the new solution. In the
case where a nonminimal solution is obtained, a search among some candidate polynomials must
be carried out’, ([loc. cit., Conclusions, p. 1019]). Example 7.12 is Algorithm M P is applied to
[6, Example 2], which is a finite sequence over the Galois ring R = GR(9,2).

The final section discusses the key equation of Algebraic Coding Theory over a finite chain ring.

Possible topics for future work are: (i) decoding Reed—Solomon and BCH codes over a Galois ring;;



(ii) studying the uniqueness of a minimal polynomial of s|m over R; (iii) characterizing the set of

minimal realizations s|m over R; (iv) applications to algebraic number fields.
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2 Laurent Polynomials and Finite Sequences

We let R denote a commutative ring with 1 # 0. The letters f, g, h denote f,g,h € R[X] and §f
is the degree of f, with 60 = —oo.

As in [12], it is very convenient to work in the ring of Laurent polynomials R[X 1, X], which
contains R[X] as subring. Thus R[X] acts on R[X~!, X] in the usual way (by multiplication in
R[X~1,X]). The letters F,G, H denote elements of R[X~!, X]. For —oc < i < oo, F} is the it"
coefficient of F.

The support of F' # 0 is Supp(F) = {i € Z : F; # 0}, and Supp(0) = 0. Of course, if Supp(F) = 0,
then F' = 0.

We extend § to R[X~!, X] by 6F = maxSupp(F) if F # 0. If F # 0, A\F € R\ {0} is its leading
coefficient. We have 6(FG) < §F + 06G (with equality if AF' - \G # 0 e.g. if F is monic) and
0(F + G) < max{dF,0G} (with equality if §F # Q).

The letters m, n always denote integers m, n < 0. We let s|m denote the finite sequence with
s; € R for m < i < 0 and with last term s,,,. We write I'(s|m) = Z?:m 5; X% € R[X 1] for the

‘generating polynomial’ of s|m.

Definition 2.1 Forl € Z, we define [F]" € R[X '] by

ST OEXD ifl<m

[F]" = )
otherwise.

3 Annihilators

3.1 The Annihilator Set

We extend some definitions and elementary results from [11, 12] which only require that R be

commutative.

Definition 3.1 Let r € R\ {0}. The r—annihilator (or r—characteristic) set of s|m is

Ann(s|m,r) ={f : Af=r, [f'r(3|m)]9n+5f =0}.



If 6f > 1 —m, then f € Ann(s|m,\f) by Definition 2.1. Also, if » € R\ {0} and m < 0, then
Ann(s|m,r) C Ann(s|m + 1,r). It is immediate that if

r if rsg =0
fO,r = {

r-X  otherwise,

then fo, € Ann(s|0,r).

Example 3.2 Let m <0, r-s;, =0 form+1<i<0andr-s, #0. Thenr € Ann(sjm+1,7)\
Ann(s|m,r) and X'~™ € Ann(s|m,1).

Ifd=46f and 1 <d < —m, then

d—1
[f-l"(s|m)2n+d:0®)\f-si_d:—z fi-sijform<i—d<-d
=0

sofor \f =1, f € Ann(s|m,1) iff f ‘generates s_g4,..., sy’ from s|(1 —d).

It is convenient to define (f o s|m); = (f - I'(s|m)); for m + df < i < 0. Note that (f o s|m); =
EZ’;O fe-si—k f m+6f <i<0. Also, for m+ Jdf <0, we define the finite sequence f o s|m to be
(fos|m); for m+4df <i <0. (The sequence f o s|m will be used in Lemma 7.3 below.)

When m is understood and m + §f < 0, we write (f o s); for (f o s|m);. We have

Proposition 3.3 (i) If m + max{df,dg} <i <0, then (f+g)os)i=(fos)i+(gos);

(i) Ifr€ R, k>0 andm+k+6f <i<O0, then (r- XFf)os);=r-(fos)i.

3.2 Two constructions

Suppose now that » € R\ {0}, m <0, f € Ann(s|m + 1,r) \ {0} and §f < —m (for example we
could have f = fo). Then f € Ann(s|m,r) iff the obstruction to extending f to s|m

Of ¥ (f 0 8)mrsy

is zero; Of is called the discrepancy of f in the shift—register literature. We conventionally put

Of =0if 6f > 1 — m since such an f is always in Ann(s|m,r).

Thus in Example 3.2, f = r € Ann(s|m + 1,r) but f ¢ Ann(s|m,r) since Of = r - s, # 0.
Proposition 3.4, which is our second example, is suggested by the equality Of — ((Of/so)os)o =0
when Of # 0 and so|Of. The easy verification is omitted.

Proposition 3.4 Let m <0 and f € Ann(s|m + 1, Af). If so #0, Of # 0 and so|Of, then

fn = X" f —Of /50 € Ann(s|m, Af) \ {0}.



The next construction is suggested by the equality [Of, Og] = 0, and will be used in the non-

constant complexity case (i.e. in Theorem 6.4 below):

Definition 3.5 ([11, Definition 3.10]) Let m +1 < n < 0, f € Ann(s|m + 1,Af) and g €
Ann(s|n, Ag). If Of #0 and Og # 0, we define 6 = 6(f,g) = max{df,—m+n —1+dg} and

[f,9]=0g- X7 f—Of - X°Hm—nt1=09g,
The next result is essentially [11, Proposition 3.11], and so we omit the straightforward proof:

Proposition 3.6 Letm+1<n <0, f € Ann(sm+1,Af), g € Ann(s|n,\g) and Of #0, Og #
0. If A\f - Og # 0 then A[f,9] = Af - Og, 0[f,9] = 6 < —m and [f,g] € Ann(s|m, Af - Og). If in
addition Og|Of, then X([f,9]/Og) = Af and [f,g]/Og € Ann(s|m, \f).

4 Minimality

We write Min(s|m,r) for the polynomials in Ann(s|m,r) \ {0} of minimal degree, with typical
element p,, € Min(s|m,r). We can take po, = fo, as defined in Section 3.1. Our goal is to
determine a fip, ,, given m < 0, an s|m and an r € R\ {0}.

We call the unique minimal degree of a i, the r—complezity of s|m, written k,,, when s|m
is understood. Clearly &, < 1 —m for any r € R and since Ann(s|m — 1) C Ann(s|m),
Emr < Km—1,. If Ris a domain, then £, , is independent of r. In Example 3.2, k41, =0, and
we will see below that if ur - s, # 0, then £, , =1 — m.

We give a key extension of the Minimality Lemma ([11, Lemma 4.2]) to commutative rings (Lemma

4.3 below). Recall from [11] that the border polynomial of f and s|m is
B(fislm)= Y (f-T(sm)), X

1<i<df

where f; = 0 for j > §f. For example, B(X'™™, s|m) = Eztlm si_14m X' Also, d8(f,sim) <
of, X divides B(f, s|/m) and B(r,sm) = 0if r € R. It is clear that 3( , s|m) is R-linear i.e. that
Bluf + vg, sjm) = up(f, s|m) +vB(g, s|m) for any u, v € R.

The foregoing definitions easily yield:

Proposition 4.1 fI'(s|m) = F + [fT'(s|m) (T)n,+6f + B(f, s|m) for a unique F € R[X 1] satisfying
OF <m+4f.

As in [12], Proposition 4.1 implies that if f € Ann(s|m, 1), then 6(I'(s|m) — B(f,s|m)/f) < m i.e.

B(f,s|m)/f is an order m rational approzimation of I'(s|m).



Corollary 4.2 If m <0, f € Ann(s|m + 1, \f), then
fT(slm) = F + Of - X™7 1 B(f, 5|m)

for a unique F € R[X '] satisfying 0F < m +df.

The next lemma, is pivotal for constructing minimal polynomials and indicates a need to keep track

of leading coefficients when there are zero—divisors:

Lemma 4.3 (cf. [14], [12, Lemma 4.2))

Let m < 0 and f € Ann(s|m + 1,Af) \ {0}, g € Ann(s|m + 1, \g) \ {0}. Then
(i) if f € Ann(s|m, Af) and Af - Og # 0, then 6f > 1 —m — dg;

(ii) if 6f + 69 < —m, then Af - Og = Ag - OF.

PrOOF. Let h = gB(f,slm) — fB(g,slm) € XR[X], so that Supp(h) C [1,0h] and let d =
m + §f + dg. Expanding h via Corollary 4.2 yields hg = Af - Og — Ag - Of. Parts (i) and (ii) are
now simple consequences of hg #0 = d > 1. O

Remark 4.4 In the preceding proof, hq # 0 = dh = d, but we will not need this fact.

5 Finite chain rings
The following result is well-known (see e.g. [1, 9]):

Theorem 5.1 Let R be a finite commutative local Ting with mazimal ideal M and residue field K.

The following are equivalent:

(i) R is a finite chain ring;

(i) R is the homomorphic image of A[X] given in [9, p. 342], where A is a Galois ring;

(i) M is principal;

(iv) dimg M/M? < 1.

PrOOF. The equivalence of (i) and (ii) is the characterization theorem for finite chain rings [9,

Theorem XVIL5, p. 342]; [1, Proposition 8.8, p. 91] gives the equivalence of (i), (iii) and (iv),

since any finite ring is Artinian. O

Convention: For the remainder of this paper, R denotes a finite commutative chain ring with

principal maximal ideal M and nilpotency index v. We fix a generator v of M.



For example, a finite commutative local ring with characteristic p¢ is a Galois ring if and only if its
maximal ideal is pR [9, Exercise XVI.9(a), p. 332]. Thus if R is a Galois ring with characteristic

p¢, we can take v = p and have v = e.

The following form of unique factorization in R plays an important role in our approach:

Proposition 5.2 Any element r € R\ {0} can be written as r = u~y® where u is a unit of R, t is

unique and 0 <t <wv —1.

ProoOF. Let r € R\ {0}. If r is a unit, we take ¢ = 0. If r is not a unit, » € M by [1, Corollary
1.4]. In fact, since R is finite, r € M?*\ M**1 for some ¢, 1 <t < v —1, i.e. r = uy’ for some
w € R\ M. This implies that (u) = R, so u is a unit of R.

To show that ¢ is unique, suppose that up® = vp’ for units u, v and 0 < s,t < v — 1. We can
assume that both s and ¢ are strictly positive. If s > ¢ and wu' = 1, then uy!(y*~t — w'v) = 0,
where v*~% — u'v is a unit — otherwise u'v € M, which is impossible. This implies that v¢* = 0

where t < v, which is a contradiction. Similarly s < ¢ is impossible and we conclude that s = ¢. O

If r € R\ {0} and r = uy!, we write logr for the uniquely defined power ¢ of y, where 0 < logr <
v —1. Since R is finite, any element of R\ {0} is either a unit or a zero—divisor (see e.g. [9, Exercise

1.8, p. 5]). It is easy to check that if a, b are zero—divisors of R\ {0}, then al|b iff loga < logb.

Finite chain rings also appear as quotients of Fy[X] as follows:

Proposition 5.3 Let F,, be a finite field, f € F,[X] irreducible and e > 2. Then R = F,[X]/(f€)

is a finite chain ring with proper ideals f'R,1 <14 < e — 1, and unique mazimal ideal fR.

PROOF. Ideals of R are ideals of F,[X] which contain (f¢). Thus the first statement follows from
the fact that F,;[X] is a principal ideal domain and hence is a factorial ring. The second statement

is an easy application of the double quotient isomorphism theorem. a

6 Minimal Polynomials

In what follows, we set £ = vV~ !. Thus if R is a Galois ring of characteristic p®, then £ = p*~!. In

particular, if R is a finite field of characteristic p then ¢ = 1.

Recall that a,b € R\ {0} are associates if there is a unit u € R\ {0} such that a = ub. This defines
an equivalence relation: [r] denotes the class of associates of r € R\ {0} and [R \ {0}] denotes the

set of associate classes of R\ {0}. We will use [y], 0 < i < v — 1 as the equivalence classes in
[R\{0}]-

Since r = ut for some unit v € R for each t € [r], Min(s|m,r) = u - Min(s|m,t) where u -



Min(s|m,t) = {u- f : f € Min(s|m,t)}. For this reason, it suffices to determine Min(s|m, [r]) for

each r € R\ {0} and thus from now on, we will assume that r denotes an associate class.

We need one more item of notation before stating the main theorems:
Definition 6.1 Forr € [R\ {0}], we define r* = [y*~171o87].

For r € [R\ {0}], r* is well-defined by Proposition 5.2, and it is easy to see that rr* = [{]. If R
is a Galois ring of characteristic p? (e.g. R = Z4) the map r — r* simply interchanges [1] and [p]
and if R is a finite field, r* = [1] for all r € [R\ {0}].

6.1 The Minimality Theorems

From now on, we will abbreviate Op;,, to O;, for i < 0 and r € [R\ {0}]. First we treat the

constant complexity case:

Theorem 6.2 (c¢f. [14].) Let m <0, r € [R\ {0}], &t = ttm+1,r, Omt1,r 70 and ¢ = (Opy1,7)*.

If Km+1,c = Ko,c and

rX1-m if Ko, =0

Mm,r = 5 .
X ™%y — Opmy1,r/s0  otherwise,

then
(i) pim,r is well-defined and i, » € Ann(sim,r);
(i) If Spimm,r > Optrms1,r then (a) Spimr =1 —m — Spimy1,c and (b) [Opyr,e] =15

(iii) pim,r € Min(s|m,r).

PROOF. Suppose first that ko = 0. Certainly dpum,» = 1 — m, so that g, » € Ann(sim,r).

Part (ii)(a) is clear. We have dpmy1,,» < —m and 80 b1, + Oftmt1,c = Sfbmt1,r < —m. Lemma

4.3 (ii) implies that r - Opy1,c = ¢- Opg1,» = €. This implies (ii)(b) and since £ # 0, Kp,r > 1—m
by Lemma 4.3(i). Thus g, € Min(s|m, r).

Suppose now that kg, = 1. We havet = c-s9 # 0 — otherwise dug,. = 0 — and so sof = t-Oppp1,r-
If t is a unit, s9|Omy1,,- If not, logt is defined and logsg + v — 1 = log Opy1,r + logt. Hence
log so < log Opm41,r which implies that so|Om41,r- Thus pm » is well-defined, and g, » € Ann(s|m)
by Proposition 3.4.

It remains to prove (ii) and show that dpp,,, = —m is minimal. If dppy1, = —m then dupy,,, is
already minimal. Suppose now that dpty41,r < —m. Then Sy, , = —m =1 —m — dptp41,c Which

proves (ii)(a). Also, §ftm+1,r + Oftmy1,e < —m — 1+ 1= —m and so by Lemma 4.3(ii)

r- Om+1,c =cC- 0m+1,r =/



which proves (ii)(b). To prove (iii), we have r - Op41,c = £ # 0 and so by Lemma 4.3(i) applied to

9 = lm+1,c, we deduce that Kp,r > 1 —m — Sptmi1,c = —m and SO g, € Min(m, r). O

Remark 6.3 We may also prove part (ii)(b) for the case ko, = O directly. Using the same
notation as Theorem 6.2, y € Ann(s|m + 1,7) implies that

§(uT (s|m) — B(p, 8) — Omaa p X™HH) <m + 6

by Corollary 4.2. Nowc s; =0 for m+1<j <0, so multiplying by c and equating coefficients of
XM+ gives 1+ Opgt,e = 1¢8m = ¢ Ogr,r = L. (cf. [14, Case Ia, p.511].)

Now we treat the remaining (non—constant complexity) case. In the following theorem, we think

of the index 41, of s|m as the ‘antecedent’ of Kp11 -

Theorem 6.4 (c¢f. [14].) Suppose that m +1 < 0, r € [R\ {0}], pn,o € Min(s|n,a) for all
a€[R\{0}] and m+1<n<0. Let Opyy1,r #0 and ¢ = (Opmg1,r)*. If Kmt1,c > Ko,c, define

o= Om41,c = minm+1<n§0{n : éun,c < 6/1/m+1,c}
d=(Oa,c)"

HPm,r = [,um-i-l,ra :ua,d]/o‘l*d'

Then
(i) pim,r is well-defined and p, , € Ann(s|m,r);
(it) If Spim,r > Oftme1,r then (a) Spim,r =1 —m — dptmy1,c and (b) [Omyr,c] = 7*;

(ii4) pim,» € Min(s|m,r).

PROOF. Suppose inductively that the result is true for s|n, where m + 1 < n < 0. That is, for all
a € [R\ {0}], ttn,o € Min(s|n,a) satisfies: if Opt1,o # 0 and b = (Opy1,0)* then dpn,a > dfintia
implies (a) dpin,e =1 —n — Spint1,p and (b) [Opt1,5] = a™.

By construction, m+1 < o < 0 and dpmy1,c = Ofta—1,c > Oppa,e- Thus Sppg—1,c =1 —(a—1)—dpq,q
and [Oq,4] = ¢* = (Omt1,r)*™ = Ome1,r either by the inductive hypothesis (if dp1q,4 > ko,4) Or by
Theorem 6.2 (if dp1a,0 = Ko,4)- If Oq,q is a unit, then Oy 4|Opyt1,r; otherwise log Oy ¢ = 10g Oppy1,r
and s0 Oq,4|Om1,r- Thus pi, » is well-defined and gy, » € Ann(s|m,r) by Proposition 3.6.

We now prove part (ii). If Opim r > Oftmy1,r then

5,“/m,r = —-m+a-1+ (5llla,d



= —-m+a—-1+2—-a—0pa—1,)
= 1_m_6,ua71,c

= 1—m — dfum+1,c by construction, which proves (ii)(a).

To prove (ii)(b), we first show that dgmt1,r + Optmi1,c < —m. Our hypothesis implies that the
left-hand side is at most (8ftm,» — 1) + 8 ftm+1,. which we have just seen is equal to —m. As before,

it follows from Lemma 4.3(ii) that 7- Opmt1,c = ¢- Omt1,r = uf, w a unit of R, which yields (ii)(b).

We now prove part (iii). If O, = Oftmt1,r, then gy, , is already minimal, so suppose that
Optm,r > Oftm+1,,- Part (ii)(b) implies that 7 - Opq1, # 0 and so Lemma 4.3(i) gives &, >
1—m — 0ptm+1,c. The latter is dpp, » by part (i) (a). Hence pim » € Min(s|m,r), which completes
the proof.

Remark 6.5 When R is a finite field, we can suppress the subscripts r,c,d since [1] is the only
associate class. There is also no need to divide by so in Theorem 6.2 or Oy q tn Theorem 6.4. In

this case, Theorems 6.2 and 6.4 reduce to Propositions 5.3 and 5.4 of [12].

6.2 A naive algorithm

Our first minimal polynomial algorithm is an immediate consequence of Theorems 6.2, 6.4. For
i+1 <0, a1,y is an integer satisfying ¢ + 1 < a;y1,, < 0. Thus we can assume that the minimal
polynomials fia,., . are either fq, (following Definition 3.1) or have been obtained inductively
(according to Theorems 6.2 or 6.4). In this preliminary version, we do not update these polynomials
as in [11, 12]; instead we assume that the values of aj1 1, and the polynomials piq,, , ,.,r are available

as needed.

Algorithm 6.6 (Minimal polynomial—naive version)
Input: m <0, a finite chain ring R, s, ...,sm € R.
Output: pimm,» € Min(s|m,r),r € [R\ {0}].
forr € [R\ {0}] do
{ if (r-so=0) then po, :=r;
else o, :=r-X;

Ko,r = 5ﬂo,r;}

fori:=—1tom do

forr € [R\ {0}] do

10



/* Compute p; » */
{ & ="0piy1,r;
O := (Kit1,r © 8)itopisa s
if (O =0) then piyr == pit1,r;
else { c:= O%;
case:
(k = Ko,e = 0): iy =1 X'
(k= Ko,e = 1) priyp i= X 000 iy 0 — O s0;
(6> ko) {a=aped:=(0ac)"
pi,r = [Wit1,r, Ha,d]/Oa,a; } endcase}}
for r € [R\ {0}] do return pip, ;.

Example 6.7 Algorithm 6.6 yields the following table of minimal polynomials for the Zg—sequence
(Sl - 4) = 6737 17576 Of [14; p 512]

‘ t ‘ O;a ‘ i1 ‘ ;1 ‘ Oi,3 ‘ 1,3 ‘ ;3 ‘
0|6 X - 10 3 —
—-113 X +4 - 10 3 —
-2 14 X3 113 3X2-5 -1
-3 1|5 X34+X244X | <110 3X2-5 -1
-416 X3+X247X | - |4 3X?+3X+5| -

Remarks 6.8 (i) The p;, are obtained without computing the border polynomials B(u; r,s|i) at
each iteration. (ii) We obtain minimal polynomials at each iteration of the algorithm. (i) If R is
a finite field, oll the r indices, ¢ and d can be suppressed, and Algorithm 6.6 reduces to the monic
version of Algorithm MP of [11] (cf. [14, Algorithm]).

Suppose that R = R; X R» and each R; is a finite chain ring. A sequence s|m over R gives rise to
sequences s(9|m and corresponding monic minimal polynomials ,ug),l in each factor, ¢ = 1,2. This
readily yields a monic minimal polynomial for sjm. The details are elementary and omitted. Since
F,[X] is factorial, it now follows from Proposition 5.3 that we can also compute a monic minimal

polynomial of a sequence over F,;[X]/(f) for any f € F,[X].
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7 Minimal Realizations

7.1 Realizations

Definition 7.1 Let r € [R\ {0}]. For f # 0, we say that (f,9) € R[X] x XR[X] is an r—
realization of s|m if Af = r, dg < 6f and 6(fT'(sjm) — g) < m + &f. In addition, (f,g) is a
minimal r—realization of s|m (written (f,g) € M R(s|m,r)) if (f,g) is an r—realization of s|m and
f € Min(s|m, ).

We refer the reader to [11] for a discussion of minimal realization. In particular, if 6f > —m, we
always have 6(fI'(s|m) —B(f,s|m)) <0 < m+4f and any (f, B(f,s|m)) with \f =r and §f > —m
is an r-realization of s|m, e.g. (rX'~™ B(rX!~™, s/m)). Addition and polynomial multiplication
of realizations will be componentwise. The presence of zero—divisors does not affect the validity of

the next result ([11, Propositions 2.6, 2.8]):

Proposition 7.2 Let 0f < —m. If (f,9) is an r—realization of s\m then g = B(f,s|m), and the

following are equivalent:
(i) f € Ann(s|m,r);
(i) (f,9) is an r—realization of s|m for some g;

(i) (f,B(f,s|m)) is an r—realization of s|m.

Thus for any r € [R\{0}], an r—realization of s|m can be obtained by finding a fn, , € Min(s|m, r)
and computing B(tm,r, s|m). From now on, we write By,  for 8(um,r, s|m). Also, it is easily verified
that since dp,, < 1—mn, B(tn,r, s|n) = B(pn,r, sim) for any m < n, so we can further simplify the

notation by writing 3, , for any B(un,r, sjm) with m < n.

It is elementary that
0 ifr-s0=0

B(ro,r,s|0) =
’ r-sg-X otherwise.

Since i is obtained using products of polynomials, a product formula (¢f. [11, Proposition
2.3(e)], [12, Lemma 5.2]) is needed for expressing the polynomials S, , recursively. Recall that for

09 < —m, the finite sequence g o s|m was defined in Section 3.
Lemma 7.3 (Product Formula) If 6 f +dg < —m, then B(f - g,s|m) = f-B(g, s|m)+ B(f,gos|m).

Corollary 7.4 (cf. [14].) Let m <0, r € [R\{0}], #t = pem+1,r» Oms1,r Z0 and ¢ = (Opmy1,)*.
If Kmy1,c = Ko,c then
T Sm-X if ko,e =0

X*"‘*‘s“ﬂmH’r otherwise.

5m,7" =
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PROOF. Suppose that kg, = 0. By definition, m + 1 is the first index with Oy, # 0, so
resg=-.=1 8my1=0and By, = Br- X" slm) = 1" r - si_14m - X' =15, - X. The

other case is an easy consequence of Lemma 7.3 and the fact that 4 € Ann(s|m + 1). O

For the case Km41,c > Ko,c, we have:

Corollary 7.5 (¢f. [14].) Suppose that m +1 < 0, r € [R\ {0}], pin, € Min(s|n,a) for all
a€[R\{0}] and m +1<n<0. Let pp = prmt1,ry Om+1,r #0 and ¢ = (Opg1,r)*.

If Kmg1,c > Ko,er @ = Qupy1,c, d are defined as in Theorem 6.4 and i r = [fm+1,r, Ha,d) then
,Bm,T = Xéi(mﬂm+lw - (0m+1,T/Oa,d) : X6+m7a+176”a’d5a,d

where 6 = Spim,r.

PROOF. This uses Lemma 7.3 and is omitted since it is similar to the proof of [11, Proposition
4.4]. O

7.2 The main result

The results of the previous two sections can be combined into a compact formula for (tim r, Bm.r)-

We will use the following notation:

Definition 7.6 If m, v, pypy1,r5 € Pa,d and py,r are as in Theorem 6.4, we set

ﬁm,r = (Nm,ra IBm,r)
q=A49m+1,r = Om+1,r/0a,d

d= dm+1,r = 6ﬂm+1,r + 6///m+1,c +m—1.
We now give a succint formula for 7z, , using Theorem 6.4 and Corollary 7.5:

Corollary 7.7 Suppose that m+1 <0, r € [R\{0}], &, , € MR(s|n,a) for all a € [R\ {0}] and
m+1<n<0. Let Oppy1,r 70 and ¢ = (Om1,7)*. If Kmt1,c > Ko,c, then

Hopr = P10 — 4 de‘ﬁa,d

where iy, 1, and —q - [i, 4 have been interchanged if d < 0.

PRrROOF. This is a straightforward consequence of the definitions, Theorem 6.4 and Corollary 7.5

since ppmi1,c —1 = —a — Opg,q + 1. O

To obtain the analogue of Corollary 7.7 for the case Km41,c = Ko,c, we extend Definition 7.6 as

follows:
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Definition 7.8 If m <0, 7, Um+i,r, € Km+i,c = Ko,c 0nd fm,r are as in Theorem 6.2, we set

((0,-X), 1) ifko=0

_a ) Oa, =
('u ! d) ((150)7 30) Zf Ko,c = 1

and let ¢ = gm+1,r, d = dmt1,r be as in Definition 7.6.

We now give the compact formula for 7, ., which is the main result of this paper (combining
Corollary 7.7, Theorem 6.2 and Corollary 7.4):

Theorem 7.9 Suppose that m < 0, r € [R\ {0}], &, , € MR(s|n,a) for all a € [R\ {0}] and
m+1<n<0. Let Opy1,r # 0 and ¢ = (Omy1,r)*. If Ty 4, q and d are as in Definitions 7.6 and
7.8, then

Em,r = Em+1,7‘ —q- de‘ﬁaad

where Ti,, 1 . and —q - [, 4 have been interchanged if d < 0.

PRrOOF. We only need to verify the case km41,c = Ko,c, which is straightforward since

d m—1 if koo =0
Oppmy1,r +m i Ko = 1.

7.3 Algorithms MR and MP

The main result yields a compact algorithm to compute g, .. When d;t1,» <0, the integer i1,
is as in the preamble to Algorithm 6.6. However, in this compact version, we update pa,,, .
directly, as in [11, 12].

(i) initialize i, 4 as in Definition 7.8 and initialize 7, o;

(ii) update %, , via Theorem 7.9;

(iif) if dit1,r <0, set Ly, , . equal to ;4 , and restore fi,, , _ 4

(iv) incorporate the case Kmt1,c = Ko,c = 1 into the body of the main loop, updating 7, ,. to 7, q
as appropriate;

(v) suppress the subscripts 4 and 4 + 1 (only the current 7, ,. and Ti,, +1..,d are needed to obtain
By and iy, . )

Algorithm MR. (¢f. [14]) Input: m <0, a finite chain ring R, so,...,Sm € R.

Output: i, € MR(s|m,r),r € [R\ {0}].
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forr € [R\{0}] do {ar :=1; [iy , := (0,=X); O1:=1; @, :=(r,0);}

fori:=0 tom do
for r € [R\ {0}] do
{0 = (ur © 8)itou,
if O #0 then { ¢:= 0% d:= (Oq.,c)*;q9 := O/d;

d:=0p, +0p. +1i—1;

if d <0 then { fi,, , := fi,; d:= —d;

t:="To, 4 5wWaP(Firsq - F,,a) }

=T, — - X, g;

ifd <0 then T, 4:=1t;}}

forr € [R\ {0}] do return T,.

Example 7.10 Algorithm MR computes the following table of border polynomials for the Zg—
sequence 6,3,1,5,6 of [14, p 512]:

‘ i ‘ Bin ‘ Bi3 ‘
0 6X 0
-1 6X 0
-2 | 6X°+3X%2+ X 0
-3 6X3+X 0
—4 6X°+X | 3X

Remarks 7.11 (i) If O = O;41,» = 0 then [i,. is unchanged. (%) We have suppressed the negation
in the swap (-1 is a unit). (iv) There does not seem to be a simple recursive formula for updating

dms1,r (as in Theorem 8.4, where R is a field).

If we omit the second component of the 7, in Algorithm M R, we obtain an improved version of
Algorithm 6.6, which we call Algorithm MP. Our next example is an application of Algorithm

MP to a finite sequence over a Galois ring.

Example 7.12 (cf. [6, Ezample 2, p. 1019]) Since y> + y + 2 is irreducible over GF(3), it is
irreducible over Zg and we may use Zg[y]/(y* +y + 2) as R = GR(9,2).

For the R—sequence 3,3y, 3,3, Algorithm M P iterates as follows:
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i ] Oi1 | Mia ai1 | Oiz | pis | o3

03 X 0 0 3 0
13y [ x—y ol ol 3] o
-2 | 3y X2 —yX—y| -1 0] 3 0
30 |[x2—yx—y| 1| o] 3| 0

Thus X? —yX —y is a monic minimal polynomial for 3,3y, 3, 3.
We conclude this section by tabulating the complexity of Algorithms M P and M R:

Proposition 7.13 Let R be a finite chain ring, let v be the nilpotency index of R andl =1 —m.
The algebraic and storage complexity of the Algorithms M P and MR is as follows:

Algorithm ‘ R-multiplications ‘ {—inverses | divisions by associate

MP < vi? 2vl vl
MR <3ul(l—1)/2 2vl vl

‘ Variable‘ Type ‘ Norm ‘ Number‘

Pa,d RIX] | <1-2 v
Oaca | [RN{O}] | - v
fir R[X] <1 v
o [R\{0}] | - v
d, Z <l v
Bae.d XR[X] | <I1-2 v
Br XR[X] | <1 v
PRrOOF. These are easy counting arguments as in [11, Proposition 3.23]. O

If v is ‘large’, we can reduce the storage complexity of Algorithm M R by first using Algorithm
MP and then computing B(u,, s|m) directly from the definition.

8 The key equation

It is well-known that the key equation over a field may be solved using the Euclidean algorithm.
For a recent approach using left and right—shift versions of this algorithm, see [5, 10]. When there
are zero—divisors however, division—based methods such as the Euclidean method fail. In this

section we show how to solve the key equation over a finite chain ring.

We first simplify and generalize [13] to a commutative ring, using the key equation derived in [3].
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Definition 8.1 Let g, S € R[X], 0 < 4S5 < dg — 1 and g monic. Then (o,w) € R[X] x R[X],
o # 0, solves the key equation if
oS =w (mod g),

o is monic and dw < do — 1 < dg — 1. If do is minimal amongst all non—zero solutions of the key

equation, then (o,w) is called a minimal solution.
Throughout this section, g and S are as in the definition of the key equation.

Proposition 8.2 Let m =1 — dg < 0 and define s by ['(s) = XS/g. Then

(i) (o,w) solves the key equation iff (o,8(c,s|m)) realizes s|m, o is monic, o < 1 —m and
w=0S8—gB(o,sim)/X;

(ii) (o,w) is a minimal solution iff (o, (o, sm)) € MR(s|m,1) and w = oS — gB(o,s/m)/X;

(iii) so = S_m and s; = (X ~2S) mod g)_,, for m <i <0.

PROOF. Since g is monic, 1/g, XS/g € R[[X !]] are well-defined. Also, 1/g is monic and
6(1/9) = —dg.

(i) Let (o,w) be a solution and ¢S — w = gh for some h € R[X]. Put d = do. Since g and o are
monic, 6h+1—m = 6(cS —w) = max{d + §S,0w} =d+ S < d—m. Hence §(Xh) <d<1l-—m.
Also, oT'(s|m)— Xh = Xw/g+ oG where 6G < m. Hence (o, X h) realizes s|m and Xh = B(o, s|m)
by Proposition 7.2. Thus w is as stated.

Conversely, let 8 = 8(o, s|m), (o,p) realize sjm and w = 0S — gf/X. Then 0S =w + g8/X and
dw=26(g(cXS/g—B)X~') < g+ (m+do) — 1 =do, as required.

(ii) Simple consequence of (i).

(iii) For i < 0, X71S = X~ 1gT(s) = 92 <o s; X7 = 92 i<ivt 8; X 1 4+ gq where
q= E?:Hl s; X 1% € R[X]. Hence (X *S)mod g) m = (9> <o Skt+i+1X")_m = s; since

—m = dg — 1 and g is monic. O
This means we can now solve the key equation over a finite chain ring as follows:

Algorithm 8.3 (Solve classical key equation)
Input: R a finite chain ring, 9,5 € R[X], dg > 1, 0<4dS <dg—1, g monic.

Output: & = (o,w) with So =w (mod g), dw < do —1< g — 1 and o minimal.

0. m:=1-4dg;
1. Fori:=0 tom do s; = ((X~¢S) mod g) ,,;

2. Compute (1, B(u, s/m)), where p = pim,1.
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3. Return o = (u, uS — gB(u, sjm)/X).

As in [13], we can reduce the complexity of Algorithm 8.3 by setting w = (So) mod g and not
computing B(ur, s|m).

We conclude by showing that over a field, a monic minimal solution may be also computed by
re—initializing Algorithm MR of [12]. Over a field, there are no non—trivial zero—divisors, and so
we suppress the subscripts r, ¢ and d. (For example, when m < 0 and kp41 = Ko, [, is defined as
in Definition 7.8.) We also abbreviate Ou; to O; for i < 0. Theorem 7.9 can then be simplified

and improved as in the following result from [12]:

Theorem 8.4 (cf. [2, Section 7.3], [8].) Let m < 0, f1; € MR(s|i) form+1<i<0, Opt1 #0
and d=dp1 = 20pme1 +m — 1. Put @ = aupey and Oy = Oy. Then

(7’) B = Oq - Hm—i—l - Om+1 : de‘ﬁa
where [i,,, 1, —T, and Opi1, Oy have been interchanged if d < 0, and with this interchange
(“) ﬁam = ﬁam+17 dm = |dm+1| - L

Proposition 8.5 Let R be a field and define 54, = (0,9), 70 = (1,5), O4, =1 and dy = —1. If
form <i <0, Gn,,0:; and d; are defined iteratively as in Theorem 8.4, then &, /Ao is a minimal

solution of the key equation.

ProOF. By Proposition 8.2, it suffices to show that T, = (o, X (0mS —wm)/g) € M R(s|m). Let
m < i <0 and let zz; € M R(s|i) be obtained from Theorem 8.4. Then 7, = (0,—X) = 71,,, Vo =
(1,0) = Ty It is easy to verify that if m < i < 0 and Uy = [, for all k¥ > i+ 1, then 7; = z;. Hence

it follows inductively that 7,,, = [,,, and so &, is a minimal solution of the key equation. O

We have now justified

Algorithm 8.6 (cf. [13].) (Solve classical key equation.)
Input: Field F, g,S € F[X], dg>1, 0<3§S < dg—1, g monic.

Output: & = (o,w) with Soc =w (mod g), dw < do — 1< dg — 1 and do minimal.

m:=1—dg;

fori:=0tom dos; = ((X~'S) mod g)_n;

o :=(0,9); O :=1; 7:=(1,5); d:=—1;

fori:=0tom do{ O :=(0085)its0;
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if (O#0) {if(d<0) {d:=—d;swap(s,7"); swap(0, 0'); }
7:=0-5-0-X%";}
d:=d-1;}
return & /A(0).

Remarks 8.7 (i) We have written i’ and O’ for i, and Oy since the actual values of o and their
provenance are not needed. (i) We have suppressed the negation in the swap, which is possible
since we are over a field. (ii) When R is a finite chain ring, it is more efficient to proceed as in

Algorithm 8.3, and so we will not compute w,, by reinitializing in this case.
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