On the state complexity of some long codes

Tim Blackmore and Graham Norton

ABSTRACT. We determine the state complexities of three families of codes
that generalise the Reed—Muller codes. Our approach would seem to be new
and in particular would seem to provide simplified proofs of known results
on trellises for Reed—Muller codes. One of the families is new and its classical
code parameters, which compare well with those of the other codes considered,
are given. We conclude with a comparison of the asymptotic performance of
the codes’ parameters.

1. Introduction

1.1. Background. The state complexity (SC) of a code provides a measure
of the complexity of the Viterbi decoding algorithm for that code. (We consider
linear block codes only.) As such, it is often regarded as the fourth code parameter
(the three classical parameters being the length, dimension and minimum distance
of the code). Unlike the other three parameters it is dependent on the bit—ordering
of the code—i.e. equivalent codes can have different SCs.

It is well-known that cyclic (here we include shortened cyclic and extended
cyclic) codes have worst possible SC, [7], reaching an upper—bound given by Wolf,
[12]. There has been considerable work on finding the SCs of short (lengths of up
to about 128) BC H—codes under various (non—cyclic) bit—orderings. However, it
seems that the only long codes for which SCs under non—cyclic bit—orderings have
been considered are the family of binary Reed—Muller (RM-)codes.

In fact, since Forney’s defining work, [5], in which the SC of a 4-section uniform
trellis of a RM—code is determined, there has been considerable interest in the SCs
of RM—codes. Most notably, it has been shown that the standard bit—ordering of
an RM-code is always optimum with respect to its SC, [6], and the SC under this
bit—ordering has been determined, [1].

Here we determine and compare the SCs of three distinct families of (not ne-
cessarily binary) codes, each of which contains the RM—codes as a special case.
We show that one of these families of codes can be considered as generalising the
RM—codes with respect to SC—a family of codes defined a long time before SCs
were first considered but of little interest otherwise. We believe our consideration
of the SCs of these codes gives a simplified approach to the determination of the
SCs (and other trellis characteristics) of R M—codes.
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1.2. State complexities. In [12] the Viterbi decoding algorithm was applied
to block codes. The algorithm takes place along a trellis for a code. A trellis is a
directed graph whose vertices are placed at depths. A trellis for a length n code has
n + 1 depths, usually labelled from 0 to n, but here labelled from —1 to n — 1. The
initial and final depth each have only one vertex. Paths through the trellis, passing
through a single vertex at each depth, are in one-to—one correspondence with the
codewords. It is advantageous for Viterbi decoding that many paths pass through
each vertex and hence that there are as few vertices as possible at each depth. A
code has a trellis which simultaneously minimises the number of vertices at each
depth, called its minimal trellis (e. g. [8]). We consider only minimal trellises.

The set of vertices at each depth of a (minimal) trellis forms a vector space.
For a length n code C, we write s;(C) for the dimension of the vertex space at
depth ¢ (where —1 <4 <n — 1). The state complexity (SC) of C is given by

s(C) = _ max {si(C)}-

In [11] the SC of a code was described as a ‘fundamental descriptive character-
istic, comparable to the length, size and minimum distance’. A list of more recent
publications in which SC plays a central role is given in [10].

Calculating the s;(C') is possible without full knowledge of the trellis, [5]. For
—1 < i < n—1, the it* past subcode of C, denoted by C; , is the set of codewords

of the form (cg,c1,... ,¢;,0,...,0). Similarly the i** future subcode of C, denoted
by C;, is the set of codewords of the form (0,...,0,¢it1,Cit2,-.-,Cn—1). If we
write k(D) for the dimension of a code D then

(L.1) 5:(0) = K(C) - k(CF) = K(C}).

Now k(C;) increases in unit steps from 0 to k(C), and k(C;") decreases in
unit steps from k(C) to 0. An increase in k(C; ) leads to a (possible) decrease in
5;(C) and so we refer to an i where this happens as a point of fall (PofF). Similarly
a decrease in k(C;") leads to a (possible) increase in s;(C) and so we refer to an
i where this happens as a point of gain (PofG). It is possible that i is both a
PofF and PofG, in which case s;(C) = s;—1(C). (Such an i can affect other ‘trellis
complexities’, such as branch complexity and edge complexity, not considered here.)
We note that if 4;(C) and 6;(C) are respectively the number of PsofG and PsofF
before and including ¢ then v;(C) = k(C) — k(C;F) and 6;(C) = k(C;"), so that

5i(C) = %(C) — 6:(C).

It is well-known that the state complexity of a code and its dual are equal—in
fact the dimensions of their vertex spaces at each depth are equal, [5].

1.3. Outline. In Section 2 we consider a family of binary codes defined by
Berman in [2]. These codes have defining parameters p, r and m, where p is
an odd prime, m and r integers with m > 1 and 0 < r < m — 1—we denote
such a code B(p,r,m). Berman used these codes to demonstrate the existence of
semisimple abelian codes with better asymptotic performance than any semisimple
cyclic codes. Towards this end, he determined their classical code parameters. We
show how these codes together with their duals can be considered as a generalisation
of RM—codes (RM—codes are the case p = 2 and so do not, strictly speaking, belong
to the family of B—codes and their duals). We determine the minimum distance of
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the dual codes. We also determine the SC of the dual codes and hence the SC of
the ‘Berman codes’. This SC is greater than might have been expected.

In Section 3 we consider a less well-known family of codes defined in [4]. This
family generalises RM—codes (this time including them as a special case). These
codes are defined over any finite field, GF(q), and have defining parameters n, r
and m, where n, m and r are integers withn >2, m>1and 0 <r <m —1—we
denote such a code DH,(n,r,m). Thus DH—codes are more numerous than B—
codes or their duals. However when both are defined, the DH—codes have poorer
classical code parameters than either B—codes or their duals—their poor parameters
explaining why DH —codes are less well-known. We determine the SC of DH—codes
and hence show that it is these codes that generalise RM—codes with respect to
SC.

In Section 4 we introduce a new family codes, defined over any finite field,
GF(q), with defining parameters n > 2, m > 1, and 0 < r < m —1 (as for DH-
codes). We denote such a code by Cq(n,r,m). Their code parameters (including
SC) are comparable to those of B—codes, and coincide when both are defined.

When considering the SC of DH— and C—codes, we give a local description
of their trellis behaviour, which coincides (and as far as we know was previously
unknown) in the case that these codes are RM—codes. From this, we determine
recurrence relations for their SCs which generalise those given in [9] for R M —codes.
From the recurrence relations we determine the SCs. In the case of R M—codes, we
believe our derivations to be simpler than those of [1] and [9].

We summarise the code parameters in Section 5 and in Section 6 we compare
the asymptotic performances of the parameters.

2. Berman codes
Berman codes are defined as certain ideals in the ring

GFQ)[X1,...,Xm]

Bom =71, xB.—1)

where p is an odd prime and m an integer, m > 1. All such ideals are semisimple,
the codes being examples of semisimple abelian codes. For m = 1, Berman codes
are semisimple cyclic codes. Of course to say that an ideal is a code is to identify
a polynomial in the ideal with the codeword of coefficients of monomials in the
polynomial (zero coefficients included). Thus Berman codes are binary codes of
length p™. Certainly when considering SC, we need a definite bit—ordering for
our code. We take the bit—ordering inherited from the lexicographical ordering of
monomials (with X; < ... < Xp,) in Ry ..
We fix m and for 1 < j < m we put

Pp(X;) =1+ X;+ X7+ + X771 and Qp(X;) = X+ X+ + X7,

For 0 <r <m —1 we put G(p,r,m) equal to the set of polynomials in Ry, , of the
form

(@p(X5) - Qp(X4.)) - (Bp(Xjui) - Pp( X))

for some 0 < s < r and arrangement, (j1,... ,Jjn), of (1,...,n). Berman shows, [2,
Theorem 2.2], that for each odd prime p, the code (ideal) generated by G(p,r,m)
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has dimension,

Kirm =3 () 011,

=0

and that the check code, which then has dimension,

Kolp,rom) = p™ — Ky (pyrym) = 3 (7 )=y

1
i=r+1

has minimum distance 27+!. It is this code that we denote by B(p,r,m).

The code generated by G(p,r,m)—the check code of B(p,r, m)—is also the
dual code of B(p,r,m), since the permutation 7 (i) = p™ —i is in its automorphism
group. We denote this code by B+(p,r,m).

Our initial interest in B*(p,r,m) was that it has the same SC as B(p,r,m)
(this being true of any code and its dual) and that, unlike B(p,r,m), we have an
explicit description of the codewords of B*(p,r,m).

For completeness we have also shown,

PROPOSITION 2.1. The minimum distance of B*(p,r,m) is p™~".

Proposition 2.1 can be proved by induction using the fact that BX(p,r,m) is
the direct sum of

p—1
B, = {Zfl(Xl,... s Xm—1) -Xin 2 fo,---, fp—1 € BL(p,r_ 1,m— 1)}
=0

and
By = {g(Xla 7Xm*1) PIJ(XM) 1g € BJ‘(p,T,m— 1) \BJ_O%T - 17m_ 1)*}

where B (p,r—1,m—1)* = B+(p,r—1,m—1)\{0}. (We adopt the convention that
BL(p,—1,m —1) = {0} and BX(p,m —1,m — 1) = GF(2)?""".) That B, ® B, C
Bt (p,r,m) follows from X!, = P,(Xp) + Qp(Xp) - XL, in R, ., and that B; @ B>
and B+ (p,r,m) have the same dimension is a straightforward counting argument.

2.1. Berman codes and Reed—-Muller codes. There is then a strong con-
nection between the classical code parameters of B—codes and their duals (for p an
odd prime) and R M —codes (for p = 2). We look at another way in which B—, B~
and RM—codes can be thought of as being part of the same family.

In [3] it is noted that RM (r,m) is equal to the (m — r)t* power of the radical
of Ry, (which is not a semisimple ring, unlike R, , for odd p). It is not hard to
see that,

PROPOSITION 2.2. For 0 < r < m — 1, the (m — r)t* power of the radical of
Ry, is generated by G(2,r,m).

Thus RM (r,m) and B*(p,r,m) belong to the same family of codes: those
generated by G(p,r, m) for all primes p. (Amongst these codes, the RM—codes are
modular abelian codes and the Bt—codes are semisimple abelian codes.) A code
in this family has dimension K (p,r,m) and minimum distance p™~" and its dual
has dimension K»(p,7,m) and minimum distance 2"+1.
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2.2. State complexity. The ordering implicit in the ideal description of RM—
codes is the (non—cyclic) standard bit—ordering, which has been shown to be optimal
with respect their SC in [6]. Under this bit ordering it is shown in [1] that the SC
of RM (r,m) is S1(2,r,m) where,

Sl(pa r, m) = Z

=0

min{r,m—r—1} (

m—2—1 o

Thus, in view of the close connection between B—codes and their duals and RM~—
codes and their duals, it may have been hoped that the SC of B+—codes, and hence
the SC of B—codes, would be S;(p,r,m). However,

PROPOSITION 2.3. The SC of B(p,r,m) is,

S2(p,m,m) =Z( motd )(p—l)”‘.

r—1
i=0
It would seem significant that whilst the dual of an RM —code is an RM —code,
the dual of a Bt—code is not a B—code.

The proof of Proposition 2.3 uses an alternative version of Equation (1.1). The
it" past truncated code of C is C* = {(co,..-,¢;) : (co,---,¢n) € C} and the

it future truncated code of C'is C% = {(Cit1,--- ,¢n) : (Cos--- ,¢n) € C}. Then
k(CL) = k(C) — k(C;) and k(CL) = k(C) — k(C;") so that

(2.1) 5:(C) = k(CL) + k(CL) — k(C).

For codes C; and Cy with C; N Cy = {0} it is then straightforward to see that
(2.2) 5i(C1 ® C2) < 5i(C1) + 5:(C2),

with equality if £((C1)~ N (C2)%) = k((C1){. N (C2)%) = 0.
Now we take B; and By as above and ¢ = Qp + R, where 0 < Q < p—1 and
0<R<p™—1. Then

k(B1)") = Q- k(B (p,r —1,m — 1)) + k(B*(p,r — 1,m — 1))
and
E(B1)}) =(—-1-Q) kB (p,r —1,m —1)) + k(B (p,r —1,m — 1)¥)

so that from (2.1), s;(B1) = sg(B+(p,r — 1,m — 1)). Also, with B = B*(p,r,m —
1)\ B+(p,r —1,m — 1)*,
, Ry , Ry if)—p_
ka0 ={ ) Hesy ma ww={ G 10207,
<

0

1
so that from (2.1), s;(B2) < k(B) with equality if 1 <@ < p— 2. Thus noting that
if 1 <Q < p—2then k((B1). N(B2)L) = k((B1){ N (B2)%) = 0, we have from
(2.2) that

AVANI|

si(B*(p,r,m)) < sp(B*(p,r —1,m 1)) + k(B),
with equality if 1 < Q < p — 2. Thus

LEMMA 2.4. s(BX(p,r,m)) = s(B+(p,r —1,m —1)) + ( mr— 1 ) (p—1)".
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Proposition 2.3 follows from Lemma 2.4 by induction.

Apart from trivial cases, when equality holds, it is straightforward to see that
Sa(p,r,m) > Si(p,r,m). Thus the SC of B-codes would seem disappointing, al-
though in Section 6.2 we see that asymptotically S» and S; coincide.

The parameters of B~ and B—codes are in Table 1 of Section 5.

3. Dwork—Heller codes
Let n be an integer, n > 1, My ,,  the set of monomials in

GF()[X1,... , Xm]
(Xn—1,...,X» —1)

and Ry n.m = {Myn,m), the linear span of My .m. For M € M, ;. m, we set

Py = Z M.

M|M' ,M'€Mg n,m

If Dy pn,m is the set of all such polynomials, then |Dg pm| = n™ and (Dgn.m) =
Rypnm- For0<r <m—1, put

Hypnm = (M € My m: M is divisible by at most r variables).

Each polynomial in H,(n,r,m) is a linear combination of elements of D, (n,m). The
coefficients of each such linear combinations (somehow ordered) are the codewords
of DH 4(n,r,m). Thus DH 4(n,r,m) is a code of length n™ over GF(q).

For example H>(3,0,2) = {0,1}. Now 1 = P, + Px, + Px, + Px,x,, so
DH,(3,0,2) is {(000000000), (110110000)} (not the repetition code we would want).

These codes were defined in [4], where it was shown that DH,(n,r,m), has
dimension K1 (n,r, m) and minimum distance 2™~", and stated that DH»(2,r,m) =
RM (r,m). We note that for p an odd prime, DH2(p,r,m) has the same number
of codewords as B+ (p,r,m) but inferior minimum distance by Proposition 2.1, and
that DH2(p,r,m) has the same minimum distance as B(p,m —r — 1, m), but fewer
codewords.

3.1. Local behaviour of trellis complexities. To consider the SC of DH-
codes we need a bit—ordering. Since DH,(n,m) is a length n™ code we label our
bit positions from 0 to n™ — 1 and our trellis depths from —1 to n™ — 1. For
0 <4 < n™—1 we have the n—expansion of 4, (a1, ... ,an), where i = 37", a;ni~*
and 0 < a; < n—1. A codeword is the vector of coefficients of an element of
(Dg(n,m)). The i** symbol of this codeword is the coefficient of Py € D,(n,m),
where M = X ... X% and (a1,...,an) is the n-expansion of i. In the case of
R M—codes this ordering is the standard bit—ordering.

For 0 < a < n —1 we write |i|, for the number of the a; in the n-expansion
of i equal to a. The following result gives a comprehensive local description of the
behaviour of the state (or any of the other usual types of trellis) complexity, which
as far as we know was previously unknown for RM—codes.

LEMMA 3.1. For0<i<n™ -1,

1. i is a PofG of DH 4(n,r,m) if and only if |ilo > m —r and
2. i is o PofF of DH j(n,r,m) if and only if |ily > m —r.
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We note that for r < m —r — 1 no i is a PofG and PofF (since e. g. if |i|o >
m—r>m—(m—r—1)=r+1then |i|s <m—r—1). Alsoforn =2, forr > m-—r,
i is a PofG of DH 4(2,r, m) which is not a PofG of DH,(2,m —r —1,m) if and only
ifm—(m—r—-1)—1=7r>|ilo > m—rif and only if m —r < |i|; < r if and only
if 3 is a PofF of DH 4(2,r,m) which is not a PofF of DH4(2,m —r —1,m). This of
course ties in with fact that the vertex dimension at each depth of an RM (r,m) is
the same as for its dual, RM (m —r—1,m). It also shows that the edge complexity
of a low-rate RM—code will be less than that of its high-rate dual.

REMARK 3.2. The bit—ordering of DH4(n,r,m) described corresponds to the
lexicographic ordering of D4(n, m)—in the sense that the coefficient of Py, comes
before that of Py, in a codeword if and only if My < M» where < is the lexico-
graphic ordering of monomials. In fact Lemma, 3.1 holds for any monomial ordering
of Dy(n,m). This is not true of the results in the rest of the section.

Lemma 3.1 makes calculating the dimension of a vertex space at a given depth
quite straightforward—we just have to count the ¢ with |i|o > m—r and [i|; > m—7r
that occur before our given depth and subtract the latter from the former. For
example, the results of [5] and [7] on the 4-section and 8-section uniform trellises of
RM—codes follow quite easily. However to determine at which depth the difference
between these counts is maximised requires some more work.

3.2. Recurrence relations. We derive recurrence relations that generalise
those for RM—codes given in [9]. In the case of RM—codes our approach would
seem to simplify that of [9]. For RM—codes we have that

5{(RM(r,m)) = som_o_;(RM (r,m))
for -1 <4 < 2™ — 1, (a known fact that is easily deducible from Lemma 3.1) so
that it is only necessary to calculate recurrence relations for —1 < i < 2m—1 — 1,
No such identity holds for DH—codes in general. It is the recurrence relations for
n™ ! <4 < 2n™ ! — 1 that cause difficulty. The cases i = —1,0 are trivial. For
i > 1 not in the range n™ ™! < ¢ < 2n™~! — 1 either
1. thereis a j, 1 < j < m — 1, such that n/~! <i < 2n/~! — 1 (this being the
only case for RM—-codes), in which case we get the recurrence relation
$i (DH4(n,r,m)) = 8; pi—1 (DHy(n,r — 1,m —2)) + spi-1 1 (DH,(n,r,m)),
or
2. thereisa j, 1 < j <mand an a, 2 < a < n — 1, such that an/~! < i <
(a+1)n?~! — 1, in which case we get the recurrence relation

Si (DHq(n7'r7 m)) = Si—ani-1 (DHq(n7T -1,m-— 1)) + Sqni-1_1 (DHq(n7r7 m)) -
(We note that calculating the second terms in the right—hand sides of the recurrence
relations is straightforward from Lemma 3.1.)

Forn™~! < < 2n™~"—1 we need some notation. We write u(l) = 37", n/~
and v(l) = u(m — 2) —n!~! and u(l,a) = u(l) + an!~! and v(l,a) = u(m — 1) +
(@ —1)n'=" (v(1,0) # v(l)). Then for i in this range, except i = 37", ¢/~ which
is always a PofF (and so cannot be a depth at which SC is attained), either

1. thereis an I, 1 <1 < m — 1, such that u(l) <i < u(l) +n'~!, in which case

si (DH4(n,r,m)) — Su(l)—1 (PHy(n,r,m)) =
Si—v(l) (DHq(na r—1,m— 2)) = Su(l)—v ()1 (DHq(na r—1,m-— 2))7

1
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or
2. thereisanl,1 <l <m -1, and an a, 2 < a < n — 1, such that u(l,a) <
i <u(l,a) +n!~1, in which case

Si (DHQ(R,T, m)) — Su(l,a)—1 (DHQ(TL,’F, m)) =
Si—v(l,a) (DHq(n7’r -1,m— 1)) — Su(l,a)—v(l,a)—1 (DHq(naT -1,m— 1)) .

(Again the terms not dependent on ¢ are quite straightforward to calculate.)

3.3. State complexity. It is possible to inductively determine from the re-
currence relations at which depth the SC is attained and the value of the SC. For
some DH-codes the depth where the SC is attained is unique and in this case will
be in the problem area, n™ ! <4 < 2n™ 1 —1.

We put [r,m] = m — 2min{r,m —r — 1} — 1. Then,

PROPOSITION 3.3. The state complexity of DH,(n,r,m) is attained ot depth
with n—expansion,

(n—1,...,n—1,0,0,1,0,1,0,1,...,0,1).

-

v

[Tvm] m—[r,m]
Its value is S1(n,r,m).

Thus DH—codes can be considered to generalise RM—codes with respect to
state complexity.
Again the parameters of DH—codes are in Table 1 of Section 5.

4. A new family of codes

These codes are defined similarly to DH-codes. Again we work in the vector
space Ry n.m, but with the basis E;(n,m) of polynomials of the form

QM = Z MIJ
M!'|M,M'E€My .
and for 0 <7 <m — 1 we put I;(n,r,m) equal to the linear span of all monomials
divisible by at least  + 1 variables. Then again each polynomial in I (n,r,m) is
a linear combination of elements of E4(n,m) and the codewords of the code which
we denote Cq(n,r,m), are the coefficients of such linear combinations.

PROPOSITION 4.1. Cy(n,r,m) is an [n™, Ka(n,r,m), 2" ] code.

Thus C—codes are defined as often as DH—codes but have classical code para-
meters comparable to the superior, but less often defined, B—codes. For ¢ =n = 2
we again get the RM—codes, but here C3(2,r,m) = RM (m —r — 1,m), the dual of
RM (r,m).

4.1. Local behaviour of trellis complexities. For C—codes, the it symbol
position is the coefficient of Qpr, where M = X" ... X% and (a1, ... ,an) is the
n—expansion of ¢ (0 < i < n™ — 1). Again when C—codes are RM—codes we have
their standard bit—ordering. We have the following analogue of Lemma 3.1,

LEMMA 4.2, For0<i<n™ -1,

1. i is a PofG of Cq(n,r,m) if and only if |i|n,—1 <m —r —1 and
2. i is o PofF of Cq4(n,r,m) if and only if |ijo <m —r —1.
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We note that for RM (r,m) = C2(2,m —r — 1,m), Lemma 4.2 implies that i
is a PofG if and only if |i| < r if and only if |ilp > m — r, and that i is a PofG
if and only if |i|p < r if and only if [i|; > m — r, both of which are in agreement
with Lemma 3.1. We note also that Lemma 4.2 holds for any monomial ordering
of E;(n,m)—c.f. Lemma 3.1 and Remark 3.2.

4.2. Recurrence relations. We quickly get from Lemma 4.2 that, for —1 <

i<nm—1,

Si (CQ(nJ T, m)) = Spm_2—4 (C‘I(nara m)) )
a property of RM—codes not shared in general by DH—codes, as noted in the
previous section.

Thus for C—codes, as for R M —codes, we do not need to find recurrence relations
for (n—1)n™~1 < i < n™—1 (the vertex dimensions for these depths being deducible
from those for —1 < i < n™~! — 2). We do need to divide all other i > 1 into two
sets though.

For 1 <i < (n—1)n™"! — 1 either,

1. thereis a j, 1 < j < m, and an a, 1 < a < n -2, such that an/~' <i <

(a+1)n?~! — 1, in which case

Si (Cq(nara m)) = Sj—qni—1 (Cq(n:r -1,m- 1)) + Sani-1-1 (CQ(H,T, m)) )

or
2. thereis a j, 1 < j < m —1, such that (n — 1)n/~! <4 < n’/ — 1 (this being
the only case for R M —codes), in which case

Si (Cq(nJTa m)) = 8i—(n—1)ni-1 (Cq(nar -1,m- 2)) + S(n—1)ni-1-1 (CQ(naTa m)) .

(Again the second terms on the right—hand side of these recurrences can be easily
calculated from Lemma 4.2.)

4.3. State complexity. It follows quickly by induction from the recurrence
relations that

PROPOSITION 4.3. For n = 2 the state complezity of Cy(n,r,m) is attained at
depth with n—expansion

(1,...,1,0,0,1,0,1,0,1,...,0,1).
———— -~ J

[r,m] m—[r,m]

Its value is S1(n,r,m).
For n > 3, the state complexity of Cq(n,r,m) is attained at all depths with
n—expansion (a1, ... ,am), where 1 < ai,...,am < n—2. Its value is Sa(n,r,m).

The parameters of C—codes are in Table 1 of Section 5.

5. Code Parameters

The parameters of the codes discussed are summarised in Table 1. A defining
parameter for each code is m > 1. For the other defining parameters (DPs) we
have n,r integers, n > 2, and 0 < r < m — 1, p an odd prime and ¢q a power of a
prime. The codes are of length p™, n™ or 2™ according to whether p, n or neither
appear as a defining parameter; K1, K5, S and Sy are defined in Section 2.
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TABLE 1. Code parameters

Code DPs Field | Dimension Mllmmum State .
Distance Complexity
RM r GF(2) | K1(2,7,m) 2m-r S1(2,7,m)
m—r—1|GF(2) | K2(2,r,m) PARE S1(2,7,m)
BJ_ b, T GF(2) Kl(p’ T, m) pm_T SQ(pJ T, m)
B p,T GF(2) | Ko(p,r,m) 27+l Sa(p,T,m)
DH q,n,r GF(q) | Ki(n,r,m) m—r Si(n,r,m)
¢ [amr oo tomem]| v | SreEr=s

6. Asymptotic analysis

The general theory of asymptotic behaviour of SCs has received some attention
(e. g. [10] and references given there). However the SCs of few long codes are
known and hence little is known about the asymptotic behaviour of SCs for specific
families of codes. Here we look at the behaviour of S;(n,r,m) and Sy(n,r,m) as
m — oo. For r fixed the behaviour is trivial so we want r to increase with m. We
fix A\, 0 < A <1, and put r = [Am]. Our results of course apply to RM (| Am], m)
as a special case.

6.1. Asymptotic comparison of classical code parameters. We know
that, for an odd prime p, B(p, |Am],m) and DH(p, [Am],m) both have the
same number of codewords, but that the former has minimum distance p™~ ™l
compared with the latter’s 2~ 2] A non-trivial asymptotic comparison of these
minimum distances (one for which both do not either tend to 0 or oo) is given by

m—|Am | m—|Am|
©61) tim 8P " gy s 1) log,2 = lim log, 2" 7"

m—oQ m m—00 m

Thus asymptotically the minimum distance of B+—codes remains superior.
For convenience we introduce the following notation,

DH(’I\(n,m) =DH,(n, [Am],m) C(;‘(n,m) =Cy(n,m — [Am] — 1,m)
K}n,m) = K;(n, [Am],m) K3 (n,m) = Ko(n,m — [ Am] — 1,m)
R} (n,m) = K (n,m)/q™ R3(n,m) = K3(n,m)/q™.

Thus DH(n,m) and C}(n,m) both have minimum distance 2™~ ™.
We also put

Rf‘(n,oo) = li_r)n Rg\(n,m)

fori=1,2.
PROPOSITION 6.1. With the above notation, we have
A [0 for 0<A<(n—=1)/n
Ri(n, 00) = { 1 for (n-1)/n<A<1

and ; /
0 or 0<A<1/n
A _
Rz (n, 00) = { 1 for 1/n<A<L.
Thus for 1/n < X < (n—1)/n, C}(n,m) has asymptotic rate 1 whereas DH;‘(n,m)
has asymptotic rate 0.
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CONJECTURE 6.2. Both R\"™"/"(n, o) and RY™(n, ) are equal to 1/2.

In fact, for n > 3, we can also distinguish between the asymptotic performance
of K} (n,m) and K3(n,m) for 0 < A\ < 1/n using a ‘%= comparison similar to
Equation (6.1). Explicitly, using the entropy function H,(A) = Alog,(n — 1) —
Alog, A — (1 — A)log, (1 — A), we have

PROPOSITION 6.3. For 0 < A <1/n < 1/2,

A
lim = Hy(\) < Ho(1— ) = lim 28 f2(m)

m—0o0 m m— 00 m

log,, K3 (n,m)

6.2. Asymptotic SC performance. It is quite straightforward to see that
S2 (TL, I_)‘mJam) > Sl (TL, L)‘m_] ’ m)
m - m

—rxXxasm—

and that

Sl (TL, L)‘mJ ’ m) < S2 (na L/\mJ ) m)
nm - nm
Thus neither of these provides a substantial comparison of the asymptotic perform-

ance of the SCs and so we look at the more subtle 10% comparison, used above.

0<

—> 0 as m — 0.

PROPOSITION 6.4. For 0 < A <1,
lim IOgn S1 (n’ I_)‘mJ,m) — Hn()\) — lim logn Sz(’l’b, I_)‘mJam) .

m—oo m m—00 m

Thus the 10% comparison fails to distinguish between the asymptotic perform-
ances of the SCs of DHs(p,r,m) and the superior B+ (p,r,m).

Writing S7(n,m) and S3(n,m) for the SCs of DH{(n,m) and C)(n,m) re-
spectively, we have

COROLLARY 6.5. For 0 < A <1,

log,, S3(n,m) log,, $3(n,m)

lim =H,(\) and lim
m—00 m m—00 m
Thus for n > 3, DH q’\(n,m) has asymptotically lower SC for A < 1/2 but the
superior Ca\(n, m) has asymptotically lower SC for A > 1/2.
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