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Abstract
Suppose that A is a finite direct product of commutative rings. We show from first prin-
ciples that a Grobner basis for an ideal of A[zi,...,Z,] can be easily obtained by ’joining’
Grobner bases of the projected ideals with coefficients in the factors of A (which can themselves
be obtained in parallel). Similarly for strong Grobner bases. This gives an elementary method
of constructing a (strong) Grobner basis when the Chinese Remainder Theorem applies to the

coefficient ring and we know how to compute (strong) Grébner bases in each factor.

Subject Classification: 13F10, 13M10, 13P10.

1 Introduction

Let A be a commutative ring with 1 # 0. We are interested in obtaining a (strong) Grobner basis
of a non-zero ideal I of A[z1,...,2,] when A = A; x --- X A, is a direct product of rings and
we know how to obtain (strong) Grobner bases of the projected ideals m;(I) for ¢ = 1,...,m. We
show that this can be done by ’joining’ (strong) Grobner bases for the m;(I) of A;[z1,...,2n].
Thus we can compute a (strong) Grobner basis for I when we know algorithms for computing a
(strong) Grobner basis for m;(I). As an application, we compute a (strong) Grébner basis for T
when the Chinese Remainder Theorem applies to A and we can compute (strong) Grobner bases
in each factor. Recall that if A is a principal ideal ring, any non-zero ideal of A[x] has an SGB, [3,

Algorithm 6.4]. We give another proof of this fact.

The preliminary Section 2 recalls the necessary background on (strong) Grébner bases from [1, 3].
Section 3 discusses the join of Grébner bases while Section 4 describes the strong join of strong

Grobner bases. In the final section, we assume that A is a principal ideal ring.
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2 Preliminaries

We have A = A; x---x A, and we write A[x] for A[z1,...,2,]. The monoid of terms in z1,...,z,
is denoted by 7. Let < be a fixed but arbitrary admissible order on T'. Throughout the paper, we

use the same term order < on each A;[x] as on A[x].

If f =5 crfit € Alx]\ {0} and v = max{t € T : f; # 0} then v is the leading term, f, the
leading coefficient and f,v the leading monomial of f, denoted 1t(f),lc(f) and Im(f) respectively.
We also write Im(.S) for {lm(f) : f € S} where S C A[x]\ {0}.

Let G C A[x]\ {0} be finite. Then f € A[x] has a standard representation wrt. G if f =
Yoy Dt gl) for some @) € A\ {0}, t) € T, g¥) € G such that t0)1t(g7)) < 1t(f), [2, p.
218]. We write Std(G) for the polynomials which have a standard representation wrt. G.

Also, if G C A[x] \ {0} is finite, then G is a Grébner basis (GB) for a non-zero ideal I C A[x] if
and only if I = Std(G), [1, Theorem 4.1.12]. If A is Noetherian, every non-zero ideal of A[x] has
a GB, [1, Corollary 4.1.17].

Recall that if G C A[x] \ {0} is finite, then G is a strong Grébner basis (SGB) for I = (G) if and
only if for any f € I thereis a g € G such that Im(g)|1lm(f), [1, Definition 4.5.6]. If A is a principal
ideal ring, Algorithm 6.4 of [3] constructs an SGB for any non-zero ideal of A[x]. Also, an SGB G
is called minimal if no proper subset of G is an SGB for (G).

3 The join

The projections m; : A — A; induce maps m; : A[x] = A;[x]. It is straightforward to check that
the induced map 7 : A[x] = A1[x] X - -- X A, [x] given by w(f) = (71 (f), ..., ™m(f)) and the map
K Ai[x] x --- x Ap[x] = A[x], which collects coefficients of like terms, are mutually inverse ring

homomorphisms. We relate GB’s of I C A[x] to GB’s of m;(I) C A;[x], where 1 < j < m.

Proposition 3.1 If G is a GB for a non-zero ideal I C A[x], then m;(G) \ {0} is a GB for m;(I)

in A;[x] fori=1,...,m.

PRrOOF. We can assume that i = 1. Let fi € m1(I)\{0} C A;[x] and put G; = 71 (G)\{0}. We show
that fi € Std(G1). For let f = k(f1,0,...,0) € I'\{0}. We have lm(f) = (Ic(f1),0,...,0)1t(f1), so
that 1t(f) = 1t(f1). Since G is a Grébner basis for I, f = Ele D3 g3 for some cU) € A\ {0},
t) €T, g € G with tW 1t(g1)) < 1t(f) = 1t(f1). Then f1 = >5_, m (cU))tln) 7 (907)) for some
Gry 1 < 1 < - < jg < K with all 71(cU")) and 71 (g\)) non-zero. We have t(") It(m; (¢17))) <
tU) 1t(gUn)) < 1t(f) = It(f1), i.e. f1 € Std(G1) and Gy is a GB for 7y (I). O

Definition 3.2 Let G; C A;[x] \ {0} for i = 1,2. Then, G1 U G, the join of G1 and G2 is the



subset G1 x {0} U {0} x G2 of Ai1[x] x As[x].

Proposition 3.3 Let I be a non-zero ideal of A[x] and G; C A;[x]\ {0} fori=1,...,m. Then
kK(GLU---UGy) is a GB for I if and only if G; is a GB for m;(I) fori=1,...,m.

PrOOF. Note first that 0 ¢ H = k(G Ll --- U Gy,). We show I C Std(H) if each G; is a GB. Let
f € I'\{0}. Since m;(f) € m;(I) = Std(G;), we can write m;(f) = Eki c(j)t(.j)gz(j) for some k; > 1,

j=1~1 "1

e 4;\ {0}, 1 e T, g9 € G; with £71t(g!”) < 1t(m;(f)) < 1t(f). Then

fo= w&mf),...,mm(f))
= w0, 0) | 4 rn (0,03 DDy
j=1 j=1

k1 km

= Z cgj)tgj)'i(gg]): 07 ) 0) +o Z c%)t%)ﬁ’((h R Oagr(g))

j=1 j=1

Now (0, ...,0,9,0,...,0) € H and t%1t(x(0,...,0,¢,0,...,0)) = tP1t(g) < It(f) for
j=1,...,kiand i = 1,...,m, so that f € Std(H). The converse follows immediately from
Proposition 3.1. O

Example 3.4 Let f = 22°> + 3z + 1 € Zg[z]. We obtain a GB for {f) as follows. The usual
isomorphism x : Zg — L2 X L3 induces an isomorphism X : ZLglx] — (Za X Z3)[z] and x(f) =
(0,2)z% + (1,0)z + (1,1). We have mx(f) = (z + 1,22% + 1) € Zo[z] X Z3[z] and clearly {z + 1}
and {z? +2} are GB’s in Zs[z] and Z3[z] respectively. By Proposition 3.3, k({z +1}U{z?+2}) =
{(1,0)x+(1,0), (0,1)2? +(0,2)} is a GB for {x(f)) and we deduce that x 'k({z+1}U{z?+2}) =
{3(z +1),42% + 2} is a GB for (f).

4 The strong join

First note that G = {3(z + 1),4z? + 2} is not an SGB for (G) in Example 3.4: 22 — 3z + 2 =
422 + 2 — 3z(z + 1) € (G), but 3 and 4 are not units in Zsg, so there is no g € G such that
Im(g)|lm(z? — 3z + 2). We will now show how to obtain an SGB in A[x] from SGB’s in the A;[x].

Proposition 4.1 If G is a SGB for a non-zero ideal I C A[x] then m;(G)\ {0} is a SGB for m;(1)

in Ai[x] fori=1,...,m.

Proor. We take ¢ = 1. Let G be an SGB and let f; € m (1) \ {0} C A1[x]. Put f = &(f1,0,...,0)
as in Proposition 3.1. There is a g € G such that lm(g)|lm(f), so 71 (Im(g))|lm(f1). This means

that m (Im(g)) # 0, so m1(g) # 0 and 1 (Im(g)) = lm(m1(g)). Since lm(m(g))|lm(f1), and 71 (g) €
m(G) \ {0}, m1(G) \ {0} is an SGB for {7 (G)) = m (I). O



Definition 4.2 Let G; C A;[x]\ {0} for i =1,2. Then G1 U G2, the strong join of G1,G> is the
subset G1 U Ga U {(t101,t292) : 9; € Gy, t; =lem(1t(g1),1t(g2))/1t(g:)} of Ai1[x] x As[x].

Proposition 4.3 x(k(G1 U G2) U G3) = k(G1 U k(G2 U G3)).

PRroOOF. Use the fact that in K(G1 U G2), It(k(t191,t292)) = lem(1t(g1),1t(g2)) and that the lem of

leading terms is associative. d

For m > 3 we define k(G U --- U Gy,) inductively to be k(k(G1 U -+ U Gp—1) U Gpp).

Theorem 4.4 Let I be a non-zero ideal in A[x] and G; C m;(I)\ {0} fori =1,...,m. Then
k(Gh1 U --- U Gp) is an SGB for I if and only if G; is an SGB for m;(I) fori=1,...,m.

PRroOF. It suffices to prove the result for m = 2, as the general case follows inductively. Assume
that G; is an SGB for m;(I) for i = 1,2. We will prove that for any f € I\ {0} there is a
g € K(G1 U G>) such that lm(g)|lm(f). For i = 1,2, put m;(f) = f;- We consider several cases:

(i) f1 #0 and fo = 0. Then lm(f) = (Ic(f1),0)1t(f1). Since Gy is a SGB for 1 (I), there is a g1 €
G1 such that Im(gq)|1lm(f1). Putting g = k(g1,0) € K(G1 U G2), we have Im(g) = (lc(g1),0) 1t(g1)
and so lm(g)|lm(f).

(ii) f1 # 0, fo # 0 and 1t(f1) > lt(f2): this is similar to case (i) since Im(f) = (lc(f1),0) 1t(f1)-
(iii) f1 = 0 and f2 # 0: this is analogous to case (i). (iv) fi1 # 0, f2 # 0 and lt(f1) < 1t(f2): see
case (iii).

(v) f1 0, fa #0 and lt(f1) = 1t(f2). Then Im(f) = (lc(f1),1c(f2)) lt(f1). For i =1,2, let g; € G;
be such that Im(g;)|lm(f;). Putting g = &(t191,t292) € k(G1 U G3), where t; is as in Definition
4.2, we have Im(g) = (Ic(g1),1c(g2)) lem(1t(g1),1t(g2)) and so Im(g)|lm(f).

For the converse, assume that k(G1 L G2) is an SGB for I and fix i € {0,1}. Let H; = m;(G1 U G2)\
{0}, which is an SGB for 7;(I) by Proposition 4.1. From the definition of G1 U G, G; C H; and
any h; € H; \ G; is of the form h; = t;g; for some t; € T. Thus (G;) = (H;) and for any
f e mi(I) = (G;), there is an h; € H; and a g; € G; such that lm(g;)|lm(h;)| lm(f). Hence G; is
an SGB for m; (7). O

Theorem 4.4 thus gives an iterative algorithm for computing an SGB in A[x], provided we have an
algorithm (SGB; say) that computes an SGB in each A;[x] for 1 <4 < m. The SGB; can be done
in parallel and the complexity of computing k(Gy U --- U Gp,) from Gy, ..., G is O([];-, |Gi]).
The latter can be improved by first minimising each G;. We note that x(Gy U --- U G,,) may
not be minimal, so in general, a further minimisation step will be necessary. We formalise this as

follows:

Algorithm 4.5



Input: F C A[x]\ {0}, F finite, A = [}, A; and we have an algorithm SGB; which computes
an SGB in A;[x] for 1 <i < m.
Output: G, a minimal SGB for (F').

begin

for i < 1 tom do
G; < SGB;(m;(F))
minimise G

end for

G+ Gy

for i < 2 to m do
G+ k(G UGy

end for

minimise G

return(G)

end

Finally, we note that in computing G = k(G1 U --- U Gp,)) we can first compute lm(G) to preselect
the polynomials of G belonging to a minimal SGB. Only these polynomials need then be computed
in full. See Example 5.3.

5 The principal ideal ring case

In this final section, we restrict A to be a principal ideal ring. We give an alternative proof that

any non-zero ideal of A[x] has an SGB and conclude with some examples.

Corollary 5.1 (¢f. [3, Algorithm 6.4]) If A is a principal ideal ring then any non-zero ideal of
A[x] has an SGB.

PROOF. We have A = [, A;, where each A; is a principal ideal domain or a finite-chain ring by
[4, Theorem 33, Section 15, Ch. 4]. We can obtain an SGB over a principal ideal domain using e.g.
[2, Algorithm D-Grobner, p. 461]). Over a finite-chain ring any GB is a SGB by [3, Proposition
3.9], so it suffices to compute a GB, using for example [3, Algorithm 6.1] which computes a GB
over any principal ideal ring. Hence by Theorem 4.4 we can compute an SGB for any non-zero
ideal of A[x]. O

An improved SGB algorithm for finite-chain rings is described in the Appendix.



Example 5.2 (c¢f. [3, Example 7.3]) Let F = {22® + 3z + 1} C Zg[z] as in Ezample 3.4. We
obtain an SGB for (F) by applying Algorithm 4.5 to x(F). Firstly, =x(F) = (z + 1,222 + 1)
and trivially {z + 1} and {z* + 2} are minimal SGB’s in Zo[z] and Z3[x] respectively. We have
{z+1}u {22 +2}) ={(z+1,0),(0,22 + 2),(z* + 2,2 + 2)} and G = c({z + 1} U {z® +2}) =
{(1,0)x + (1,0), (0, 1)z + (0,2), (1, 1)z + (1,0)x + (0,2)} is an SGB for (x(F)). We minimise G
to obtain H = {(1,0)z + (1,0), (1,1)z>+ (1,0)z + (0,2)}. Finally x '(H) = {z?+3z+2,3(z+1)}
is a minimal SGB for (F).

In the next example, we use Algorithm SGB-FCR, of the Appendix.

Example 5.3 As in [1, Example 4.2.12], let F = {4zy + x,37> + y} C Zoo[z,y]. Using lezico-
graphic order with > y, they obtain a« GB G' = {3z? +y,4zy +z,5z,4y* +y, 15y} via the method
of syzygy modules. This is not an SGB since xy — x = Sxy — (dzy + x) is not strongly reducible
wrt. G'. Likewise for y*> —y = 5y?> — (4y> + y). (We note that [3, Corollary 5.12] shows that
{2 + Ty, zy — z,52,y% — y, 5y} is a minimal SGB.)

Instead, we compute an SGB for (F) from scratch using the usual isomorphism x : Zog — Zy X Ly
and Algorithm 4.5. We have nx(F) = {(z,4zy + ), (32% + y,32% + y)} C Z4[x] x Zs[z]. We
obtain G1 = {z,y} as an SGB for {z,3z* + y} using Algorithm SGB-FCR; alternatively G1 is a
GB by [3, Theorem 4.10] and it is a (minimal) SGB by [3, Proposition 3.9]. In Zs[x,y], we work
with {zy + 4x,2% + 2y}. A minimal SGB is Go = {zy + 4z,2> + 2y,y> + 4y}. First computing
Im(k(G1 U Gs)) yields H = {(1,1)z? + (0,2)y, (1, 1)zy + (0,4)z, (1,0)z, (1,1)y* + (0,4)y, (1,0)y}
as a minimal SGB for (x(F)). So x '(H) = {z* + 12y, zy + 4z, 5z, y? + 4y, 5y} is a minimal SGB
for (F).
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6 Appendix

We derive an algorithm for computing an SGB over a finite-chain ring R from [3, Algorithm 6.1],
using the definitions and notation of [3, Sections 3.1, 4.3]. In particular, for f, f1, fa € R[x]\ {0}
and G a finite set of non-zero polynomials, Spol(f1, f2), Apol(f), Rem(f, @), SRem(f,G) denote
the set of S-polynomials of fi, fa, the set of A-polynomials of f, the remainder and the strong

remainder of f wrt. G, respectively.

Algorithm 6.1 of [3] computes a GB over any principal ideal ring, so over R in particular. We know
that any GB over R is an SGB by [3, Proposition 3.9]. We also know that f is reducible wrt. G if and
only if f is strongly reducible wrt. G by [3, Proposition 3.2], so that SRem(f,G) C Rem(f,G). So



over R we only need to use strong reduction, which is more efficient than reduction. The improved

algorithm follows:

Algorithm 6.1

G + SGB-FCR(F)

Input: F a finite subset of R[x]\ {0}, where R is a computable finite-chain ring.
Output: G a strong Grobner basis for (F).
Notes: B is the set of pairs of polynomials in G whose S-polynomials still have to be computed.
C is the set of polynomials in G whose A-polynomials still have to be computed.
begin
G+ F
B« {{fi,f2} + fi,f2€G, f1 # f2}
C+F
while BUC # () do
if C # 0 then
select f from C
C+«C\{f}
compute h € Apol(f)
else
select {f1, f2} from B

B « B\ {{f, f2}}
compute h € Spol(fi, f2)

end if
compute g € SRem(h,G)
if g #0 do
B+ BU{{g, f} : feG}
C+ Cu{g}
G+ GU{g}
end if
end while
return(G)

end
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