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1 Introduction

Let R be a commutative ring e.g. the domain of p-adic integers or a Galois
ring. We define alternant codes over R, which includes BCH and Reed-Solomon
codes. We also define a corresponding key equation and concentrate on decoding
alternant codes when R is a domain or a local ring. Our approach is based on
minimal realization (MR) of a finite sequence [4, 5], which is related to rational
approximation and shortest linear recurrences. The resulting algorithms have
quadratic complexity.

When R is a domain, the error-locator polynomial is the unique monic mini-
mal polynomial of the finite syndrome sequence (Theorem 2), and can be easily
obtained using Algorithm MR of [4] (which is division-free). The error loca-
tions and magnitudes can then be computed as over a field. In this way we can
efficiently decode any alternant code over a domain.

Recall that a Hensel ring is a local ring which admits Hensel lifting. (It is
well-known that a finite local ring, such as a Galois ring, is a Hensel ring.) We
characterize the set of monic minimal polynomials of a finite syndrome sequence
over a Hensel ring (Theorem 3). It turns out that the monic minimal polynomials
coincide modulo the maximal ideal M of R (Theorem 4) when R is a local ring.
This yields an efficient new decoding algorithm (Algorithm 1) for alternant codes
over a local ring R, once a monic minimal polynomial of the syndrome sequence
is known. For determining the error locations, it is enough to find the roots of
the image of any such monic minimal polynomial in the residue field R/M. After
determining the error locations, the error magnitudes can be easily computed.

When R is a finite chain ring (e.g. a Galois ring) we invoke Algorithm MP
of [5] to find a monic minimal polynomial.

We note that a modification of the Berlekamp-Massey algorithm for Z,,, was
given in [8], where it was claimed [loc. cit., Introduction] (without proof) to
decode BCH codes defined over the integers modulo m. An algorithm to decode
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BCH and Reed-Solomon codes over a Galois ring has also been given in [3].
However this algorithm may require some searching see [loc. cit., Conclusions,
p. 1019] and their decoding algorithm requires root-finding in R itself, which is
also less efficient.

For more details and proofs, we refer the reader to [7].

2 Alternant Codes over a Commutative Ring

Let R be a commutative ring with 1 # 0 and let N(R) denote the subset of R
consisting of all elements which are not zero-divisors.

The following definition of alternant codes over R generalises the definition
over fields.

Definition 1 (Alternant codes). Let T be a subring of R and d > 2. Suppose
that « = (a1 ...,ay) and y = (y1,---,Yyn) are such that a;,y; € N(R) and
a;—a; € N(R) for 1 <i<j<n.lIf

Y1 Y2 %
yiar Y22 ... YnQp

H = y10] Y203 ... ynol (1)
yiaf 2 yaaf 2L ypad?

then the alternant code of length n and alphabet T defined by H is the T-module
Ala,y,d) ={ce€T": Hc"™ =0}.
As usual, H 1is called the parity check matriz of A(a,y,d).

As in the case of fields, we have:

Theorem 1. The minimum Hamming distance of A(a,y,d) is at least d.

3 A key equation

For decoding alternant codes over a ring we follow the main steps for their
algebraic decoding over a finite field, except that we rely on minimal realization of
a finite sequence which was introduced in [4]. For some advantages of the minimal
realization approach, see [5, Introduction]. See also the expository account in [6],
especially loc. cit. Section 8, which discusses the application to a finite sequence
of syndromes over a finite field.

Suppose that a codeword ¢ € A(a,y,d) is received as r = ¢ + e. We have to
find the error vector e given the syndrome vector Hrt* = He®,

We will henceforth assume that d = 2¢+1 > 3 and that the number of errors
is w = wtg(e) < t. Let 41,42,...,4, be the positions of the errors. As usual,
Qiy, - - -, 04, are called the error locations and e;, , ..., e;, the error magnitudes.
We write m for 1 — 2t; note that m < —1.



Definition 2 (Syndrome sequence). The syndrome sequence of the error e
is the finite sequence Sg,8_1,...,8m over R, denoted sm and defined by:

n w
— —i _ —i
S = E CrYrQy = E €i; Yi; @y, -
k=1 j=1

fori=0,-1,...,m.

Definition 3 (Error polynomials). We define the error-locator and error-
evaluator polynomials by

w w
Oe = H(X —ay;) and w, = Zeijyi]. H (X —ag,)-
Jj=1 j=1 k=1,...,w
k#j

Note that in the classical literature o* and X de8(ce)—1—deg(we)y* are called the
error-locator and the error-evaluator polynomial respectively, where f* denotes
the reciprocal of f € R[X].

Definition 4 (Key equation). Let I' = Zg:m 5; X" € R[X~']. We say that
(f,h) € R[X] x XR[X] is a solution of the key equation if f is monic, deg(h) <
deg(f) < —m and

I'=h/f mod X™ 1. (2)

A solution (f,h) is called minimal if deg(f) is minimal.

As in the classical case we easily obtain:
Proposition 1. If w <t then (0., Xw.) is a solution of the key equation.

The minimality of the solution (o, Xw,) is not obvious, but will follow from
Theorem 2 when R is a domain and from Theorem 4 when R is local.

We now recall some definitions from [5]. For f € R[X] and G € R[X~1], f-G
denotes their product in R[X 1, X] and (f - G); is the coefficient of X7 in f-G.
We write lc(f) for the leading coefficient of f € R[X]\ {0}.

Definition 5. (/5]) Let r € R\ {0}. The r—annihilator set of s|m is
Ann(slm,r) ={f : le(f)=r, (f-I); =0 for m+ deg(f) <j <0}

A polynomial f is said to be an annihilating polynomial of the sequence s|m if
f € Ann(s|m,r) for some r.

A non-zero polynomial in Ann(s|m,r) of minimal degree is called a minimal
polynomial of the sequence s|m, and we write Min(s|m, r) for those minimal poly-
nomials of s|m with leading coefficient r. (For the equivalence between minimal
polynomials and shortest linear recurrences of a finite sequence, see [6, Corollary
2.3], which is valid for any R.)



Recall from [4] that for f € R[X], B(f, s|m) € X R[X] is defined by

deg(f) ‘
B(f,slm) = Y (f-I);X7.

i=1

The connection between the key equation and minimal polynomials of sjm
becomes clear from the following lemma:

Lemma 1. The pair (f,h) € R[X] x XR[X] is a minimal solution of the key
equation (2) if and only if deg(f) < —m, f € Min(s|m,1) and h = B(f, s|m).

4 Decoding over a Domain

Theorem 2. If R is a domain then for oll r € R\ {0}, Min(s|m,r) = {ro.}.

We can now develop a decoding algorithm for alternant codes over a domain.
Algorithm MR of [4] computes a minimal polynomial f and the correspond-
ing B(f,s|m) for any sequence s|m over a domain. But from Theorem 2, we
know that for a syndrome sequence, such a polynomial f must be the error lo-
cator polynomial multiplied by some non-zero constant. Hence, after applying
Algorithm MR to the sequence of syndromes, we simply divide the output poly-
nomials f and S(f,s|m) by the leading coefficient of f, thus obtaining o, and
Xwe. The algorithm has quadratic complexity. We then proceed as in the clas-
sical (field) case: we compute the error locations as the roots of o, (which are of
the form a;,, ..., a;,) and the error magnitudes as e;; = we(a;)/ (00 (v;)yi;)-

This algorithm can decode, in particular, BCH and Reed-Solomon codes over
the p-adic integers of [1].

5 Decoding over a Local Ring

We now assume that R is a local ring with maximal ideal M and residue field
K = R/M. We extend the canonical projection R — K to a projection R[X] —
K[X] and denote the image of f € R[X] under this projection by f.

When R is a Hensel ring we can characterize the monic minimal polynomials
of the syndrome sequence:

Theorem 3. If R is a Hensel ring and @y, . ..,a, are distinct then
w

Min(s|m,1) = H(X —y; —2j) : zjeyyi; =0 for some z; € R, j=1,...,w
j=1

Our decoding algorithm is based on the following result:



Theorem 4. If R is a local ring and @y, . . ., @, are distinct then o, € Min(s|m, 1)
and for any p € Min(s|m, 1) we have

B=0= (X_alj)
=1

J

We can now develop a decoding algorithm for alternant codes over a local
ring, provided we have an algorithm that computes a monic minimal polynomial
for s|m. The latter can be achieved for sequences of syndromes of BCH and
Reed-Solomon codes over Z,. (see [3], [8]), over finite local commutative rings
(see [2]) and for any sequence over a finite chain ring (see [5]). A method of
computing the error once we have a monic minimal polynomial f is discussed in
[2,3]: (i) the roots of f in R are found and (ii) the ones that differ from some «;
by a zero-divisor are selected. Our method searches for the roots of f € K[X]
among @y, ..., @, and is therefore more efficient.

Algorithm 1 (Decoding A(a,y,d) over a local ring)
Input: r = (r1,...,7n) containing at mostt = (d — 1)/2 errors, where t > 1.
Output: ¢ = (c1,...,¢p), the nearest codeword.

0. Let m=1— 2¢t.

1. Compute the syndrome sequence s|m as (o $_1 ... $m)"™ = Hr". If sjm =
(0,...,0), return r.

2. Compute a monic minimal polynomial p for the sequence s|m.

3. Compute the roots @;,,...,a;, of i in K. Then the errors occurred at posi-
tions i1, ... ,0qy-

4. Compute o, = [T5_, (X — ay;).

5. Compute o!, and w, = B(oe,s/m)/X.
6. Sete=(0,...,0) and for j =1,...,w, put e;; = we(ay;)/ (0, (;)yi;). Return
r—e.

Algorithm 1 can decode, in particular, BCH and Reed-Solomon codes over
Galois rings.
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