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Abstract

Let g be the genus of the Hermitian function field H/F,> and let Cz(D, mQ) be a typical
Hermitian code of length n. In [5], we determined the DLP lower bound on the state complexity
of Cc(D,mQo). Here we determine when this lower bound is tight and when it is not.

For m < ”T’z or m > anz + 2g, the DLP lower bounds reach Wolf’s upper bound on
state complexity and so are trivially tight. We begin by showing that for about half of the
remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound
on the absolute state complexity of Cz (D, mQ ) which improves the DLP lower bound.

Next we give a ’good’ coordinate order for Cr (D, mQs). With this good order, the state
complexity of Cz(D,mQw) achieves its DLP bound (whenever this is possible). This coor-
dinate order also provides an upper bound on the absolute state complexity of Cz (D, mQoo)
(for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute
state complexity do not meet for some of these values of m, and this leaves open the question
whether our coordinate order is best possible in these cases.

A straightforward application of these results is that if Crz (D, mQ) is self-dual, then its
state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound

of & — %. In particular, so does its absolute state complexity.
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1 Introduction

Let C be a linear code of length n. Many soft-decision decoding algorithms for C' (such as the
Viterbi algorithm and lower complexity derivatives of it) take place along a minimal trellis for
C. The complexity of trellis decoding algorithms can be measured by various trellis complexities.
The most common one is the state complexity s(C) of C, which varies with the coordinate order
of C. Since the number of operations required for Viterbi decoding of C' is proportional to s(C),
it is desirable that s(C') be small. A classical upper bound for s(C) is the Wolf bound W(C) =
min{dim(C),n — dim(C)}, [9]. It is well-known that if C' is a Reed-Solomon code, then s(C) =
W(C).

Let [C] denote the set of codes equivalent to C' by a change of coordinate order. We write s[C] for
the minimum of s(C) over all coordinate orders of C' and call it the absolute state complexity of
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C. (We note that state-complexity notation and terminology varies in the literature. For example,
state complexity is called minimal trellis size in [2]; absolute state complexity is called absolute
minimal trellis size in [2] and minimal state complexity in [13].) Finding a coordinate order of C'
that achieves s[C] is called the ‘art of trellis decoding’ in [10] since exhaustive computation of s(C)
over all possible coordinate orders of C is infeasible, even for quite short codes. An important step
towards attaining this goal is determining good lower bounds on s[C].

The dimension/length profile (DLP) of C is a deep property which is equivalent to the generalised
weight hierarchy (GWH) of C. (For a survey of GWH, see [15].) The DLP of C is independent of
the coordinate order of C' and provides a natural lower bound V(C) for s[C]. For example, if C is
a Reed-Solomon code, then V(C) = W(C), [9], so that s[C] is as bad as possible and uninteresting.
However, determining when V(C) = s[C] is still important. An obvious and useful way of doing
this is to find a coordinate order of C for which s(C) = V(C). In particular this provides one
route to the art of trellis decoding. It is also important to develop methods for determining when
V(C) < s(C), and in these cases to improve on V(C).

Geometric Goppa codes generalise Reed-Solomon codes. Hermitian codes are widely studied ge-
ometric Goppa codes which are longer than Reed-Solomon codes and have very good parameters
for their lengths. Let ¢ be a fixed prime power, n = ¢* and g = (%). For m € [0,n + 2g — 2],
we write Cz(D,mQ«) for a typical Hermitian code of length n defined over Fp=. In [5], we
determined V(Cr(D,mQ«)) using some of the GWH of Hermitian codes obtained in [11, 16].
(The complete GWH of Hermitian codes has subsequently appeared in [1].) From [5], we have
$(Ce(D,mQs)) = W(Cr(D,mQx)) for m < 251 or m > 253 + 29, so we restrict ourselves to
the interesting Hermitian codes i.e. to Cz(D,mQ) with m € I(n,g) = [251, 252 + 2¢].

Here we determine precisely when V(Crz(D,mQw)) = s(Cc(D,mQ)). In the process, we exhibit
a good coordinate order which often gives s(Cz(D,mQx)) < W(Crz(D,mQ«)). We also improve

on the DLP bound (when it is strictly less than the state complexity).

"Points of gain and fall’ were introduced in [3, 4, 6, 7] to help determine the state complexity
of certain generalisations of Reed-Muller codes. For these codes, the points of gain and fall had
particularly nice characterisations. For Hermitian codes however, their characterisation is not
quite as nice and so our approach is slightly different. We describe a coordinate order giving
Cm € [Cr(D,mQ )] and characterise the points of gain and fall of C,,,. We also characterise these
points of gain and fall in terms of runs. This has the advantage of greatly reducing (from n to
g + 1) the number of trellis depths needed to find s(C,).

The paper is arranged as follows. Section 2 contains terminology, notation and some previous
results that will be used throughout the paper. The paper proper begins with Section 3. Here we
show that for m € I(n, g), just under half of the Hermitian codes cannot attain their DLP bound.
In these cases we give an improvement of the DLP bound, written V*(Crz (D, mQ))-

The main goal of Section 4 is to characterise the points of gain and fall of C), in runs. In Section
5 we determine s(C,,) using Section 4. We show that s(C,,) = V(C,,) for just over half the
m € I(n,g).

Thus we have determined precisely when the DLP bound for Hermitian codes is tight. Furthermore
8(Cp) = VY(Cp) for around a further quarter (respectively 1/q) of m € I(n,g) when ¢ is odd
(respectively even).

In conclusion, we have found s[Cy,] for three quarters (respectively one half) of the m € I(n,g)
when ¢ is odd (respectively even). For the remaining m € I(n,g), we do not know a better
coordinate order (than that described in Section 4) nor a better bound (than that given in Section
3). Thus, although we have reduced the possible range of s[C},], some of its actual values remain
open. Finally, our method of characterising points of gain and fall is essentially the same as the
one used to determine V(Cr(D,mQ)) in [5] and may be able to be used quite generally in
determining DLP bounds and state complexity.

We would like to thank Paddy Farrell for his continued interest and support of our work. An initial



account of some of these results was given in [8].

The state complexity of Hermitian codes has also been studied in [13]. For a stronger version of
[13, Proposition 1] (an application of Clifford’s theorem), see [5, Proposition 3.4]. Also, Example
5.11 below generalizes the main result of [13] to arbitrary self-dual Hermitian codes.

2 Terminology, Notation and Background

State complexity. Let C be a linear code of length n and 0 < i < n. The state space dimension
of C' at depth i is

5:(C) = dim(C) — dim(C;, ) — dim(Ci..). 1)

where C;_ ={c€C: ¢iy1=---=c¢c,=0}and C;+ ={c€ C: ¢ =--- = ¢; = 0}. The state
complezity of C is s(C) = max{s;(C) : 0 < i < n}. It is well known that s(Ct) = s(C). A simple
upper bound on s(C) (and hence on s[C]) is the Wolf bound W(C) = min{dim(C),n — dim(C)}.

We write [C] for the set of codes equivalent to C by a change of coordinate order i.e. C' € [C]
if and only if there exists a permutation (l,...,0,) of (1,...,n) such that C' = {(a,.-.,c,) :
(c1,-..,¢n) € C}. Then we define the absolute state complexity of C to be

s[C] = min{s(C") : C" € [C]}.

The dimension/length profile (DLP) of C is (ko(C),...,kn(C)), where k;(C) = max{dim(Cy) :
|J| = i}. Clearly dim(C; ) < k;(C) and dim(C; ) < k,—;(C), so that s;(C) > dim(C) — k;(C) —
kn_;(C). The DLP bound on s;(C) is

Vi(C) = dim(C) - ki(C) — kn—i(C).

and the DLP bound on s(C) is V(C) = max{V;(C) : 0 <i < n}. We will use DLP bound to mean
V(C) for some C. It is well known that V(C+) = V(C).

Since V(C) is independent of coordinate order of C, V(C) < s[C]. If s[C] = V(C), we say that C
is DLP-tight; e.g. it V(C) = W(C) then C is DLP-tight.

Hermitian codes. Our terminology and notation for Hermitian codes for the most part follow [14].
We write H/F, for the Hermitian function field. Thus H = Fp[z,y], where z is transcendental
over F2 and y? + y = 9% is the minimal polynomial of y over Fj:[z]. The genus of H/F, is
g= (%) >0. We write Py for the set of places of H/F;> and Dy for the divisor group of H/F.
For Q € Py and z € H/F,, we write vg(z) for the valuation of z at Q). Thus vg(z) < 0 if and
only if @ is a pole of z and vg(z) > 0 if and only if @ is a zero of z. Also (z) € Dy is given by
(2) = 2 gepy v@(2)Q and for A € Dp, L(A) ={z € H/F;2 : (2) > —A} U {0}.

There are ¢* + 1 places of degree one in Py. One of these is the place at infinity, which we denote
Q- We denote the others as Q1,...,Qqs. For the rest of the paper, unless otherwise stated
n=g¢’. Weput D =37, Q;. For an integer m, L(mQ) = {2z € H/Fp : (2) > —mQos} U {0}.
The Hermitian codes over F2 are Cz(D,mQu) = {2(Q1,),---,2(Q1,) : 2 € L(MQ )} for some
permutation (Iy,...,l,) of (1,...,n). Strictly speaking the code C(D,mQ) depends on the
permutation (I1,...,l,) of (1,...,n) and may be better denoted C(Qy,,- .., Q1 ; mQ ). However
this notation is cumbersome and Cr (D, mQ ) is standard. Unless otherwise stated, when we write
Cr(D,mQw) we have some fized but arbitrary coordinate order in mind.

From the usual expression for the dimension of geometric Goppa codes,
dim(Cr (D, mQ)) = dim(mQ ) — dim(mQ — D).

When m is understood, ¥ = dim(Cr(D,mQ)) unless stated otherwise. The abundance of
Cr(D,mQ) is dim(mQ s — D). For m < n, the abundance is 0 and the code is non-abundant.



For m < 0, Cc(D,mQw) = {0} and for m > n + 29 — 2, Cz(D,mQ) = 2, so we restrict

our attention to m € [0,n + 2g — 2]. With m* = n + 29 — 2 — m, the dual of Cr(D,mQ) is
C[,(D,mJ‘Qoo).

Let II : N — N U {0} be the pole number sequence of Q. Also, for i,j € Z we put [i,j] =
{keZ:i<k<j}and [i,00) = {k € Z : k > i}. Thus II[1,00) is the set of pole numbers
of Quo, II(r) is the rth pole number and II '[R;, Ry] = {r : Ry < II(r) < R»}. We note that

“10,R] = {r : TI(r) < R} and TT"'[Ry, Ry] = T1[0, Rx] \ TT"[0, R; — 1]. From [14, Proposition
VI.4.1] we deduce that

I[1,00) = {ig+j:0<i < ¢—2,0<j < i}U[2g,00). 2)

We note that, for m < n, dim(mQ. — D) = 0 and k = dim(mQ ) = [TI71[0,m]|.

State complexity of Hermitian codes. For 0 <¢ < n we put D; . = Zj-:l Qi; and D; =
Yoimiry Qi; (where (li,...,1,) is a fixed but arbitrary permutation of (1,...,n)). We deduce that
5;(Cr(D,mQ)) = k—dim(mQoo — D;,—) —dim(mQ oo — D; ) +2dim(m@Q« — D). In particular
for m < n,

5i(Ce(D,mQ)) = k —dim(mQo — D;,—) — dim(mQoo — Di ). (3)

These identities yield s(Cz (D, mQ ) = W(Cr(D,mQ)) for m € [0, 2 ] [252 +2g,n+29—2].
Thus we will almost exclusively be 1nterested in m € I(n,g) = [";1 ]. In fact, since
m € [25% + g, 252 + 2¢] if and only if m* € 23 4 g], we will often restrict our attention
to m € [251, 253 + g], deducing results for m e [";1 + 9,252 + 2g] from s(C*+) = s(C) and

v(Ct) = V(C).

It is convenient to put J(n, g) = [25L, 252 + g]. Using results of [11, 16], [5, Proposition 5.1] shows
that for m € I(n, g),

Vi(Ce(D,mQu)) =k — [TT7H0,m —i]| — [T [0, m + i — n]], (4)
which is used to prove

THEOREM 2.1 ([5, Theorem 5.5]) For m € J(n,g), write n — 2m + 4g + ¢ — 2 = ugq + v, where
0<wv<qg—1. Then V(Cc(D,mQ)) is attained at m —2g+ 1+ |5 |q and equals

b (q —2L%J) 3 (q —;%1) _min{q_ [gw 7q_v}_

If Cr(D,mQ) is DLP-tight then we just say m is DLP-tight.

3 When the DLP bound is not tight

Let m € [0,252] U [252 + 2g,n + 2g — 2]. Then by [5, Proposition 4.3, Example 4.9], we have
V(Cﬁ(Daono)) = W(CC(DamQOO)) and so

V(Cr(D;mQoo)) = s[CL(D, mQuo)] = s(Cr(D; mQoo))

where C(D,mQ)«) can have any coordinate order. Such m are therefore DLP-tight and we are
reduced to determining which m € I(n, g) are DLP-tight. We note that "773 + 2g < n, so that the
codes that we are interested in are non-abundant.

In this section we determine the m € I(n,g) which are not DLP-tight, i.e with s[C (D, mQ)] >
V(Cr(D,mQ)). The coordinate order of Cr (D, mQ) is arbitrary, so it suffices to show that
s(Ce(D,mQ)) > V(Cr(D,mQ))-



Table 1: Table of New Notation

m integer

q fixed prime power

mt n+2g—2—-m

Q2 q mod 2

I(n,g) nol, nzl 4 2]

J(n,g) 5 5 4 )

M m— 152qif m € J(n,g)

M*®, M° M= M*(qg+1)+ M° where 0 < M° < gq

V(Cr(D,mQo0))
A(m)

Improved DLP bound for m € I(n, g) Definition 3.11
V{(Cr(D,mQx)) — V(Cr(D,mQ)) (Theorem 3.9 and Corollary 3.10)

PL Finite places of degree one in Pgr
Qab Elements of F2 such that o/f* = a € F,
Bac Elements of F 2 such that 82, + B,. = a € F,

Qap,e = Qa,yp.. Element of P, such that £(Qqp.c) = agp and y(Qa,p,c) = Bac
Cm Element of [Cz(D,mQ )] with coordinate order given in Section 4
Pgain(m), Pran(m) ~ Sets of points of gain and fall of Cp,

Pyia(m), Py (m) - |Pain(m) N [L,]] and |Pran(m) N [1, ]

gain

A A :]0,00) X [0, — 1] — [0, 00) given by A(j,1) = jg+1(qg+1)
Cgain 0,452, q depending on M°. defined before Proposition 4.8

Ctanl 0, ‘Hé‘” ,q depending on M°. defined before Proposition 4.8
Ogain, Oranl M*® + M° — (gain and M*® + M° — (ran

Cnorm (Cgain + Cfall)/2

n 2q_2M.+q2_Cn0rm_3-

Our approach has three steps.

(i) we prove the key lemma, Lemma 3.2, and indicate how this can be used to show that m is not
DLP-tight (Example 3.3)

(ii) a generalisation of the key lemma (Lemma 3.4) and an application 3.5. We indicate how this
can be used to improve on the DLP bound by more than one (Example 3.6).

(iii) an application of Proposition 3.5 to improve the DLP bound for m € I(n,g), Theorem 3.9
and Corollary 3.10.

We conclude Section 3 with a table of the improved DLP bound for small values of ¢ and an
analysis of the proportion of those m € I(n, g) for which our bound is strictly better than the DLP
bound (Proposition 3.12).

The key lemma. We begin with a clarification of Equations (3) and (4).
LEMMA 3.1 For0<i<mn andm € I(n,g),
dim(mQu — D;,—) < [T [0,m —i]| and dim(mQs — D; 1) < |10, m + i — n]| (5)
and $;(Cc(D,mQx)) = Vi(Ce(D,mQ)) if and only if there is equality in both.
ProoOF. The first part follows from [5, Lemma 4.1] and the fact that the gonality sequence of

H/F,2 equals the pole number sequence of Q« by [12, Corollary 2.4]). The second part then
follows from (3) and (4). m|

We note that Lemma 3.1 implies that a coordinate order is inefficient, in the sense of [9], if and only



if there exists an 4, 0 < i < n, such that |[II7*[0,m —4]| > dim(mQs — D;,—) or [II71[0,m+i—n]| >
dim(mQs — D; ). To show the stronger result that s(Cz(D,mQw)) > V(Cr(D,mQs)) we
require a stronger condition on i, namely that it satisfies

[T10,m —4]| — dim(mQo — Ds,~) + [T 1[0, m + i — n]| — dim(mQw — D; )
> V(Cr(D,mQx)) = Vi(Cr(D,mQ)),

so that s;(Cr(D,mQx)) > V(Cr(D,mQ))- This stronger condition is clearly more likely to hold
if V;(Cr(D,mQ)) attains or is close to attaining V(Cr(D,mQ)).

For now, we concentrate on determining when the equalities in (5) cannot hold. For these equalities
to hold, dim(mQs —D;, ) and dim(mQ —D; 4 ) must change with [II7'[0,m —4]| and [II='[0, m+
i —n)]| respectively. We shall see that it is possible for both [II71[0,m —i]| = |[II7'[0,m — (i—1)]| -1
and |[TI710,m + i —n]| = [I7[0,m + (i — 1) — n]| + 1 (i.e. it is possible that both m — i + 1 and
m + ¢ — n are pole numbers of Q).

LEMMA 3.2 Form < 52 + g, it is not possible that dim(mQ e —D; ) = dim(mQe —D; 1, ) —1
and dim(mQ s — D; 1) = dim(mQo — Di—1,4+) + 1.

PrOOF. We assume that dim(mQoe, — D;,—) = dim(mQ oo — Di—1,-) — 1 and dim(mQo — D, 4) =
dim(m@Q — D;—1,+) + 1 and derive a contradiction. Suppose we have 21,22 € H/F,> such that
(1) (21) > —mQoo + Di—1,—, vg, (21) = 0 and (ii) (22) > —mQe + Di 4, vg, (22) = 0. Thus
(z122) > —2mQ o + D — Qy; and vg,, (2122) = 0. Now nQe — D is a principal divisor of H/F (e.g.
as in the proof of [14, Proposition VIIL.4.2]), say nQec—D = (23). Thus (212223) > (n—2m)Qoo—Q1;
and vg, (212223) = —1. Hence 212223 € L((2m — n)Qw + Q1;) \ L((2m — n)Q) so that by [14,
Lemma 1.4.8])

dim((2m — n)Qe + Qi;) = dim((2m — n)Qx) + 1. (6)

Now (29 — 2)Q« is a canonical divisor of H/F,> (e.g. by [14, Lemma VI.4.4] or because 2g — 2
is the gth pole number of Q« and [14, Proposition 1.6.2]). Thus dim((2m — n)Qw + Qi;) =
2m —n+2 — g+ dim((29g — 2 — 2m + n)Qw — Qi,) by the Riemann-Roch theorem, so from (6),
dim((29—2-2m+n)Qo— Q;,) = dim((2m —n)Q ) —2m+n+g—1. Again by the Riemann-Roch
theorem dim((2g — 2 —2m 4+ n)Qx) = 9 — 1 — 2m + n + dim((2m — n)Q ), so that

dim((29 —2—-2m+n)Qo — Qy;) = dim((2g — 2 — 2m + n)Q )

and hence £((29—2-2m+n)Qx—Q1;,) = L((29—2—2m+n)Q ). However for 29—2—2m+n > 0,
Le. form <224 g Fp CL((29—2-2m+n)Qo) \ L((29 — 2 — 2m 4+ n)Qw — Qu;), giving the
required contradiction. O

EXAMPLE 3.3 Let ¢ = 3. We show m = 13 is not DLP-tight.

From (2), we have II[1,11] = {0, 3,4,6,7,8,9,10,11,12,13}, so that k = 11. From Theorem 2.1,
V(Cﬁ(Daono)) = 10. NOUJ, from (4))

Vi3(Ce(D,mQx)) = k — [I7[0,0]] — I~ [0, ~1]| = 10 = V(C, (D, mQc0))

and similarly, V14(C(D,mQ)) = V(Cr(D,mQos)). Thus, s(Cr(D,mQs)) = V(Cr(D, mQc))
implies that s;(Cz(D,mQ)) = Vi(Cz(D,mQ)) for i = 13,14. Lemma 3.1 then implies that
dim(mQs — D13,—) = [II71[0,0]] = 1, dim(mQe — Di13,+) = 0, dim(mQs — D14,—) = 0, and
dim(mQe — D14,4) = 1, which contradicts Lemma 3.2. So s(Cr(D,mQw)) > V(Cr(D,mQs))
and since the coordinate order of Cr(D,mQs) is arbitrary, m is not DLP-tight.

We will see in Section 5 that 14 and 15 are DLP-tight.



Generalisation of the key lemma. Since dim(mQ . — D;—1,—) < dim(mQo — D;,—) + 1 and
dim(mQe — D;4+) < dim(mQs — D;—1,4) + 1 by [14, Lemma 1.4.8], Lemma 3.2 can be restated
as: for m < ";2 + g, either dim(mQ — Di—1,—) < dim(mQe — D; ) or dim(mQuc — D; 4) <
dim(mQoeo — D;_1,+). This generalises as

LEMMA 3.4 Form < 232+4gand0 <t <i<n, (i) dim(mQu—D; 4, ) < dim(mQe—D;,)+|L]
or (i) dim(mQe — D; 4) < dim(mQo — Di—¢.4) + | 5].

PROOF. Suppose that dim(mQos — D;i,—) < dim(mQe — Di—¢,—) — |£] and dim(mQos — D 4) >
dim(mQe — Di—¢,4) + | 5]. So there are r,s > L] and {i1,..., i}, {j1,---,js} C{i—t+1,...,i}
such that dim(mQ e — D;,,—) = dim(mQoo — D;y—1,—) —1for 1 < k < r and dim(mQo — Dy, +) =
dim(mQoo — Dj,—1,4) + 1 for 1 < k < s. However r + s > ¢ so that, since |{i —¢t +1,...,i}| =,
{i1,--yir} N {j1,...,4s} # 0, contradicting Lemma 3.2. O

The following application of Lemmas 3.1, 3.4 is a straightforward consequence of (3),(4).

PROPOSITION 3.5 Form € J(n,g) and 0 <t <i<m,

t
s[Ce(D,mQw)] > Vi(Ce(D,mQoo)) + [T m+i—n—t+1,m+i—n]|— {iJ .
EXAMPLE 3.6 Let ¢ =7 and m = 186. Then s[Cz(D,mQ )] > V(Cr(D,mQ)) + 2 = 159.

We have k = 166 (e.g. by the Riemann-Roch Theorem). From (2), the first few pole numbers of
Qoo are II[1,6] = {0,7,8,14,15,16}. From Theorem 2.1, we have V(Cr(D,mQ)) = 157. For
i =173, I7Y0,m —i] = {0,7,8} and II71[0,m + i — n] = {0,7,8,14,15,16}, so that, from (4),
Vi(Cr(D,mQs)) = 157 = V(Cc(D,mQ)). Also, with t = 3, we have I-Y(m +i —n —t) =
{0,7,8}. Thus Proposition 3.5 gives

S[C2(D,mQu)] > Vi(Ce(DymQus)) +2 = V(Ce(DymQuc)) +2 = 159.
We shall see in Section 5 that s[Cr(D,mQ«)] = 159.

Improvement on the DLP bound. We show how Proposition 3.5 can be used to improve on

the DLP bound generally. First, we introduce some useful notation: g = 0 if ¢ is even and ¢ =1
2_

if ¢ is odd. For a fixed m € J(n,g), we put M =m — 152¢ and write M = M*(q + 1) + M°,
where 0 < M° < q. We easily deduce:

LEMMA 3.7 (i) for q odd, 0 < M* < "2;3 and if M* =0 then M° > "5—1
.. ° -2 . o __ -2 o __
(i3) for q even, 0 < M* < 1= and if M* = 95= then M° = 0.

We begin by reinterpreting Theorem 2.1 in terms of M*® and M°.

LEMMA 3.8 Form € J(n,g), the DLP bound is attained at

m+1— Mg ifO< Mo < 92— Me
m+1—(M*+1—q)g if 5+ —M*<M°<qg—M*—1
m+1—(M*+1)q ifq— M®* < M° <q.

PRrOOF. If u,v are defined as in Theorem 2.1, then

(2¢—2—2M* + g5,q — 2M* —2M° —2) if0< M° < 452 — M*
(u,v) =< (2¢—3—2M* + q2,2¢ — 2M* —2M° —2) f I=L Mo < M° <gq— M*—1
2
(2 — 4 — 2M* + g2, 3¢ — 2M* —2M° —2) ifq— M* < M° < q.



The result now follows from the fact that the DLP bound is attained at m —2g+1+ [§]q. O

Next we give our improvement on the DLP bounds for m € J(n,g). The size of the improvement
is given by

1+M°+M°—% ifq;qz_MosMoSqfl\gfl

q—ng — M° if q—é\/f' < M° < q—22+Q2
Alm)=4¢ 14+ M*+ M°—gq if g— M®* < M° <q— M+

1+q—gq— M° ifg— M- <M°<q—q»

0 otherwise.

: e q— . o -2+ . o
We note that A(m) > 0 if and only if 52 — M*® < M° < =52 or ¢ — M* < M° < q — ¢».

THEOREM 3.9 Form € J(n,g), s[Cc(D,mQw)] > V(Cr(D,mQx)) + A(m).

PRrOOF. First assume that 452 — M* < M° < 22t From Lemma 3.8, V(Cz(D,mQx))
is attained at i = m+1— (M®* +1—¢g2)g. Wetakei = m+1— (M*+1—¢g)gandt =
2M* +2M°+1—q+ g2 in Proposition 3.5. Now m+i—t—n = M*q— ¢2. We have two subcases.
(a) For I52 —M* < M° < H;[é we have 0 < t < M*+¢2. Now, from (2), M*q,..., M*q+M* €
I[1, 00), so that |[IT"}[m +i—n —t+ 1,m +i — n]| = ¢, and Proposition 3.5 gives

t

S[C2(D,mQu)] — V(Ce(D,mQus)) > H SRV £}

(b) For # < M° < H% we have M* + ¢ +1 <t < 2M* +2¢ — 1 < ¢ — 1. From (2),
M*q+M*+1,...,M*q+q—1 ¢ TI(N) since M* < g—2, so that [T~} m+i—n—t+1,m+i—n]|=
M* + g2, and Proposition 3.5 gives

_qte
2

— M°.

s[Ce(D,mQu)] — V(Cr(D,mQuo)) > M® + o — (M. e d —2q2>

Suppose now that ¢ — M* < M° < ¢ — ¢». From Lemma 3.8, V(C(D,mQ)) is attained at
m+1—(M®*+1)q. Wetakei =m+1—(M*+1)gandt =2M*+2M° —2q+2— ¢ in Proposition
35. Nowm+i—t—n=(M*+1-g2)g— (1 —g2) and again we have two subcases.

(a) Forg—M* < M° < q—% we have 0 <t < M*+1—¢e. From (2) (M*+1—¢2)q,...,(M*+
1—q2)q+ (M®+1—gs) € II[1,00), so that [T~ [m +i—n—t+1,m+i—n]| =t, and Proposition
3.5 gives s[Cz(D,mQu)] — V(Cr(D,mQu)) > [L] =1+ M® + M° —¢.

(b) Forq—MT' < M° <qg—q> wehave M* +2 — ¢ <t <2M*+2—3¢s < q— ¢2. From (2)
(M'—|—1—q2)q+(M'+2—q2),...,(M°+1—q2)+(q—1)¢H[1,oo),sinceM°+1—q2 Sq_2>
so that [TI™'[m+i—n—t+1,m+i—n]| = M®+2— 2¢, so that from Proposition 3.5,

s[Ce(D,mQo)] = V(Cr(D,mQu)) > M®* +2—-2¢5 —(M®* + M° —q+1—q) =1+q—qo— M°.

O
For m € [25% + g, %52 + 2g] we put A(m) = A(m™*) > 0.
COROLLARY 3.10 Form € I(n,g), s[Crz(D,mQ)] > V(Cr(D,mQ)) + A(m).
PRrOOF. Easy consequence of Theorem 3.9, V(C) = V(C*) and the definition of A(m). |



DEFINITION 3.11 For m € I(n,g), we put V¥ (Cr(D,mQw)) = V(Cc(D,mQx)) + A(m).

We note that for m € I(n,g),
V{(Ce(D,mQu)) = V' (Ce(D,m Qo)) (7)
In Table 2 we have written V*(m) for V*(Cz(D,mQ«) and the DLP bound is calculated using

Theorem 2.1. The bold face entries are those for which V*(Cz(D,mQw)) > V(Cr(D,mQ)).
(The values of V*(Cz(D,mQs)) for m € [%51 + g, 252 + 2g] can of course be deduced from (7).)

Table 2: V*(Cr(D,mQ)) for ¢ € {2,3,4,5,7,8} and m € J(n,g)

(%]
<
§S
[FCITSN

13 14 15

11 11 11

32 33 34 35 36 37

26 27 27 28 28 28

62 63 64 65 66 67 68 69 70 71

53 53 54 54 55 56 56 56 56 56

171 172 173 174 175 176 177 178 179 180

151 151 152 153 153 154 155 156 156 156

181 182 183 184 185 186 187 188 189 190 191
157 157 157 158 159 159 159 159 159 159 159

w
<
§S

S
<
@3

o
3

<
B

\]
<
§S

<
§S

256 257 258 259 260 261 262 263 264 265 266 267 268 269
228 229 230 231 231 232 233 234 234 234 235 236 236 236

oo
<
@S

270 271 272 273 274 275 276 277 278 279 280 281 282 283
237 238 238 238 238 239 239 239 239 240 240 240 240 240

3

<
B



We conclude this section by calculating the proportion of m € I(n, g) for which A(m) > 0.

PROPOSITION 3.12

— 2iq if q is odd
- ﬁ if q is even.

N[ D] =

|ATH(0,00)|/|1(n, g)| = {

ProoF. We note first that [I(n,g)| = 29 + ¢ — 1. Recall from the definition of A(m) that

n—1 n—2 4= Qo

_ -2+
ATH0,00){ "5, T g} = {m ==

2

-M* < M° < or g—M* < M° < q—ga}-
Next we note that |A~1(0,00)| = 2|A~1(0,00) N J(n,g)| . This follows from the definition of A(m)
for 251 + g <m < 253 4 2g when ¢ is 0odd and from 252 + g ¢ A~1(0,00) when g is even. Now,
fixing 0 < M* < %, we have

q—2+gq

|{M°:¥—M'§M°§ . 2 orq—M*<M°<q—q}|=2M" +1.

We note that the restriction M° > q;—l for ¢ odd and M*® = 0 from Lemma 3.7 does not affect
this. We also note that for ¢ even and M*® = %, the restriction of M° = 0 in Lemma 3.7 gives
{M°:1 < M2 < 552 or g— 552 < M° < g} =0.

Thus the result follows from

q—3 g—1 2
23 0 o@M+1) = (¢-1)+4(3) =L ifgis odd
|A71(0,00)| =

a—4 —
23 oM +1)=(¢—2) + 4(%) = @ if ¢ is even.
O

Thus, for large ¢ at least, V*(Cr(D,mQ)) improves on V(Cr (D, m@Q«)) for just under half the
m € I(n,g). We shall see in Section 5 that m is DLP-tight when V*(Cr (D, mQ «)) fails to improve
on V(Cr(D,mQ))-

4 A Good Coordinate Order

We describe a ‘good’ coordinate order for Hermitian codes, denoting the code in [Cz(D,mQ )]
with this coordinate order by C,,. After recalling the notions of points of gain and fall for a linear
code, we give the most natural description of the points of gain and fall of C,, in Propositions 4.2
and 4.4. We conclude by characterising the points of gain and fall of C), as ‘runs’ in Theorem 4.10
(which we will use in Section 5 to derive a formula for s(Cy,) .)

The good coordinate order. As noted at the beginning of Section 3, for m < 252 or m >
”T_2 + 2g, all coordinate orders of Cr(D,mQ) are equally bad with regard to state complexity.
Thus we are interested in m € I(n, g).

Recall that H/F,» has n + 1 places of degree one viz. @, and the finite places of degree one,
Q1,---,Qn. Weput PL, = {Q1,...,Q,}. Now

Cr(D,mQw) = {(2(Q1y),---,2(Q1,)) : 2 € LMQ o)}

for some fixed but arbitrary ordering (Qy,,...,Q:,) of Pi;. Thus the order of P}, determines the
coordinate order of Crz(D,mQ«). As in [14], for each (o, 8) € F,2 x F,2 such that 87+ g = o,
there exists a unique Q,p € Pk, such that 2(Qus) = @ and y(Qap) = B

10



We now describe an order of P}, giving Cy, € [C.(D,mQo)]. First we relabel the elements of P,
as Qq,p,c for certain integers a,b,c. We write {0,1,...,q— 1} for F;, where 0 = Op,. Now for each
a € Fy\ {0} there exist Bq0, - - -, Ba,g—1 € Fp2 and aqp, - - ., 2aq € Fy2 such that 2.+ 4. = azzrl =a
for 0 <c¢c<g—1and 0 <b<gq. ThusforeachaeF,\{0},0<c<g—1and0<b< g, there
exists Qq,p,c € Phy, such that 2(Qap,c) = Qap and y(Qap,c) = Ba,c, giving ¢° — ¢ elements of P;.
For a = 0 there exist Boo,. .., B0, and agy = 0 such that 87, + fo = adf' = 0for 0< e < gq—1.
Thus the remaining ¢ elements of P}, which we write as Qo,0,c for 0 < ¢ < ¢ — 1, are such that
2(Qo,0,c) = 0 and y(Qo,0,c) = Bo,c- We note that Qup,c = Qayy, -

When a, b or c takes any of its possible values we write Q+ p,c, Qa,x,c OF Qa,p,«. Note that fora =10
we have b =0 and for 1 < a < ¢—1 we have 0 < b < g. Thus there are ¢ places of the form Qg . «
and for 1 < a < g — 1 there are ¢ — 1 places of the form Q, « «.

We first describe the ordering of P}, giving Cy, € [Cr(D,mQw)] for m € J(n,g). This uses
lexicographic order of ¢-tuples of integers: (i1,...,4:) < (Jj1,---,J¢) if and only if there exists u
such that i1 = ji,...,4iy 1 = ju_1 and iy < j,. For 0 < M° < CM2=2 op g M < 1o < g, C
is defined by simply using the order

O1: Qa,b,c < Qa’,b’,c’ if (aaba C) < (alablacl)

of P},. For % <M°e<q-— M;“, Cpm is defined by the’Order 02’ of PL;: partition P}, into
three sets
Pl = {Quac:0<e< 52 1)
P} = {Qapp 1 a # 1} (8)
Py = {Q1nc: 52 <c<qg-1}.
Then Order 02 of P}; is given by putting P < Py < Pj, ordering P} and P} by Q1. < Q1,0
if (C, b) < (Cla bl) and Ordering ]P% by Qa,b,c < Qa’,b’,c’ if (a7 ba C) < (al7 bl: cl)'
For m € [”T_l + g, ”T_3 + 2g], the coordinate order of C,, is defined to be that of C,,+.

From now on @; denotes the ith element of P}, ordered as above. Thus
Crm ={(2(Q1),...,2(Qn)) : 2 € L(MQ )}

The points of gain and fall of C,,. Points of gain and fall were introduced in [3, 6]. For this
paragraph, C is a length n linear code with dimension k. We note that dim(C; _) (as defined in
Section 2) increases in unit steps from 0 to k and dim(C; +) decreases in unit steps from k to 0 as
i increases from 0 to n. If 0 < i <n then

e i is a point of gain of C if dim(C; +) = dim(C; ) — 1 and
e i is a point if fall of C' if dim(C;,—) = dim(C;,—) + 1.

These definitions are motivated by (1). We note that there are k points of gain and k points of fall.
Points of gain and fall describe the local behaviour of a minimal trellis, [6], and being able to give
a succinct characterisation of them for particular families of codes has been useful in calculating
formulae for their state complexity, e.g. [3, 6]. The same proves to be the case here. We note that,
as in [6], 4 is a point of gain of Cy, if and only if ¢ is the ‘initial point’ of a codeword of Cp, i.e. if
and only if there exists z € £(mQ ) such that

2(Q1) = -+ =2(Qi—1) = 0 and 2(Q;) # 0.

Similarly ¢ is a point of fall of C,, if and only if 7 is the ‘final point’ of a codeword of C,, i.e. if
and only if there exists z € £L(mQ@ ) such that

2(Qi) # 0 and 2(Qiy1) = -+ = 2(Qn) = 0.

11



We write Pyain(C) and Pun(C) for the sets of points of gain and fall of C. With P (C) =

. gain
| Peain (C) N [1,4]] and Py (C) = |Pran(C) N [1,4]| we have
5i(C) = Pi (C) — Py (O). 9)

We also write Pyain (m) := Pyain(Crn) and Pran(m) := Pran(Cin).
We will need a function A closely related to II. Define A : [0, 00) x [0,g — 1] — [0, 00) by
AG D) =jg+1(g+1).
We have II[1,00) = Im(A) from [14]. We note that
ATO,m] ={(j,)) €ZxZ:j>0,0<1<q—1,jg+I(g+1) <m}

and for m < n, k = dim(Cy,) = |A 1[0, m]|, [14, Proposition VIL.4.3]. For 0 < a < ¢ — 1, we put

| {00} fora=0
A(a)—{ {aap:0<b<gq} forl<a<g-1

and B(a) = {Bac:0<c<q—1}. Thus P}, = {Qu5:0<a<q-1,a € A(a),B € B(a)}. Also we
put A =J'_} A(a) and B = |J'_; B(a).
We will determine the initial and final points of certain z € H/F,> of the form

z=(z—ao) - (z—a1)(y—Fo) - (y — Bj-1)

where a,...,oq_1 € A and fy,...,0;-1 € B. Note that (z — aap)(Qa,pr,«) = 0 if and only if a =
a, b="V" and (y — Bac)(Qu x,) = 0if and only if a = a’, ¢ = ¢/. Of course, we are interested in
when (2(Q1),-..,2(Qn)) € Cn, i.e. when z € L(mQ).

LEMMA 4.1 If (j,1) € A71[0,m], ao,...,aj_1 € A and By,...,Bi—1 € B then
(z—ag) - (z —aj-1)(y — o)+ (y — Bi—1) € L(MQco)-

Proor. We put z;; = (z —ag) -+ (x — aj—1)(y — Bo) - (¥ — Bi—1) € L(MQ ). Using the facts
that (i) vg., () = —¢ and vg_ (y) = —(g+ 1), (ii) for Q € Pu \ {Q}, vo(z) > 0 and vg(y) > 0,
(iii) for @ € Fp2z and Q € P, vg(a) = 0, we get vg,, (2j1) = —A(j,1) and vg(z;) > 0 for all
Q € Py \ {Qw}. Hence (j,1) € A~1[0,m] implies that zj; € L(MQwo)- m]

PROPOSITION 4.2 (01 ordering of PY;) For m € J(n,g) with 0 < M° < Hgi or q — Ag' <
M® < q,

1. Pgain(m) ={jg+1+1:(j,1) € A7'[0,m]} and
2. Pfall(m) = {n _jq —1: (]al) € A_l[oam]} =n-—- Pgain(m) + 1.

PrROOF. We order the set A by ag < agp if and only if (a,b) < (a/,b'). Thus ag < agp if
and only if Qg p« < Qarpr«. For 0 < d < ¢® — 1, we write aq for the (d + 1)st element of A.
Thus ag = ago, a1 = Q10,---, Qg1 = Q1gy---,0g2_1 = 0q_1,4. For 0 < d < ¢ — 1, we define
a(d) by agayp = aq for some b. Thus a(0) = 0,a(1) = --- =a(g+1) =1,...,a(¢> —¢—1) =
-~ =a(@®?—1)=q—1. Then for 1 <i < ¢, writing i — 1 = dq + ¢ where 0 < d < ¢> — 1 and
0<c<g-—1, we have

Qi = Qadﬂa(d)c'

12



Thus
(x—aq)(@Q;) =0ifand only if dg+ 1 <i < (d+ 1)g

and
(y — Bac)(Q:i) = 0 if and only if ¢ = dg + ¢ + 1 where a(d) = a.

We begin with Pgain(m). For (j,1) € A71[0,m] we put

W = () (@ 3), V= ()~ Buga) (0~ Bagar)y 2 = e
We note that jqg < A(j,1) <m < ”7_2 +g= M%fz, which implies that j < ‘12+qu1 < ¢?, so
that uf*", o8 and 25" are well-defined for all (j,1) € A='[0,m]. Now u§*"(Q;) = 0 if and only
if 1 <i<jgq, ng.lain(Qz-) =0for jg+1<i<jqg+1and vf-lai"(quHH) # 0. Hence the initial point
of zflain is jg+ 1+ 1 so that jg+ 1+ 1 € Pyain(m). Also, by Lemma 4.1, ng-lai“ € L(mQ ). Finally,
each (j,1) € A=1[0,m] gives a different point of gain of C,, and, since |A~1[0,m]| = k, these are
all the points of gain. Similarly for points of fall. O

n—1

We use Proposition 4.2 to determine s(Cy,) for ¢ = 2 and m € [25%, 252 + g]. To do this we use
(9) and so we put . . . .

Peain(m) := Pgiin(Cm) and Py (m) := Py (Cim)-
EXAMPLE 4.3 Ifq = 2 then Pgin(4) = [1,3]U{5} and P (4) = {4}U[6, 8] givings(Cy) = 3. (Thus
Cy is our first example of a geometric Goppa code with s(Cy) < W(Cy). Also, s(Cy) = V(Cy),
where the latter is given by Theorem 2.1.)

PRrOOF. The coordinate order of Cy is Qo,0,0 < Qo,0,1 < Q1,00 < Q1,01 < Q1,10 < Q1,11 <
Q1,2,0 < Q1,2,1- In the notation of Proposition 4.2, we have ap = ag,0, 01 = 1,0, 2 = 1,1, a3 =
a1,2. Thus a(0) = 0 and a(1) = a(2) = a(3) = 1. Also A 1[0,4] = {(0,0), (1,0),(0,1),(2,0)}, and
k=4.

Now Pgain(4) is the set of initial points of zjg-lain, where (j,1) € A71[0,4]. These are given in the table
below. The third column in the table gives the ‘initial place’ i.e. the (4,5, such that Qq.p,c = Qi,

where i is the initial point.

(,D 25 in Initial Place Initial Point
(0,0) 1 Qo,0,0 1
(1,0) (z — ao) Q1,00 3
(0,1) (y = Bo,o) Qo,0,1 2
(2,0) (z—ao)(x— o) Q1,10 5

Thus Pgain(4) = [1,3] U {5}. Also Prui(4) is given by the final points of zi"' such that (j,1) €
A~1[0,4], as follows.

4,0 zﬁ‘l’“ Final Place Final Point
(0,0) 1 Q1,21 8
(1,0) (x — as) Q1,11 6
(0,1) (y —Bi,1) Q@1,2,0 7
(2,0) (z-ax)(z—as)  Quoa 4
Thus Prn(4) = {4} U6, 8]. Hence, using (9) we have
i 012 3 45 6 78
Pr.(4) 012334444
Poy(d) 0000 1 1 2 3 4
S,'(C4) 0123 23 210
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giving s(Cy) = 3. |

For m € J(n,g) such that % < M° < q— ML we put

- +
(gain = g 2q2 and (e = 1 2q2.

PROPOSITION 4.4 (02 ordering of Py) For m € J(n,g) with =M"=1 < M° < ¢ — M4
Pgain(m) = Pglain(m) U szain (m) and Pran(m) = Pgy(m) U Py (m) where

Pglain(m) = {l(Q+1)+j+1 : (.77l) € A_1[07m]70 SJ S 11;0 S l S Cgain - 1}

PgQain(m) = {Cgain(q +1)+jg+1+1:(40) € A_l[oam - Cgain(q +1)]}
Pin(m)={n—1g+1)—j: (1) € A'[0,m],0<j <q,0<1< (an—1}
Pan(m) ={n - Gan(g+1) —jg—1:(j,1) € A7[0,m — Crau(q + 1)]}.

PRrROOF. We recall that P!, P} and P} were defined in (8). We note that

o for 1 <i < (gain(g+1), Qi € P, so that writing i —1 = ¢(q + 1) + b where 0 < ¢ < (gain — 1
and 0 <b<q, Qi = Qup,c;

o for Cgain(Q"' 1) +1<4i< Cgain(q+ 1) +q3 - q2 —-q,Q; € P% and

o for Guain(¢g+1)+¢* —¢* —¢<i< ¢ Qi ePy.
We begin by showing that Pglain(m) C Pyain(m). For (j,1) € A=[0,m] such that 0 < j < ¢ and
0 <1 < (gain — 1 we exhibit an element of £(mQ o) with initial point I(g + 1) + j + 1. Put

uiain =(z—a0) (T —a1-1), Ulgain =y —Bro) -y — Bri-1), Z]g-?in = Ufainvlgain-
Thus Ulgai“(Qa,*’c) =0ifand only if a =1, and 0 < ¢ <1 — 1 and u8¥™(Q, ) = 0 if and only if
a=1,and 0 <b < j— 1. Therefore vf*"(Q;) = 0 if and only if 1 <14 < I(g+ 1), u8"(Qi) =0
for llg+1) +1 <4 <Il(g+1)+j (taking ¢ = I < (gain) and uf*"(Qy(g41)4j11) # 0 (taking

gain

c=1land b =j < gq). Hence the initial point of 25" is I(g + 1) +j + 1. Also, from Lemma 4.1,
289" € £(mQu), so that Pgoin(m) C Pgain(m).

jl
Next we show that szain (m) C Pyain(m). We order A\ A(1) by aup < aqp if and only if (a,bd) <
(a',b") and write o for the (d+1)st element of A\ A(1), where 0 < d < ¢ —¢—2. (This is different
from the labelling in the proof of Proposition 4.2 since we do not include A(1) in the relabelling.)
We define a(d) by a(a)p = g for some b. Then, for (gain(q+1)+1 <4 < {gain(¢+1)+¢* —¢* — ¢,
writing i — 1 = Ceain(¢ + 1) +dg+ ¢ where 0 < d < ¢>* —¢—2and 0 < ¢ < ¢— 1 we have
Qi = Qady,ga(d)c' We put W8N = (y - 181,0) U (y - /Bl,Cgain—l)' For (.77 l) € A_l[oa m — Cgain(q + 1)]7

set
(Ugain);' =(z—ag) - (z— aj—l); (Ugain)}z =(y— ﬁa(j),o) ey — /Ba(j),l—l)

e = U 05
We note that jg < A(4,1) < m — (gain(g + 1) < 43_2"_1, which implies that j < ¢® — ¢ — 2.
Thgs (ugn);, (vB*)}, and 2577, - are well-defined for 2.1411 (4,1) € A71[0,m — Cgain(q + 1)]. Now
wsn(Q;) = 0if and only if 1 < ilﬁ Cgain(g+1). Also (uB*™)(Qa4p,4y.) = 0 if and only if 0 < d <
j—land 0 <c<g¢—1and (v8")}(Qaup,w.) = 0 if and only if a(d) = a(j) and 0 < e <1 —1.

Thus (u*")}(Q;:) = 0 if and only if Cgain(g + 1) +1 < i < Ggain(g + 1) + jg, (v8¥7);(Qs) = 0 for
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Cain(q+1) +7g+1 <i < (gain(g+1) +jg+1 and (Ugai“);l(Qggain(qﬂ)ﬂ-q““) # 0. Therefore the

initial point of zf?i‘cgm is Cgain(¢+ 1) + jg+ 1+ 1. Also, by Lemma 4.1, w8%™ € E(Cgain (¢+1)Qs)

and ( f?l’ifg L Jw) € L{(m — (gain(g + 1))Qoo). Hence zf?fcgam € L(mQw), P gam C Pgain(m) and
PLa(m) U Py (m) € Pygin(m)

gain gain

So it remains to show that |Py,;, (m)U P ( )| = k. To do this we exhibit a bijection A=1[0, m] —

gain

Plin(m) U P2 (m). First, for (j,1) € A='[0,m] we map (4,1) to I(g + 1) +j + 1 € Py, (m) if

gam gain

0<j<qgand 0 <! < (pain — 1. Now we are left with defining a bijection F':
{(JJZ) € Ail[o’m] 0 < J < qugalIl S l < q— 1 or .7 > q+ 1} — gam(m) by

F(] l) — Cgain(q+1)+jq+(l_Cgain)+1 if Cgain SlSq—l
’ Cain(@+ D)+ (G —g—Dg+(+22)+1 if0<1 < Cgain— 1

It is easy to check that F' maps into P;am (m) and F is one-to-one since for (gain <1< ¢g—1 and

0 <" < C(gain— 1,0 <1 —(gain < ”+2‘12 1< ‘”#’2 <l'+ ‘H% < g — 1. Finally we prove F is onto.
For i € Pg2am( m), such that i = (gain(q + 1) + jg+ 1+ 1 for (j,1) € A71[0,m — (gain(g + 1)] we put

(jl ll)= (j;l‘}'é_gain) lfOSlgq_’_%_l
’ (G+g+1,1-45=) if G <I<q-1.

It is straightforward to see that (i) (j',1') € A=[0,m] (ii) if j' < ¢ then (gain <1’ < ¢ —1 and (iii)
F((j',1")) = i. This completes the proof for Pgain(m). Similarly for the points of fall. O

EXAMPLE 4.5 If ¢ = 3 then Pgin(13) = [1,9] U {11,14} and Pen(13) = {16} U [18,27] giving
s(C13) = W(C13) = VY(Cr(D,13Q)) = 11 using Theorem 3.9, but s(C13) = V(C13) + 1.

PROOF. The coordinate order of C;3 is

Q1,00 < Q1,10 < Q1,20 < Q1,30 < Qoy,0 < Qoy0,1 < Qo2 <E200 < @201
< Q2,02 < Q21,0 <Q21,1 < Q21,2 < Q220 < Q221 <Q222 <230 <231
< Q232 < Q1,01 <Q1,110<Q121<Q131<Qi02<Qi12<Q122<Q1,32

We use the notation of the proof of Proposition 4.4. We note that (gain = 1. Thus for 0 < j < ¢
and 0 <1 < Cgain — 1, jig + U(g + 1) <9 <13, so that (j,1) € A~1[0,13]. Thus PL;,(13) is the set

gain
of initial points of zgam for 0 < j < 3, which are as follows.

(4,1 z?lai“ Initial Place Initial Point
(0,0) 1 Q1,00 1
(1,0) (x —a1,0) Q11,0 2
(2,0) ( —a1,0)(z —a1,1) Q1,2,0 3
(3,0) (z—a10)(z—0a1,1)(z —a1,2) Q1,3,0 4

Thus PL. (13) = [1,4]. Next we consider

gain 13). Now we have

gam(
Qo = 0,0, 01 =020, Q2 =021, O3 = Q22, 04 = 023

so that a(0) = 0, a(1) = a(2) = a(3) = a(4) = 2. Then P2; (13) is the set of initial points of

gain

zfjifcgain such that (j,1) € A71[0,13 — Cgain(g + 1)] = A71[0,9] and

A71[07 9] = {(07 0)7 (170)7 (07 1)7 (27 0)7 (17 1)7 (07 2)7 (37 0)}
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giving the following.

(4,1 +1) zf’?i_f_ll Initial Place Initial Point

(0,1) (y = B0) Qo,0,0 5

(1,1) (y = Bro)(@ — ap) Q2,00 8

(0,2) (y = B1,0)(y — Bo,) Qo0,1 6

(2,1) (y — Br0)( — ao)(z — a1) Q2,10 11

(1,2) (y — Br0)(x — ao)(y — B2,0) Q2,01 9

(0,3) (y — Br,0)(y — Bo,o)(y — Bo,) Qo,0,2 7

(3,1)  (y—Pr0)(z— )z —a)(z — az) Q22,0 14
Thus P2;,(13) = {5,8,6,11,9,7,14} = [5,9] U {11, 14} and Pyain(13) = [1,9] U {11, 14}. Similarly
for Prai(13). We have Pgain(13) < Pran(13) and so s(Cq3) = 11. O

From Propositions 4.2 and 4.4 we have, if (i) 0 < M° < =22 or (ii) ¢ — M° < M° < ¢ or (i)
Cgain = Cran and q—”éé <M°<q-— %, then Pgu(m) = n — Pygain(m) + 1. In these cases the

following useful property holds.

REMARK 4.6 For a length n code C, if Pean(C) = n — Paain(C) + 1 then sp,_;(C) = s;(C) for
0 <i < n. Inparticular, form € J(n,g), if (i) q is odd and 0 < M° < % orq—MT° <M°<q
or (i) q is even and 0 < M° < q, then 8;(Cn) = sp—i(Cp) for 0 < i < n. The same holds for
m € [%51 + g, 252 + 2g] if m* satisfies (i) or (ii).

Proor. The proof is similar to that of [6, Proposition 2.5], and in fact can be modified to hold
for branch complexity as in [6, Proposition 2.5]. We put P’ (C) = |Pgin(C) N [i + 1,n]| and

gain

Pf’;ﬁr(C) = |Pan(C) N [i + 1,n]|. Of course, with k = dim(C),

Pyt (C) = k= P, (C) and Pt (C) = k— Py (C)

gain gain

for any linear code C. The condition Pi(C) = n — Pgain(C) + 1, implies that also

P (C) = PEyPH(C) and By (C) = P (O).

gain gain

Thus, from (9), we have

si(C) = Pop"t(C) - PLL(C)
= (k= Pi" () — (k— Pl i (C)) = sn—i(C).

REMARK 4.7 If C € [Cr(D,14Q)] is ordered by O1 then as in the proof of Proposition 4.2
Peain(C) = [1,11] U {13} and Peu(C) = {15} U [17,27], so that s(C') = 12. But if C is ordered
by 02, Pgain(14) = [1,9] U [11,12] U {14} and Pnn(14) = {13,16} U [18,27], giving s(Ci4) =
W(C14) — 1 =V(Ci4) = 11. Thus O2 is strictly better than O1 for m=14.

If C € [Cr(D,15Q)] is ordered by O1, then then as in the proof of Proposition 4.2, Pgain(15) =
[1,11]U {13,16} and Pran(15) = {12,15} U[17,27], giving s(C15) = V(Cis) = W(Cis) — 2 = 11.
But if C is ordered by 02, we get Pgain(15) = [1,12] U {14} and Pen(15) = {13} U [18,27], giving
s(Cy5) = 12. Thus O1 is strictly better than O2 for m=15.

To summarise, for ¢ = 2,3 and m € J(n,g) C I(n,g)), s(Cm) = V(Cr(D,mQ)). Thus, in these

cases s$(Cp,) = s[Cr(D,mQ )] and the coordinate order for C,, is optimal with regard to s(Cl,).
In fact, except for ¢ = 3 and m € {11,18}, s(Cp,) = V(Cr,) < W(Cp,).
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Another characterisation of the points of gain and fall of C,,. We now characterise
Pyain(m) and Pgn(m) as runs ie. as sequences of non-contiguous intervals of integers. This is
useful since s(Cy,) must be attained at the end of a run of points of gain. Thus to determine
$(Cy), we only need to find the maximum of s;(C,) over those ¢ that end a run of points of gain,
i.e. over those ¢ such that ¢ € Pgain(m) and i + 1 ¢ Pgain(m).

We begin by combining Propositions 4.2 and 4.4 for a common development of the cases (i) 0 <
Me° < qu\g'ﬁ or q — MT' < M° < g and (ii) q*]‘g.*l < M° <gq-— % First we extend the
definitions of (gain and (ran as follows:

0 for 0 < M° < =M7=2
Cgain = q—2q2 for 7‘1_1% _'1 <M°<q-— —M;'H
g forg-2-<M°<gq
and .
0 for 0 < Mo < =2°=2
Gan =4 2 for ‘I_Mﬁ <M°<gq-— #
q forg— 5- < M° <q.
PROPOSITION 4.8 For m € J(n,9), Pgin(m) = Pgyy(m) U Piyiy(m) and Pran(m) = Py (m) U

P2, (m) where
Plan(m) ={l(g+ 1) +j+1:(j,1) € A7'0,m],0 < j < ¢,0 <1 < (gain — 1}

szain(m) = {Cgain(Q+ 1) +]q+ l + 1: (Jal) € A_I[O,m - Cgain(Q+ 1)]}
Pin(m)={n—1g+1)—j:(j,l) e A7'[0,m],0<j < q,0 <1< (ran — 1}

Pin(m) = {n — Gan(g +1) —jg—1: (j,1) € A0, m — Cran(g + 1)1}
PrOOF. From the examples above and Remark 4.7, we can assume that ¢ > 4. For % <
Me <q-— M;“, the result is just a restatement of Proposition 4.4. Also, for 0 < M° < %'*1,
the result states that Pgain(m) = Pryi,(m) = {jg+1+1: (j,1) € A7'[0,m]} and Pean(m) =
PZy(m) ={n—jq—1:(j,1) € A='[0,m]}, in agreement with Proposition 4.2.

So we are reduced to m such that q — MT. < M° < g, for which (gain = (ran = g- Rewriting

jlg+l'+1asqg+ 1)+ (' —g—1Dg+I'"+1and q(g+1)+jg+l+1as (j+qg+1)g+1+1, we
see that Pp,(m) = {j'q +1'+1: (§',1') € A7'[0,m],0 < j' < q}.

We claim that P2 (m) = {j'¢+1' +1: (§',1') € A=1[0,m],5' > q+ 1}. Firstly, if 0 < j < q and

gain

0 <1< ¢q—1then (j,I) € A=1[0,m] since ¢ > 4. Thus we need to show that
{7lg+1+1:0<j'<q,0<l<qg-1} ={l(g+ 1) +j+1:0<j<q0<1<g—-1}.
If k is in the left-hand side, k = j'q+1' + 1 for some 0 < j' < gand 0 <!’ < ¢g—1. Put

Gy={ W=qFa+1Lj=1) Ho<l<j
’ (-3 3" if j' <I'<q-1.

In either case, 0 < j <q,0<I<g—1landl(g+1)+j+1=j'q+1'"+1=k,so that k is in the
right-hand side. The reverse inclusion is similar.

The result now follows from Proposition 4.2 since for g—2° < M° < ¢, PL;(m) = n—Pli,(m)+1
and Py (m) =n — Pgy(m) + 1. o
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LEMMA 4.9 If again = M*+ M° — Cgain and Ogy = M® + M° — (eanp, then 0 < ogain <qg—2 and
-1 <0 < q-—2.

Proor. Straightforward using Lemma 3.7. O

THEOREM 4.10 For m € J(n,g),

1. Pgain(m) is the union of

(a) [1,m — 29 — Ogain]
(b)) {m —29 —Ogain +eq+ f+1:0<e<qg—2—0gin,0< f <qg—2—¢e} and
(C) {m_2g_0gain+eq+f+1:q_l_againSegq_laos.fsq_l_e}

and
2. Prn(m) is the union of

(a) [n —m + 29 + gan + 1,71]
() {In—m+29+0pn—eq—f:0<e<qg—2—01,0< f<qg—2—e} and
(c) {n—m+29+6n—eqg—f:qg—1—-0pn<e<qg-1,0<f<g—1-—¢}

PROOF. As in the proof of 4.8, we assume that ¢ > 4. We will use the fact that

q2—(Z2
2

m_2.g_again = Cgain(q+ 1)+ ( +M. —q+1 _Cgain> q.- (10)

For convenience we put Ry, (m) = [L,m — 29 — Ogain], Risin(m) = {m — 29 — Ogain +eq+ f +1:
0<e<qg—2—0gin,0< f<g—2—e}and Rgam( m) = {m—29—bgain+eq+f+1:q—1—0gain <
e<qg—1,0< f<q—1—e}

We show that Ry, (m) C Pgain(m) in two steps. First we note that Py, (m) = [1, Cgain(q + 1)],
since for ¢ > 4,0 < j <qgand 0 <1 < Cuain—1 < qg—1, A(j,l) < 2¢° -1 < nT_l < m.
Next we show that [(gain(q + 1) + 1,m — 29 — Ogain] C szam(m). Now from (10) we have for
Cgain(q + 1) +1<k<m-— 2g — egain;
2
k = Cgain(¢+1)+jg+1+1for some 0 < j < (%-}-M'—q—(gain) and 0<{<qg-—1.

Also,if 0 <j < ("2%"2 + M®*—q-— Cgain) and 0 <! < ¢ — 1 then, again using (10),

2 _
MG < (T3 24 M7 = 0= G ) 0 (0= Dla+ 1) = m = o — Gnla + 1)~ L

so that (j,1) € A7'0,m — Cgain(¢ + 1)]. Thus k € PZ;,(m). Next we show that RZ,;, (m) U
R3...(m) C P2, (m). Take k = m — 29 — Ogain + €q + f + 1. Then, from (10), k¥ = (gain(q +

gain gain
1) +jg+1+1 where j = (qg%‘” + M*® —q+1— (gain +e) and I = f. Also, again using (10),

A(j,l) m—2g— agam Cgaln(Q+1) (e+f)Q+f Thus k € P, a,m )lf (e+f)q+f<29+083m
If0<e<qg—2—-0ginand 0< f<qg— 2—ethen(e+fq<(gq 2)g=2g9g—qand f <qg—2,50
that RZ;,(m) C Poy,(m). f ¢ —1 —Ogain <e<g—1and 0 < f < g—1—e then (e+ f)g < 2g

and f S Hgama so that Rgam( ) C Pgaln( )
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Thus |J2_, R in(m) C Pgain(m) and it suffices to show that U2, R in(m)| = | Pgain|. We recall
that | Pyain| = dim(C),) and since 2g — 2 < m < n, dim(Cp,) =m — g + 1. Also

q—1 q—1
gam ‘ (m —2g — agam +Zq—1—€ Hgain+1):m_2g+1+ze:m_g+]—-
e=0 e=0
The proof for Pry(m) is similar and we omit the details. O

5 When the DLP bound is tight

Here we use Theorem 4.10 to determine s(C),). We know (from Corollary 3.10 and Proposition
3.12) that s[Cr(D,mQ)] > V(Cp,) for just under half of the m in the range I(n,g). We show
that for the remaining m in this range, s(C,,) = V(Cy,). As a consequence, we have determined
s[Cz(D,mQw)] and a coordinate order that achieves s[Cr(D, mQ)] for such m. For those m
with s(Cp,) > V(Cz(D,mQ o)) we compare the upper bound, s(Cp,), on s[Cz(D,ms)] with the
lower bound V*[(Cz(D,mQ)] given in Corollary 3.10. When ¢ is odd, these bounds meet for
over three-quarters of those m in I(n, g), but when ¢ is even, the bounds meet for only a little over
one half of those m in I(n, g).

Determining s(C),). As discussed in Section 4, it suffices to find the maximum of s;(Cy,) over
those i such that i € Pyain(m) and i+ 1 ¢ Pgain(m). From Theorem 4.10, there are only ¢ + 1 such
i. Thus concentrating on these i is significantly simpler. So we calculate s;(Cy,) for these ¢ + 1
values of 4 (in Proposition 5.5) by determining P> win (M) and Pgy (m) (in Lemmas 5.1 and 5.4).
We determine which of these i gives the largest s,(Cm) (in Lemma 5.6). This enables us to write
down s(C,,) (in Theorem 5.7).

Early on we introduce a variable 7 = n(m) which plays a crucial role in the proofs and statements
of many of the results and we end with a table of s(Cy,) for m € [251, 252 + g] when ¢ €
{2,3,4,5,7,8}.

We begin by determining s(C,y,) for m € J(n,g). We note first that 8gain = M® + M° — (gain and
Ot = M® 4+ M° — (gan where (gain and (g were defined just before Proposition 4.8.

As noted above, s;(Cp,) = s(Cy,) for some i such that i € Pyain(m) and i 4+ 1 ¢ Pyain(m). From
Theorem 4.10 such i are either (i) of the form m —2g — fgain +eq+ (¢ — 1 —e) for some —1 < e <
g — 2 — Bgain or (ii) of the form m — 2g + Ogain + g + (¢ — €) for some g — 1 — Ogain < e < g —1.
Thus putting

i= ] m=29—bgainteq+(¢—1—¢) for—1<e<g—2—bgin
| m—29 —Ogain+eqg+(g—e) for g—1—fgain <e<g-1

we have
8(Cr) = max{s;, (Cp): —1<e< qg—1}. (11)

From (9), s;.(Cm) = P57 (m) — Pi<7F(m), so we wish to determine P~ (m) and Pigi™ (m) for

gain gain gain

—1 < e < q— 1. The first of these is straightforward.

LEMMA 5.1 Form € J(n,g),

pie—(my = { ¥ (1) +(@=2-bgin —€) for ~1<e<g—2—byin
gain k— (qge) fOT‘ g—1-— again <e<g-1L
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PROOF. Since 29 —2 <m <n we have k =m — g+ 1. For —1 < e < g — 2 — fgain, Theorem 4.10

gives
qg—1

e
Pg’;;n( )—m—29—63a1n+2(q—1—1/) =k—g— (Ogain +1) + v.
v=0 v=q—1—e
The first case follows since 070 | v =g— (*737°) and (* ) ) = (,°) — (¢— 1 —e). In the
second case,

Pia—(m)=m—-g+1- (q_e) — (g =2~ Ogain — €) — (e = (¢ — 2 — Ogain))-

2
O
For Pfi;l’l_ (m) it is convenient to introduce some more notation. For fixed m we put
Cgam + Cfall
Cnorm - -
q
Thus Cyorm is 0, 1 or 2 depending on whether 0 < M° < 4= M _2 q— M L< Mo < q— —+1 or

q——<M°<q Also we put
n:2q_2M.+q2_Cnorm_3-

In Lemma 5.4 and Propositions 5.5 we will see a symmetry between the roles of e in Pg’;’n (m)
and 7 — e in Pf’:{f (m). We will see in Lemma 5.6 that s;, (Cp,) is maximised near Z and hence 7

2
appears naturally in our formula for s(Cl,).
LEMMA 5.2 ¢—1<n<2¢—3.

PROOF. First, it follows from Lemma 3.7 that

2¢g—(q—3)+1-2-3=g—-1 ifqgisodd
n>< 2¢—(¢g—4)—-2-3=¢q-1 if giseven and M° >0 » =¢q—1. (12)
2g—(¢q—2)—3=q—1 if ¢ is even and M° =0

Next, clearly n < 2¢q — 2, with equality only if M®* = (yorm = 0 and ¢ = 1. However, from Lemma
3.7, 1fM°—0a.ndqlsoddthenM°>q so that (horm > 1. O

Now, in order to use Theorem 4.10 to calculate Pfi;l’l_ (m), we need to write i, as n—m+2g+ Oy —
e'q — f for some, preferably non-negative, integer ¢’ and 0 < f < g — 1. We could then determine
an expression for Pgg; (m) in terms of €’ and f in a similar way to the proof of Lemma 5.1, except
that f would add complications. This would give us an expression for s;, (Cy,) in terms of e, €’
and f. To maximise this over —1 < e < ¢ — 1 we would need to relate ¢’ and f to e. Fortunately
these relationships are reasonably simple.

LEMMA 5.3 Let m € I(n,g) and —1 < e < q— 1. If we write
jle=n—m+2g9+0n —e'q—f for some0< f<q—1
then ' =1 — e and

f= e+l for—-1<e<q—2—0zin
e forg—1—0gin <e<g—1.

In particular € > 0. Alsoife<n—q+ 1+ 6gn theng—n+e— f<O0.
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PROOF. For —1 < e < q—2 —0gain, we have (e+€')g+ (¢g—1—e+ f) = n—2m+ 49+ Ogain + Oan-
Now 2m =n — g2q + 2M*(q + 1) + 2M°, 4g = 2¢* — 2q and Ggain + Ogan = 2M°* + 2M° — (normd,
giving (e+e)g+(¢—1—e+ f) = (2¢ —2M* + ¢2 — Cuorm )¢ Which implies that f = e + 1 (since
g—1—e >0 from Lemma 4.9) and e’ = n — e. Similarly, for ¢ — 1 — Ogain < e < g —1 we get
(et+e)g+(g—e+f)=(n+1)g giving f=eand e’ =n—e.

For the second part we have n > ¢ — 1 (from Lemma 5.2) and f > e (from the first part). Thus
g—n+e— f <1 with equality only if n = ¢ — 1 and f = e. We show that, for e < n —q+ 1+ g,
it is not possible that n = ¢ — 1 and f = e. Firstly f = e implies that e > ¢ — 1 — 0gain. Also
n=gqg—1and e <n—q+ 1+ 0y imply that e < 1. Thus ¢ — 1 — gain < e < Oann so that,
adding Ogain to both sides,

2M*® +2M° — qChorm > ¢ — 1. (13)

Now, as in (12), n = ¢ — 1 implies that either (i) uorm = 2 and M* < %52 or (ii) M* = 452 and
M?° = 0. Each of these clearly contradicts (13). i

LEMMA 5.4 For m € J(n,g),

pie—(my =4 ("3 for =1 < e <n—q+1+ 6
fall (q7;7+e) —(q—2—0f311—77+e) forn—q+2+4+6pn<e<qg—1.

PROOF. We write te =n —m + 29+ 6gan —€'q— f 0 < f < q¢—1, as in Lemma 5.3 and work from
Theorem 4.10.

First, if e’ > ¢, i.e. if e < 7 — g, then Pi5;”(m) = 0. We note also that, for e <n—gq, (*"7%°) =0.
Next, if ¢ =1 —60ran < €' <g—1,ie ifn—g+1<e<n—g+1+ 6, then

qg—1—¢'
- g—n+te g—n+te
Pigi (m) = Z 1/+max{0,q—e'—f}:( Z >+max{0,q—n+e—f}:( g ),
v=1

the last equality following from the second part of Lemma 5.3. Finally (since ¢’ > 0 by Lemma
53),f0<e <qg—2—0Ogn,ie ifg—q+2+60n <e<qg—1 (sincen >q—1), then

g—1—¢
P (m) = Z v—(q—2—0pn —e') +max{0,qg—e —1— f}
v=1
q—n+te
= ( 9 )—(q—2—9fa11—77+e)+max{0,q—n+e—f—1}
andg—n+e—f—1<0sincen >qg—1and f > e, by Lemma 5.3. O

We use the convention that, for b > 0, () = 0 if @ < b. In particular

a\ [ a fora>0 a\ [ 1 fora>0 a\ (a-1\ _fa-1
1/ 10 fora<0, \0o/ |10 fora<0, \b b ) \b-1)’
where b > 1. Lemmas 5.1 and 5.4, together with (9), give

PROPOSITION 5.5 Form € J(n,g),

. _ . (a—e€\ _ g—n+e g —2— Ogin — € q—2—0pn—n+e
e (155) = (7T (1 ) (172t

Now we determine for which e, —1 <e < g—1, s;, (Cp,) is maximised.
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LEMMA 5.6 For m € J(n,g), s;.(Cy,) is mazimised

1. ate= 2] if n <2q—6— 20¢n or
2. ate=[3] if n>2¢—5— 20pn.

PRrOOF. From Proposition 5.5, with

- - -2- in — -2- -
U(e):(qu)Jr(q 727+e)_(q lﬂga e)_(q 0?11 n+e>,

we have s;, (Cr,) = k — o(e) and maximising s;, (C),) is equivalent to minimising o(e) over —1 <
e<qg—1. Now,for0<e<qg-—1,

- - -1 _2_eain_ _3_9a —
a(e)—a(e—l):_<‘116>+<q nTe >+(q Og e)_(q f011 77+€>_

Thus, since 0 < (72 %="~¢) < 1, we have

e—q<o(e)—ole—1)<e—q+1 for0<e<n—g+1
2¢—n—1<o(e)—o(e—1)<2e—n forp—qg+2<e<n—q+2+ 6 (14)
Ze—n 2<o(e)—o(e—1)<2e—n—1 forn—q+3+0an <e<g-—1.

First, for 0 < e <5 — ¢+ 1, (14) implies that o(e) —o(e — 1) < n—2g+ 2 < 0, so that o(e) is
minimised over —1 <e<n—¢+1at e=n— ¢+ 1. Thus it is sufficient to determine where o(e)
is minimised over n — ¢+ 1 < e < ¢ — 1. We note that, since n < 2qg — 3 (Lemma 5.2),

a2 <[ <o

Now, for n —q+2 < e <1 —q+2+ b, (14) gives that if e < | 1] then o(e) —o(e—1) < 0 and if
e>|2]+1> Z’g—l then o(e) —a(e —1) > 0. Similarly, for n — g+ 3+ 61 < e < g—1, (14) implies
that if e < [ZEL] = [2] then o(e) < o(e — 1) and if e > [2] + 1 then o(e) > o(e — 1). Thus
if [3] <7 —¢q+ 2+ 6gan then o(e) is minimised over n —g+1<e<g—1late=|Z] and
2. if 2| > 1 — g+ 3 + Oran then o(e) is minimised overn —g+1<e<g—-1late=[7].
This leaves the case |2]| = [2] =1 =1 —q+ 2+ Oy i.e n = 2¢ — 5 — 20¢a. In this case, the

above analysis implies that o(e) is minimised at either [3] =7 — ¢+ 2+ 0fan = ¢ — 3 — bgant OF
[3] =1—¢q+3+6tan =q—2—6gan. Also we have

ea _eain
U(q_z_efall)_U(q_?’_afall)=_(9fall+2)+(0fall+2)+(fll 0 g )—1S07

so that o(e) is minimised at [Z].

Finally we note that if n > 2qg — 3 — 20¢,); then —np < —2¢g + 3 + 205,y so that adding 2n+ 1 to both
sides and dividing by 2 gives

+1
[Z-‘ _772 <n—q+2+6n

and we are in case 1 above. Also if ) = 2¢ — 4 — 20 we have [] =y — ¢ + 2 + gy and again
we are in case 1. Similarly for n < 2q — 6 — 26,1 we are in case 2 above. O

Proposition 5.5 and Lemma 5.6 give us
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THEOREM 5.7 For m € J(n,g),

k— (q_%%J) - (q—%l'%'l) + (29 — 4 — bfan — Ogain — 1)  for n < 2q — 6 — 20¢an
s(Cm) =14 k- (q—%gj) - (q—?%'l) +1 forn =2q —5— 20
k= (754) = (73F) forn > 2q — 4 — 2.

PrOOF. The result follows since

1. fornSZq—G—ZGfau,q—Z—Hgain—LgJ ZOandq—Z—Gfau—[g] >1,
2. forn =2¢—5— 2011, ¢ — 2 —Ogain — [4] <0and ¢ —2 —Opan — [ 2] =1 and
3. for n > 2q — 4 — 20gain, ¢ —2 — Ogain — [3| <0 and ¢ — 2 — O — [ 7] <O.

For example, n < 2¢ — 6 — 20¢,1 implies that |2 | < g — 3 — g so that

g — 2 — Ogain — [gJ > 14 Ot — Ogain = 1 + Cgain — Cean > 0.

The other equalities and inequalities follow similarly. O

Of course, Theorem 5.7 essentially gives the values of s(Cy,) for I(n, g) sincem € [t +g, 52 +2g]
implies m* € J(n, g) and s(Cp,) = s(Cp,1).

Table 3 gives s(Cp,) for ¢ € {2,3,4,5,7,8} and m € J(n,g). Comparing these values of s(C,)
with the values of V*(Cz(D,mQ)) given in Table 2 (where V*(Cz(D,mQ«)) is as defined in
Definition 3.11), we have s(Cy,) = V*(Cc(D,mQ«)) except for ¢ = 5 and m = 70, ¢ = 7 and
m € {182,189,190} and ¢ = 8 and m € {268,272,276,277,280,281}. In particular, s(C,,) achieves
the DLP bound for C,, for ¢ € {2,3,4,5,7,8} and m € I(n,g) when this is not excluded by
Corollary 3.10 i.e. whenever the entry for m or m= in Table 2 is not in boldface.

Table 3: s(C),) for ¢ € {2,3,4,5,7,8} and m € J(n,g)

q

2 m 4
s(Cn) | 3

3 13 14 15
s(Cp) | 11 11 11

32 33 34 35 36 37

26 27 27T 28 28 28

62 63 64 65 66 67 68 69 T0 71

53 53 54 54 55 56 56 56 57T 56

171 172 173 174 175 176 177 178 179 180

151 151 152 153 153 154 155 156 156 156

181 182 183 184 185 186 187 188 189 190 191

157 158 157 158 159 159 159 159 160 160 159

256 257 258 259 260 261 262 263 264 265 266 267 268 269
228 229 230 231 231 232 233 234 234 234 235 236 237 236
270 271 272 273 274 275 276 277 278 279 280 281 282 283
237 238 239 238 238 239 240 240 239 240 241 241 240 240
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Comparing s(Cy,) with V*(Cz(D,mQ«)) We start by reinterpreting V(Crz (D, mQ)) in terms
of 7 in Theorem 5.8. We use this to calculate (in Proposition 5.9) and hence to show (in Corollary
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5.10) that s(C),) = V(C (D, mQ)) whenever this is not excluded by Corollary 3.10 . This means
that s(Cy,) achieves the DLP bound for C, for just over half of those m in the range [251, 252 +2g].
We then compare s(C,) with V*(Crz (D, mQ)) in Table 4 and see that s(C,,) achieves the bound
VY{Cr(D,mQw)) for approximately a further quarter of those m in [251, HT_S + 2¢] if ¢ is odd but
only for about a further 1/q of those m in [25%, 222 + 2g] if g is even.

Previously we partitioned J(n, g) into three subintervals, according to whether 0 < M° < q_ﬂg._2,

% <SM°<q- M;H or ¢ — %~ < M° < g. Now we consider a finer partition and say that
m € J(n, g) satisfies (A), (B), (C), (D) or (E) according to whether (A) 0 < M° < 452 — M*, (B)
5= M* < MP < SIS (C) SIS S MO < g = MY~ 1, (D) g = MO S MO < g - MH o
(E) ¢— "5~ <M°<q.

We compare s(Cp,) with V*(Crz (D, mQ)), by reinterpreting Theorems 3.9 and 5.7 using (A)—(E).

THEOREM 5.8 If m € J(n,g), then

— ]) if m satisfies (A),(C),(E)
V(CelD,mQe)) = { ]) — (Bran + Ogain — g +2) otherwise.

PrOOF. Take u and v as in the statement of Theorem 2.1. It is straightforward to show, using
the characterisation of (u,v) given in the proof of Lemma 3.8, that if m satisfies (A), (C) or
(E) then n = u — 1 and v = g — Ogain — Oran — 2 and if m satisfies (B) or (D) then n = u and
v = 2¢ — bgain — Orann — 2. Thus Theorem 2.1 implies that, for m satisfying (A), (C) or (E),

V(Ce(D,mQos)) =k — (q - L;;r_lj> —~ (q - ;ﬂ;_l]> — min {q —~ V—;lw  Ogain + Orant + 2}

and for m satisfying (B) or (D),
V(C[,(D, ono)) =k — (q _QI_gJ) . <q _2(%') — min {q — [g-‘ ,Hgain + O +2 — q} .

First, for m satisfying (A), (C) or (E) we have (i) [Z] > ¢ — M* — 1 if uorm € {0,1} or (i)
[T2] > ¢ — M* — 2 if Coorm = 2. AlSO Ogain + Opan + 2 = 2M* + 2M° — (gain — Cean + 2 and (i) for
Cnorm = 0, 2M° _Cgain —Cran > 0, (11) for Cnorm = 1, 2M° _Cga.in — Crann > (q_M. _1) —q=-M*-1
or (iii) for Chorm = 2, 2M° — (gain — Cran1 > (2¢ — M*®) — 2q = M*. Thus, for m satisfying (A), (C)
or (E), V(Cr(D,mQ)) is equal to

() (T ] () ()

as required. Similarly, for m satisfying (B) or (D) (so that (norm < 1) it is easy to see that
— [g] > M* + 1 and (by considering the cases that (horm = 0 and (norm = 1 separately),
Ogain + Ot + 2 — ¢ < M* + 1. Thus, for m satisfying (B) or (D),

V(Ce(D,mQo)) =k — (q _QLgJ) - (q _2[%) — (Bgain + Opant + 2 — q)

as required. O

Before comparing s(C,,) with V*(Cz(D,mQ)), we compare it with V(Cr (D, mQ«)). To do this
we refine (A)—(E) as follows if m satisfies (C) then we say that m satisfies (C1), (C2) or (C3) if
(C1) =ML < o < 22 (C2) M° = St or (C3) § < M° <gq— M*—1.

24



PROPOSITION 5.9 Form € J(n,g),

(0 if m satisfies (A)

2M*® +2M° —q+2  if m satisfies (B)
q—2M° —q if m satisfies (C1)
$(Cm) = V(Ce(D,mQss)) =< 1 if m satisfies (C2)
0 if m satisfies (C3)

2M*® +2M° —2q+2 if m satisfies (D)

[ 2¢—2M°+1—¢ if m satisfies (E).

Proor. Using n = 2q — 20gn + 2M° — 2(ean + g2 — Cnorm — 3, it is straightforward to see that if
M° <qg—1and

1. if m satisfies (A), (B), (D) or (C3), then n > 2q — 20¢,n — 4,
2. if m satisfies (C1) or (E), then n < 2¢ — 6 — g or

3. if m satisfies (C2), then n = 2q — 5 — Ggan.

Also, if m = ¢ is odd, then n = 2q — 26¢,;) — 4. Likewise, if m = ¢ is even, then n = 2q — 26g,; — 5.
The result then follows from Theorems 5.7 and 5.8 noting that, for cases (B) and (D), fgain +
Oran — g+ 2 = 2M°® + 2M° — (Guorm + 1)g + 2 and for cases (C1) and (E) with M° < ¢ — 1,
2q —-4- 0fall - egain —-n= Cnormq —-2M° - q2 + (Cnorm - ]-) O

It follows from Proposition 5.9 that s(C),) achieves the DLP bound for C), as often as this is
possible. We state this as

COROLLARY 5.10 For m € I(n,g), s(Cp) = V(Cz(D,mQ)) if and only if A(m) = 0.

PROOF. Since form € [251+g, 23 4+2g], A(m) = A(m*), V(C(D,mQu)) = V(Cr(D,m Qo))
and s(Cp,) = s(C,,1), it suffices to show the result for m € J(n, g). It follows from the definition
of A(m) for such m that A(m) = 0 if and only if (i) m satisfies (A) or (ii) m satisfies (C3) or (iii)
g2 = 1 and M° = q. These are exactly the values of M° for which Proposition 5.9 implies that
S(Cm) = V(Cﬁ(Daono)) O

coordinate order. In particular, s[Cy] = § — %

EXAMPLE 5.11 If Cy, is self-dual, then V(Cp) =s(C) = § — %, where Cy, has the lexicographic
PRrOOF. We know that ¢ is a power of 2, k = % and m = § +g—1€ J(n,g) C I(n,g). From the

definitions, M*® = ‘1;—2 and M° = (yorm = 0. Also, V(Cp,) = § — % by Theorem 5.8. The result
now follows since A(m) = 0. m|

We remark that the main result of [13] is Example 5.11 with ¢ > 4. Corollary 5.10 and Proposition
3.12 imply that V(C),) is attained for just over half the m € I(n, g). Explicitly, the proportion of
these m for which the DLP bound is attained is % + zlq for ¢ odd and % + % for ¢ even. Of
course Corollary 5.10 implies that if m satisfies (A), (C3) or M° = ¢ is odd, then

5[Ce(D,mQw)] = V(Cc(D,mQ)) = 8(Crm)-

The bounds on s[Cr(D,mQ )] given by Theorem 3.9 and Proposition 5.9 for all m in J(n,g)
(and hence implicitly also for m € [251 + g, 252 + 2g]) are given in Table 4. The lower bound is
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Table 4: Table of Bounds on s[Cr (D, mQ)] for m € J(n,g)

m Lower Bound Upper Bound

satisfies | V(Cc(D,mQw))+ V(Ce(D,mQu))+ Range
(A) 0 0 0
B) |M*+M°+1-922 | 2M*+2M°+2—¢q | M®*+ M°+1— 222
(C1) e — M qg—q2—2M° o — Mo
(C2) 1 1 0
(C3) 0 0 0
(D) M®*+M°+1—q |2M®*+2M°+2—-2q| M*+M°+1—¢q
(E) g—M°+1—g¢q 2q —2M° +1— g9 q— M°

V*(Cr(D,mQs)) and the upper bound is s(C),). The entries for both bounds are the amount by
which they exceed V(Cr(D,mQ)). The range is the upper bound minus the lower bound.

As well as those m for which s(C,,) = V(Cr(D,mQ«)), Table 4 also implies that
$(Crm) = VY(Cr(D,mQ)) = s[Cr(D,mQ )] (15)
for those m € J(n, g) such that

%—M'§M°§% if ¢ is odd

M° =gq if ¢ is even. (16)

Hence (15) also holds for those m € [2-% + g, %52 + 2g] such that m* satisfies (16). In all these

cases except M*® > 2 and M° = % we have
S[CL(Daono)] = S(Cm) = V(CL(Daono)) +1

For M* > 2 and M° = % we have

s[Cr(D,mQs)] =5(Cm) = V(Cr(D,mQ)) + 2.
For ¢ odd, this gives ‘124—_1 values of m € I(n,g) for which s[Cz(D,mQ)] is determined but is

strictly greater than V(Cr (D, mQ)). Thus, for ¢ odd, the total proportion of those m in I(n, g)
for which we have determined s[C (D, mQs)] is

1, -1 3+
2¢  4¢*-q) 4q

For q even, it gives ¢ — 2 values of m € I(n,g) for which s[Cz(D,mQ)] is determined but is
strictly greater than V(Cr (D, mQ)). Thus, for g even, the total proportion of those m € I(n, g)
for which we have determined s[Cr (D, mQ«)] is

L
2

1 3g—5 q—2 1 5q—9

§+2(q2—q—1) PF-qg-1 2 20@—q-1)

Thus we have determined s[C(D,mQ )] for over three quarters of those m in I(n,g) when ¢ is
odd but only for something over one half of those m in I(n, g) when q is even. For ¢ odd, the first
m for which s[Cr (D, mQ )] is not determined is ¢ = 5 and m = 70, (when it is either 56 or 57),
and for ¢ even the first m for which s[Cr (D, mQ )] is not determined is ¢ = 8 and m = 268 (when
it is either 236 or 237).
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