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Abstract

We define alternant codes over a commutative ring R and a corresponding key equation.
‘We show that when the ring is a domain, e.g. the p-adic integers, the error-locator polynomial
is the unique monic minimal polynomial (equivalently, the unique shortest linear recurrence)
of the finite sequence of syndromes and that it can be obtained by Algorithm MR, of Norton.

When R is a local ring, we show that the syndrome sequence may have more than one
(monic) minimal polynomial, but that all the minimal polynomials coincide modulo the max-
imal ideal of R. We characterise the set of minimal polynomials when R is a Hensel ring. We
also apply these results to decoding alternant codes over a local ring R: it is enough to find
any monic minimal polynomial over R and to find its roots in the residue field. This gives a
decoding algorithm for alternant codes over a finite chain ring, which generalizes and improves

a method of Interlando et. al. for BCH and Reed-Solomon codes over a Galois ring.

1 Introduction

Block codes over finite rings were initially studied in [1, 15]. A modification of the Berlekamp-
Massey algorithm for Z /mZ was given in [14], where it was claimed [loc. cit., Introduction] (without
proof) to decode BCH codes defined over the integers modulo m. This relatively classical topic
was recently reinvigorated with the publication of the landmark paper [5]. An algorithm to decode

BCH and Reed-Solomon codes over a Galois ring has been given in [6]. See also [11], which gives
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an analogue of the Berlekamp-Massey algorithm to find a monic minimal polynomial (equivalently,
the unique shortest linear recurrence) for any finite sequence over a finite chain ring (e.g. a Galois
ring) and which has quadratic complexity. The decoding algorithms of [6, 14] require root-finding

in the ring itself.

We define alternant codes and a corresponding key equation over a commutative ring with identity,
R. Important examples of alternant codes over a ring are BCH and Reed-Solomon codes over a

Galois ring. We concentrate on decoding alternant codes over a domain or a local ring.

When R is a domain, the error-locator polynomial is the unique monic minimal polynomial of the
finite sequence of syndromes; see Theorem 4.4. We show that it can be easily obtained using Algo-
rithm MR of [10]. Once we have the error-locator polynomial, the error locations and magnitudes
can be computed in the same way as over a field. Hence we can decode any alternant code over a

domain, e.g. the p-adic integers.

When R is a Hensel ring, i.e. a local ring which admits Hensel lifting (e.g. a finite local ring),
we characterize the set of monic minimal polynomials of a finite syndrome sequence over R in
Theorem 4.8 (there may be more than one such polynomial). Our characterization is independent
of any particular algorithm, the number of roots of a minimal polynomial and the theory of Linear
Systems over a finite ring, ¢f. [6]. Theorem 4.5 shows that for any local ring, the minimal

polynomials of a finite sequence of syndromes coincide modulo the maximal ideal M of R.

We apply these results to give a new decoding algorithm (Algorithm 5.1) for alternant codes over
a local ring R, once a minimal polynomial p of the finite sequence of syndromes is known. It turns
out that for determining the error locations it is enough to find the roots of the image of any such
minimal polynomial in the residue field. This is also more efficient than finding roots in R, cf.
[6]. After determining the error locations, the error magnitudes can easily be computed. When
R is a finite chain ring i.e. a finite ring in which all the ideals are linearly ordered by inclusion
(or equivalently a finite local ring with principal maximal ideal), we invoke Algorithm MP of [11]
to find a monic minimal polynomial . Our method can be applied to any alternant code over a

finite chain ring, in particular to BCH and Reed-Solomon codes over a Galois ring.

It would be interesting to extend Algorithm MP of [11] to a local ring (which is not necessarily
finite and where M is not necessarily principal). We would then be able to decode alternant codes

over a local ring.

Some of the results of this paper were presented in [13].



2 Preliminaries

2.1 Subtractive subsets

Let R be a commutative ring with 1 # 0. Let N(R) denote the subset of R consisting of all
elements which are not zero-divisors. Then N(R) is a multiplicative subset of R which contains
the units of R. (If R is a domain which is not a field, then by definition, R has elements which are
neither zero-divisors nor units. For example, if R is the domain of p-adic integers then p € N(R),

but p is not a unit of R.)

The following result generalizes the trivial fact that if a € N(R) and az = 0, then z = 0:

LEMMA 2.1 If A is a square matriz over R and det(A) € N(R), then the homogeneous linear

system Ax = 0 has only the trivial solution.

PROOF. For a linear system Az = b over a ring, we have by Cramér’s rule (see [9, page 80]) that
det(A)x; = det(A4;) for i = 1,...,n, where A; is the matrix obtained from A by replacing the it"
column by b. In our case b =0, so det(A)z; =0 for 1 <4 < n. Finally, det(A) € N(R) so the only

solution is z; = 0,5 =1,...,n. O
The following notion is motivated by minimum distance considerations (Theorem 3.3).

DEFINITION 2.2 We say that S C N(R) is subtractive in N(R) if for all distincta, b€ S, a—b €
N(R).

We will abbreviate ‘subtractive in N(R)’ to ‘subtractive’. Clearly R is a domain iff all subsets of

R\ {0} are subtractive. If n > 2, then {1,1+ n} C Z,,.2 is not subtractive.

LEMMA 2.3 If f € R[X] has the distinct roots r; where 1 <i < n and {ry,...,r,} is subtractive,
then f is a multiple of [[;—, (X —r).

PROOF. Since X — ry is monic, the usual argument over a field shows that (X — r1)|f. Hence
f = (X —r1)g: for some g; € R[X]. Evaluating at r2, we obtain (r2 — r1)g1(r2) = 0. Since
ry — 11 € N(R), we have ¢g;(r2) =0, i.e. f = (X —r1)(X —rg)gs for some g» € R[X]. Continuing
in this way, we obtain f = g, [[;—,(X —r;) for some g,, € R[X]. O

Note that this result fails if we drop the condition that {ry,...,r,} be subtractive. For example, if
n>3, f=(X-12€Zy[X]andr; =1+ (i—1)nfori=1,...,n, then f(r;)=0fori=1,...,n,
but f is not a multiple of [T\, (X — (i — 1)n).



2.2 Local Rings

If R is a local ring, let M be the maximal ideal of R and K = R/M the residue field. For any
element y € R we will denote by 7 its image under the canonical projection from R onto K. We
extend this projection in the natural way to a projection from R[X] to K[X]. For a set S C R[X]
we define S = {3: s € S}. We can regard a field F as a local ring with M = (0) and F — K the
identity map.

Recall that the units of R are exactly the elements of R\ M and that all zero-divisors of R are
contained in M. The following result is known (see for example [8, Exercise 1.8]). We give a simple

proof for completeness.
PROPOSITION 2.4 Let R be a finite ring. Then every element of N(R) is a unit.

PROOF. Let A be the set of non-units of R, x € N(R) and assume that z is not a unit, i.e. z € A.
Then zR C A. Since |A| < |R| < o0, we must have rz = 7'z for distinct r, v’ € Rie zis a

zero-divisor, which is a contradiction. O

We give now a few simple properties of subtractive sets in local rings.
LEMMA 2.5 Let R be a local ring and r, ' € R. Then T # ' iff r — ' is a unit of R.

COROLLARY 2.6 Let R be a local ring and S a finite subset of R.
(i) If |S| = |S|, then S is subtractive.
(i3) If all elements of N(R) are units (in particular if R is finite), then S is subtractive iff |S| = |S|.

(ii) If S = {1,7,...,7" "'} and v is a unit in R such that ¥ has order at least n, then |S| = |S|

and S is subtractive.

Note that for rings with elements that are neither units nor zero-divisors, the property that |S| = ||
is strictly stronger than S being subtractive. For example in the ring of p-adic integers the set

{1,1 + p} is subtractive but 1=1+p = 1.

By a monic polynomial, we mean a non-zero polynomial with leading coefficient 1.

DEFINITION 2.7 (HENSEL RING) We say that a local ring R is a Hensel ring if R admits Hensel

lifting i.e.
if F € R[X] is monic, F =g-h and g, h € K[X] satisfy (g,h) =1,
then there are monic G, H € R[X] such that

F=G-Hand G=g, H=h.



From now on, we will say ‘lift’ for ‘Hensel lift’. The following theorem is an analogue of [8, Lemma

XV.1] for Hensel rings. The proof is similar.

THEOREM 2.8 If R is a Hensel ring, F € R[X] is monic and o € K is a simple root of F, then
there is a unique root B € R of F such that B = a. We call B the lift of a.

The next result is useful for constructing Galois extensions and cyclic codes. A similar version

appears in [15, Theorem 3]. We let ord () denote the order function on R and on K.

THEOREM 2.9 Let R be a Hensel ring and let n be a natural number not divisible by char(K).
Assume that there is an o € K such that o™ = 1. Then there is a unique 8 in R such that ™ =1
and B = a. Moreover ord () = ord (a).

PROOF. Since ord (a)|n and n is not divisible by char(K), X° (*) — 1 has only simple roots in
K. So by Theorem 2.8, there is a unique § such that 3” =1 and § = a.

From Bord (8) =1 = Bord ®) we infer that ord (B)|ord (B). Hence we can write X°rd (8) — 1 =
(x°rd ) _1)h for some h € R[X]. The root B of X°*4 () _1 can be lifted to a root v of X°rd %) _1
in R and ord (7)|ord (8). Now both  and # are roots of X°'4 (/) —1 and 7 = §. Since ord (8)|n,
all roots of X' () —1 are simple, so by Theorem 2.8, 8 = + and so ord (3)|ord (B)). We conclude

that ord (8) = ord (B). O

It is well-known that if R is complete in its M-adic topology, then R is a Hensel ring. For more

details on general Hensel rings, see [4].

A finite local ring is a Hensel ring (see [8, Theorem XII.4]). Finite local rings are completely
classified (see the structure theorems in [8, Chapter XVII]). Recall that a chain ring is a ring in
which all its ideals are linearly ordered by inclusion and that R is a finite chain ring iff it is a finite

local ring with M principal.

If p is a prime and a,! € N are strictly positive, the Galois ring R = GR(p*,1) is the quotient
ring Z,a[y]/(f), where f is a monic irreducible polynomial of degree I such that f is irreducible in
Zy[y]- Tt is a finite local ring with M = (p) and K = GF(p'). The integers modulo a power of a
prime and their Galois extensions are important special cases of finite chain rings and we refer the

reader to [8, Ch. XVI] for the general theory.

An important example of an infinite Hensel ring is the ring of p-adic integers, denoted Zp~. For
details on the construction and properties of p-adic numbers we refer the reader to [3, Ch. 8]. The
ring of p-adic integers is a unique factorization domain with M = (p). We can construct Galois
extensions of Z e in a way similar to the Galois extensions of Z . above (see [2]). Namely, we put
GR(p™,l) = Zp=[y]/(f), where f is a monic irreducible factor of degree I of X?'1_1. (An f

can be obtained by lifting the factorisation of X?' =1 — 1 from Zply]). Such a Galois ring is again a



Hensel ring with M = (p). The canonical projections from Z e to each Zpa, @ > 1 can be extended

in a natural way to projections from GR(p*,l) to GR(p%,1).

2.3 Sequences and Laurent series

We will use the following fact without further mention.
PROPOSITION 2.10 If f,g € R[X], f is monic and deg(g) < deg(f), then g/f € R[[X!]].

PrROOF. If d = deg(f) then f = X1+ fg 1 X 1+ ...+ foX~%) = X411 — h) say, and (1 —
™ =1+h+h+... € R[X7]]. Thus 1/f € X ?R[[X']], and if deg(g) < d, g/f €
Xdes@)~IR[X 1] C R[[X~1]]. .

As usual, R((X 1)) denotes the ring of Laurent series in X 1. Fori € Z and F € R((X 1)), F; is
the coefficient of X* in F and we extend the degree function on R[X] by §(F) = max{i : F; # 0} for
F # 0, with the convention that §(0) = —co. Thus F = 3,5 FiX' and §(FG) < 6(F) +6(G).
The ring of Laurent polynomials R[X 1, X] is a subring of R((X~1)).

As in [10, 11, 12], we prefer to study linear-recurring sequences by exploiting R[[X ~!]] as a stan-
dard R[X]-module (i.e. we let R[X] act on R[[X ~!]] by multiplication in R((X 1)) ), rather than
the classical approach which uses R[[X]] and reciprocals of polynomials. We are essentially regard-
ing a linear-recurring sequence as a torsion element in a standard R[X]-module. The standard
R[X]-module of Laurent polynomials R[X ', X] then underlies this algebraic approach to finite
sequences. (For an expository account when R is a domain, see [12].) This means that we avoid
(i) defining linear recurrences using reciprocals of polynomials (ii) an additional order function on
R[[X]] and (iii) ‘linear feedback shift-registers (LFSR’s)’.

We note that the theory and resulting Algorithm MP of [11] is both simpler and more general than
the LFSR approach of [14]. Also, the algorithm reduces to the monic version of Algorithm MP of
[10] when R is a field.

Thus we index R-sequences negatively: the letter s denotes the infinite sequence sg,s_1,5_2,...
of elements of R, so that the generating function of s is T'(s) = Y., ;X" € R[[X ]]. We will
also use the fact that R((X~1)) = R[[X~1]]® X R[X] and write f - G for the product of f € R[X]
and G € R[[X1]].

If f € R[X]is non-zero, lc(f) denotes the leading coefficient of f. We say that f € R[X] annihilates
sif (f-T'(s)); =0for all i < 0. For r € R\ {0}, we write Ann(s,r) for the set of polynomials f
with le(f) = r which annihilate s. Clearly f € Ann(s,r) iff lc(f) =r and f-T'(s) € XR[X]. Also
s is a linear recurring sequence iff Ann(s,r) # (0) for some r € R\ {0}.

We say that f € Ann(s,r)\ {0} is a minimal polynomial of s if f has minimal degree in Ann(s,r)\

{0}. We write Min(s,r) for the set of minimal polynomials of s with leading coefficient r. The



degree of a polynomial in Min(s,r) is called the r-complezity of s.
For any polynomial f we define

a(f)
B(f,5) = (f -T(s):X' € XRIX].
i=1
We now extend these definitions to cover the case of a finite sequence as in [11]. For m € Z, m <0,

we denote by s|m the finite sequence sp,s_1,5_3, ..., 8, of elements in R. The generating function
of simis T(s|m) =3, ;<08 X" € R[X™1].

DEFINITION 2.11 ([11]) Let r € R\ {0}. The r-annihilator set of s|m is

Ann(slm,r) = {f € R[X] : lc(f) =, (f-T(s|m)); =0 for m + deg(f) <j < 0}.

We say that f is an annihilating polynomial of s|m if f € Ann(s|m,r) for some r € R\ {0}.
Note that any polynomial of degree at least 1 — m and with leading coefficient r is vacuously in
Ann(s|m,r). Also, we have Ann(s,r) C Ann(s|m — 1,r) C Ann(s|m,r).

We write Min(s|m,r) for the polynomials in Ann(s|m,r) \ {0} of minimal degree, and say that f
is a minimal polynomial of sim if f € Min(s|m,r) for some r € R\ {0}.

Note that any s|/m has a monic annihilating polynomial e.g. X' ~™ and hence has a (monic) minimal
polynomial. The unique degree of the polynomials in Min(s|m, r) is called the r-complezity of s|m.

In the case of a finite sequence, we define

o(f)
B(f,sm) =Y (f -T(slm))i X" € XR[X].

i=1
It follows directly from the definition that f is an annihilating polynomial of s|m iff fT'(s|m) =
B(f,s|/m) + F for some F € R[X '] with §(F) < m + §(f).

EXAMPLE 2.12 As an ezercise for the reader, we observe that if m = —1, so is not a unit in R

and s_1 is not divisible by sq, then soX — s—1 € Ann(s|m, sg), but the 1-complezity of s|m is 2.

We conclude by collecting here a few technical results needed below. The following lemma is

straightforward.

LEMMA 2.13
(i) If f is an annihilating polynomial of s, then fT(s) = B(s| — 6(f)).
(i6) For any m < —8(f) we have B(f, slm) = (1, 5| — 8(1))-

The next lemma is [10, Corollary 3.25] which holds, with the same proof, for arbitrary R. We

include the proof for the convenience of the reader.



LEMMA 2.14 Let f, g be annihilating polynomials of sim. If 6(f)+3(g) < 1—m then fB(g,slm) =
9B(f,slm).

PrOOF. We have fT'(s|m) = B(f,s|m) + F for some F with §(F) <m+ §(f) — 1, and gT'(s|m) =
B(g,slm) + G with 6(G) < m+d(g) — 1. Then fg'(s|m) = gB(f,s|m) + gF = fB(g,s|m) + fG,
hence fB(g,s|m) — gB(f,s|m) = gF — fG. For the degrees we have &(ffS(g, s|m) — gB(f,s|m)) =
d(gF — fG) < m+4(f) +6(9) —1 < 0. But fB3(g,s|m) — gB(f,s/m) € XR[X], so we can only
have fB(g,slm) — gB(f,slm) = 0. =

3 Codes and decoding

3.1 Alternant codes

DEFINITION 3.1 (ALTERNANT CODES) Letd > 2, N = N(R) and T be a subring of R. Suppose
that a = (a1 ...,a,) and y = (y1,-..,yn) are such that {ay ...,a,} is subtractive and y; € N for
1<i<n. If

Y1 Y2 s Yn
Y101 Y20l c-- YnQp
H=| ya? Y203 e yYpa? (1)
| yia{? pad L ypad=? |

then the alternant code of length n and alphabet T defined by H is the T-module
Ala,y,d) ={ceT™: Hc"™ =0}.

As usual, H is called the parity check matriz.

EXAMPLE 3.2 When R = GF(q*) and T = GF(q), we obtain the usual notion of an alternant

code, see e.g. [7, Chapter 12]. Indeed, the natural projection induces a T-homomorphism of codes
A(a7 y7 d) ‘_) A(EJ y’ d)7

where @,y have the obvious meaning.
THEOREM 3.3 The minimum Hamming distance of A(a,y,d) is at least d.

ProOF. We use the classical argument. Suppose there were a codeword of weight d — 1 or less,
having non-zero entries in positions iy,...,iq_1 say. Let A consist of columns 4y,...,94-1 of H.
Then the homogeneous system Az = 0 would have a non-trivial solution. We will show this system

can only have the trivial solution.



The matrix A is vanderMonde with determinant

det(A) =YirYis - - - Yig_1 H (a’ik - az'j)
1<j<k<d—1

and det(A) € N since all y;; € N and {o1,...,0,} is subtractive. The result now follows from

Lemma 2.1. O

BCH and Reed-Solomon codes are particular cases of alternant codes and we can also specialize R

to Galois and p-adic rings:

ExaMPLE 3.4 (BCH CODES OVER A GALOIS RING) To define a BCH code of length n over a
Galois ring T = GR(p%,11), we take an extension ring R = GR(p%,1) such that l;|l and n|p' —
1. Then there exists v a primitive n'™ root of unity in R (see [8, Theorem XVI.9]). Actually
Theorem 2.9 implies that vy is the lift of a primitive n** root of unity in GF(p®), so that the order
of 7 is n.

In the definition of alternant codes we put y; = (7°)i! for some b > 0, and a; = = for
1< i< n. Since7 has order n, @y,...,%, are distinct by Corollary 2.6. Hence {a1,...,an} is
subtractive. We then obtain the classical form of the parity check matriz for a BCH code of length

n and designed distance d:

1 A (v*)? s ()
1 b+1 (,Yb+1)2 (,Yb-i-l)nfl

H= . . (2)
1 pbtd2 (yhhd-2)2 (yd—2)n—1

The code is cyclic and the generator polynomial is the product of the distinct minimal polynomials
of v°, L, ... 4**t9=2 over T[X]. This construction coincides with that of [15].

EXAMPLE 3.5 (REED-SOLOMON CODES OVER A GALOIS RING) These codes are defined like BCH
codes, except that now the alphabet T of the code is R, which is taken to contain the nt" roots of
unity. In [1], Reed-Solomon codes over R = Zpa of length n|p—1 are defined in a slightly different
way, namely v € Zpa is taken to be an element of Z, of order n in Z,. The parity check matriz
is as in (2). The order of v in Zpa is not necessarily n, but a multiple of n, and therefore these
codes are not necessarily cyclic. (See e.g. [6, Example 1, p. 1018].) The order of 7 is still n, so
Qy, ..., 0, are distinct and {ay,...,a,} = {7°, ...,y 1} is subtractive by Corollary 2.6. Hence
these Reed-Solomon codes are alternant codes as well. Moreover, they are a particular case of the

generalised Reed-Solomon codes we will introduce below in Example 3.7.

ExaMPLE 3.6 (BCH CODES OVER THE p-ADIC INTEGERS) Cyclic codes over the domain of p-

adic integers were introduced in [2]. To construct a BCH code of length n and designed distance



d over T = Zpeo, we consider a Galois ring R = GR(Zp,l) where n|p' — 1. The n simple roots
of X™ — 1 over GF(p") lift to n simple roots of X™ — 1 in GR(Zpe=,l). By Theorem 2.9, the lift
of a primitive root will be primitive. We take v a primitive n'* root of unity in GR(Zpw,l) and
construct the parity check matriz of the code as in (2). Again, 5 has order n, so by Corollary
2.6, ay,...,an are distinct and {aq,...,an} is subtractive. The code is cyclic and the generator
polynomial is the product of the distinct minimal polynomials of v, "+t ... 4*+4=2 oyer T[X].

Note that by projecting this code to Zp. we obtain a BCH code as in Example 3.4.

EXAMPLE 3.7 (GENERALISED REED-SOLOMON CODES OVER FINITE RINGS) We call A(a,y,d) a
generalised Reed-Solomon code when T' = R and R is a finite ring. Asin [7, Ch. 10,88.], we denote
this code by GRSk (a,y), with k =n—d+ 1. We will show that GRSy(a,y) is a free R-module of

rank k, its minimum distance is d and the dual code is GRS, _r(a,y'), for suitably chosen y'.

By elementary row operations we get an equivalent form of H having the first d — 1 columns in

triangular form:

[ N Y2 Ys ces Yk v Yn |
0 y2(a2 —a1) y3(as — aq) yr(ar —ay) Yn(an —ay)
0 0 Y3 Hle(ag —;) .- Yk H?Zl (ag — ;) ... yn Hle (an — ;)

| 0 0 0 v kI (an —ai) ooy 1 (i — ) |

So far we did not need any divisions. We have only subtracted rows of H multiplied by suitable
constants from other rows of H. Since R is finite, the set N(R) coincides with the units of R by
Proposition 2.4. Hence all y; and oll differences a; — o are units. We can therefore apply further
row operations, including division by units, and bring H to a standard form H = (Iz_1|A) for
some matriz A. As usual, a generator matriz can be obtained as G = (—A™|I},). The rows of the
generator matrix are linearly independent and hence are a basis for the module. We know that the
minimum distance is at least d by Theorem 3.3. Any row of G is a codeword of weight d, and hence
the minimum distance of the code is exactly d.

The proof that the dual of GRSk (a,y) is GRS,—(a,y") (for a suitably chosen y') is similar to the
one for fields ([7, Theorem 4, Ch. 8]). For the two codes to be orthogonal, it suffices that y' satisfies
the system of n equations in n—1 unknowns y ;- y,-yz’-ag =0,7=0,...,n—1. The determinant of
any n — 1 columns of the matrix of the system is vanderMonde and is a unit. Putting for example

yYn = 1 and solving the system by Cramér’s rule, we get a solution y with all the y;’s units.

3.2 A key equation

For decoding alternant codes, we follow the main steps for their algebraic decoding over finite
fields. (See [12, Section 8] for an expository account of the minimal realization approach when R
is a finite field.)
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Suppose that a codeword ¢ € A(a,y,d) is received as r = ¢ + e. We have to find the error vector

e given the syndrome vector Hrt* = He'r,

We will henceforth assume that d = 2¢ + 1 > 3 and that the number of errors is w = wtm(e) < t.
Let 41,42, ..,14, be the positions of the errors. As usual, oy, ,...,a;, are called the error locations

w

and e;,,...,e;, the error magnitudes. We will treat the syndrome vector as a finite sequence.

DEFINITION 3.8 (SYNDROME SEQUENCE) The syndrome sequence of the error e is the finite se-

quence slm, with m =1 — 2t, defined by:
si= ) exyka, = ey oy
k=1 j=1

DEFINITION 3.9 (ERROR POLYNOMIALS) We define the error-locator and error-evaluator polyno-

mials by
w

Oe = H(X —ay;) and w, = ieijyi]. H (X —a,).
Jj=1 k

=1

If we know the coefficients of o, and w, then we can find the error locations by finding the roots
of o, in R. For from the definition of the error-locator and error-evaluator polynomials, we obtain
a linear equation
ei;oc (0, )yi; = we(u;)

for each unknown e;;. Let us put a; = o,(a;)y; and b; = we(ay;), so that the equation is
aje;; = bj. We know that a solution of this equation does exist since we assumed the number of
errors is at most t), so that a;|b;. Moreover, we can easily check that a; € N(R), and therefore the
equation cannot have more than one solution. This means that the quotient b;/a; is well-defined

and that we can compute the error magnitudes as:
ei; = we(ai;)/(0p(ai;)yiy)- (3)

REMARK 3.10 In the classical literature o* and X°7<~1=%%<w* are called the error-locator and the

error-evaluator polynomial respectively, where f* is the reciprocal X 4¢8(5) f(X=1) of f € R[X]\{0}.
For decoding, we first set up an equation in R[[X ~!]]:

DEFINITION 3.11 (KEY EQUATION) Let G = 3, ;.o GiX' € R[X~']. We say that (f,h) €
R[X] x XR[X] is a solution of the key equation defined by G and X™~1 if f is monic, §(h) <
0(f) < —m and

G =h/f mod X™ 1. (4

~—

A solution (f,h) is called minimal if 5(f) is minimal.
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REMARK 3.12 Egquation (4) is an analogue of the usual key equation in R[[X]], see e.g. [7, Eqn.
(68), p. 366]. A simpler, equivalent criterion for (f,h) to be a solution of Equation (4) is that
5(fG — h) < m+ 8(f) in R(XY)) (i.e. that (f,h) ‘realize’ Go,...,G., in the terminology of
[10]), but we have given an equation in R[[X ]| to reflect the usual ome.

LEMMA 3.13 Suppose given an alternant code with parity check matriz H and designed distance
2t + 1. If w = wtg(e) < t and s|1 — 2t is the syndrome sequence, then (0., Xw) solves the key
equation defined by T'(s|1 — 2t) and X ~2¢.

The proof that (o, Xw,) solves our key equation (defined by T'(s|1 — 2¢) and X ~2!) is similar
to [12, Proposition 8.3] and is omitted. However, the minimality of the solution (o., Xw,) is not
obvious and will be proved in Section 4. We will also show that, unlike in the case of a field, the
key equation does not necessarily have a unique solution. Nevertheless, it will turn out that any

minimal solution can be used for determining the error polynomials and hence the error.

The connection between the key equation and minimal polynomials of s|m becomes clear from the

following lemma:

LEMMA 3.14 The pair (f,h) € R[X] x XR[X] is a minimal solution of the key equation defined
by T(s|m) and X™~! & §(f) < —m, f € Min(s|m,1) and h = B(f, s|m).

PROOF. =: This is an easy consequence of the definitions. <=: This is similar to the proof of [10,

Proposition 2.6] and is omitted. O

Hence we can concentrate on finding minimal polynomials.

4 Characterization of monic minimal polynomials

The purpose of this section is to characterize the (monic) minimal polynomials of the finite (and
infinite) sequences which can be written as finite sums of geometric sequences. In particular, the

syndrome sequence of an alternant code is of this type.

Let w>1and ay,...,0y, Y1,---,%e non-zero elements of R, with 7, ...,7, all distinct. For the

moment we will not impose any other restrictions on the «y;’s. We define the infinite sequence s by:

8; = Zaﬂ;i for all # < 0.

j=1

Throughout this section, we set o = H;-U:1(X — v;). The following is a more general form of

Lemma 3.13 and its proof is similar.
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LEMMA 4.1 The polynomial o satisfies
(i) o € Ann(s,1);

(ii) oT(s) = Xw where w = ia]- H (X =)

Jj=1 k=1,...,w

k#j
(iii) o' (v;) = H (vj =) forj=1,...,w;
k=l;¥.j,w

() w(v;) = ajo’(y;) forj=1,...,w;
(v) B(o,s| —w) = Xw.

THEOREM 4.2 If z; € R are such that zja; =0 for j =1,...,w, then f = H;f’zl(X —; —2j) €
Ann(s,1).

PRrOOF. Let u be the sequence given by u; = Z;":l aj(vj + z;) ¢ for i < 0. By Lemma 4.1,
f € Ann(u,1). If zja; = 0 for 1 < j < w, then s; = E;.”Zl aﬂ;i = u; for i < 0 and so
f € Ann(u,1) = Ann(s, 1). O

Note that with the assumptions so far, ¢ is not necessarily a minimal polynomial for s. For example,
inR=Zp,letw=2a=a=1,7=1+p, 2=1+3p. Then s; =(1+p)  + (1 +3p) ‘=
2—4ip=2(1+2p)~tand 0 = (X — 1 — p)(X — 1 — 3p) annihilates s, but so does X — 1 — 2p.

We now focus on finite sequences. Let m = 1 — 2w, so that s|m consists of the first 2w terms of s.

LEMMA 4.3 Let f be an annihilating polynomial of s|m with §(f) < w. Then f(v;)a;v;o'(v;) =0
fori=1,..  w.

PRrOOF. By Lemma 2.14 we have ff3(o,s|m) = aB(f,s|m) since §(f) + §(c) < 2w =1—m. By
Lemmas 2.13 and 4.1, 8(o, s|m) = (0, 8| — w) = Xw. Hence fXw = of(f,s|m). Evaluating this
identity at v; we get f(v;)vjw(v;) = 0 since v; is a root of 0. Using Lemma 4.1(iv) we get the

identity we are looking for. O

For the remainder of this section, we will assume that {v1,...,%} C N(R) is subtractive.

THEOREM 4.4 The following assertions are equivalent:
(i) for oll v € R\ {0}, Min(s|m,r) = {ro};

(i) Min(s|m, 1) = {o};

(i) {a1,...,ay} € N(R).

ProOF. (i) = (ii) This is clear.

(if) = (iii) Suppose without loss of generality that a; is a zero-divisor, with z; # 0 such that
a1z1 = 0. By Theorem 4.2, f = (X —v1 —21) [[;_5(X = ;) = 0 =21 [[;_o(X — ;) € Ann(s|m, 1).

The polynomial f is monic, of the same degree as ¢ but distinct from o, so that (ii) fails.
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(iii) = (i) Let f be a minimal polynomial of s|m. Then &(f) < d6(¢) = w. By Lemma 4.3,
f(yvj)ajvio’(v5) = 0 for 1 < j <w. All of the factors in this expression except f(7;) are in N(R),
so the relation simplifies to f(y;) = 0. Since {71,...,7w} is subtractive by Lemma 2.3, there is
some g € R[X] such that f = g]_[;”:l(X — ;) = go, and g must be a constant since deg(f) < w.

O

In particular, the assertions of Theorem 4.4 always hold when R is a domain. We note that
Theorem 4.4 does not apply to the sequence of Example 2.12 since it is not a sum of geometric

sequences.

THEOREM 4.5 Let R be a local ring, let 7; be distinct for 1 < j < w and let p € Min(s|m, 1).
Then

w
_=E=HX ny

ProOOF. From Lemma 4.3 we know that pu(v,)a;v; H (v — ) = 0. Since {v,...,Vw} is

k=1,...,w

subtractive, all ;’s and all differences v; — -y, are in N(R). Hence the previous relation simplifies

to a;u(v;) = 0. Since a; # 0, this implies u(v;) is a zero-divisor and so f#(7;) = u(y;) = 0 for
j=1,...,w. Since the 7; are distinct, 7|fi. Now p is monic, of minimal degree and §(zr) = §(p) <
d(c) =w, so g =7. O

COROLLARY 4.6 If either (i) R is a domain or (ii) R is a local ring and the 7; are distinct for
1< j <w, then

(i) the 1-complezity of s and of s|m is w;
(#) o € Min(s,1) C Min(s|m, 1).

The next Corollary follows from Theorem 4.2 and Corollary 4.6(i).

COROLLARY 4.7 If R is a local ring, 7; are distinct for 1 < j < w, and z; € R are such that
a;z; = 0 for 1 <j <w then [T}, (X —v; — z;) € Min(s, 1).

The following theorem characterizes Min(s|m, 1) and Min(s,1) when R is a Hensel ring, and in

particular when R is a finite local ring.

THEOREM 4.8 If R is a Hensel ring and the 7} are distinct for 1 < j < w, then

w
Min(s|m, 1) = HX v — 25) : zja; =0 for some z; € R,j =1,.
J:
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ProOOF. The sufficiency of the condition is Corollary 4.7. We now prove that the condition is
necessary. Let p € Min(s|m,1). From Theorem 4.5 we know 11 = H;”:l(X —%;)- The factors
of 1 are pairwise coprime because the 7; are distinct. We can therefore lift 7z and factor u as

[T;-; (X —v; — 2;) with z; € M. We still have to prove that z;a; = 0. From Lemma 4.3 we know
that u(y;)a;y; [ (v —w) = 0. Evaluating u(y;), we get:

k=1,...,w

—Zja;7;j H (vj =) H (v—m—2)=0

Since all 7; are distinct, all the differences y; — vy are units by Lemma 2.5. Also all v; — v — 2

are units and all -y; are in N(R), so that the above relation simplifies to z;a; = 0. O

COROLLARY 4.9 If either (i) R is a domain or (ii) R is a Hensel ring and the 7y; are distinct for
1< j <w, then Min(s|m, 1) = Min(s, 1).

This result says intuitively that to find a monic minimal polynomial for the infinite sequence
8= 5 aﬂj_i it suffices to know the first 2w consecutive terms of the sequence and to compute
its monic minimal polynomial. This result is well-known over fields, but its extension to rings is

not trivial.

REMARKS 4.10

(i) A result similar to Theorem 4.5 is proven for Galois rings in [6, Proposition 8 and the discussion
following it]. Our result is more general since it is valid for arbitrary local rings, does not rely on
the fact that the monic minimal polynomial has at least as many roots as the number of errors and
that it is obtained by a particular algorithm. Nor do we use the theory of Linear Systems over a
finite ring, [9].

(i) Theorem 4.4 gives a different proof of the necessary and sufficient condition for the unicity
of o given in [6, Appendiz]. Our result holds in a more general context, as noted in the previous
remark.

(#i) Lemma 4.3 can also be proved by arguments from Linear Algebra, using [9, Theorem I1.29].

5 Decoding algorithms

We continue our discussion on decoding alternant codes begun in Section 3, applying the new

results proven in Section 4. We will consider two types of rings: domains and local rings.

The sequence of syndromes is of the same form as the sequence considered in Section 4 (putting
v; = a;; and a; = y;,e;; for 1 < j < w) and we know that the error locator polynomial is a monic

minimal polynomial for the syndrome sequence by Lemma 3.13, Lemma 3.14 and Corollary 4.6.
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First we consider the case when R is a domain. For {aq,...,ay} to be subtractive, it is enough that
the a;’s are distinct, since there are no non-trivial zero-divisors in R. We know from Theorem 4.4
that the error locator polynomial is the only monic minimal polynomial of the syndrome sequence.
Algorithm MR of [10] computes a minimal polynomial and the corresponding B(f, s|m) for any
sequence s|m over a domain. But again, from Theorem 4.4, we know that for a syndrome sequence,
such a polynomial f must be the error locator multiplied by some non-zero constant. Hence, after
applying Algorithm MR to the sequence of syndromes, we simply divide the output polynomials f
and B(f, s|m) by the leading coefficient of f, obtaining o, and Xw,. The algorithm has quadratic
complexity. We then proceed as in the classical (field) case: the error locations are the roots
of o, (which are of the form a;,,...,q;,), and then we obtain the error magnitudes as e;; =
we(ai;)/ (o¢(ai;)yi;)-

Next we consider the case of an alternant code A(w,y,d) over a local ring R. We make the ad-
ditional assumption that @y, ...,a, are distinct. The definition of alternant codes only requires
{a1,...,a,} to be subtractive, which is in general a weaker condition than @, ..., @, being dis-
tinct. For finite rings, however, the two conditions are equivalent (see Corollary 2.6). Note that
all the codes in Examples 3.4, 3.5, 3.6 as well as the codes in Example 3.7 for R local satisfy the

property that aq, ..., a, are distinct.

We will also assume that for the ring R there is an algorithm of quadratic complexity (O(m?)) which
computes a monic minimal polynomial for any sequence s|m of syndromes. We know that such
algorithms exist for any sequence when R is a field (the well-known Berlekamp-Massey algorithm),
R = Zpe (see [14]), and more generally, any finite chain ring, in particular Galois rings (see [11,
Algorithm MP]). We do not know whether such an algorithm exists for other local rings, for

example for Hensel rings which are either infinite or have a non-principal maximal ideal.

We remark that the algorithm of [6] is valid for a Galois ring, but may involve searching, so we do

not know if it has quadratic complexity. See [6, Conclusions, p. 1019].

From Corollary 4.7 we know that when some of the error magnitudes are zero-divisors the monic
minimal polynomial is not unique. None of the algorithms above is guaranteed to find the error
locator polynomial, but from Theorem 4.5, any monic minimal polynomial yu satisfies 1 = 7, =
H;.”:l (X —@;;). Hence we have an even simpler method of finding the error locations. Namely,
once we have some monic minimal polynomial y, all we have to do is find the roots of 1 in K.
From Theorem 4.5, they will be of the form @;,,...,@;,, and i1, ...,%, give the positions of the
errors. We can then compute o, as o, = ]_[;.‘le(X —a;;). To find the roots of i over the field K we

can either use factorization algorithms for our particular K, or test the value of &t at @y, ..., @,.

We summarise our proposed decoding algorithm for A(a,y,d) with parity check matrix H and

designed distance d over a local ring R.

ALGORITHM 5.1 (DECODING A(ax,y,d) OVER A LOCAL RING)
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Input: r = (r1,...,7n), containing at most t = (d — 1)/2 errors, where t > 1.

Output: ¢ = (c1,...,¢p), the nearest codeword.

0. Let m =1 —2t.

1. Compute the syndrome sequence s; = (Hr*")1_;, m <i <0. If syjm = (0,...,0), return r.
2. Compute a monic minimal polynomial p for the sequence s|m.

3. Compute the roots @;,,...,a;, of @ in K. Then the errors occurred at positions iy, ..., i,.
4. Compute g, = [[;_; (X — ay;).

5. Compute ¢!, and we = B(o,,s/m)/X.

6. Sete=(0,...,0) and for j =1,...,w, put e;; = we(ay;)/ (0L (a;)ys;). Returnr —e.

An example of our decoding procedure follows:

EXAMPLE 5.2 (cf. [6, Example 2, p. 1019]) Let R = GR(9,2) = Zo[y]/(y*> +y+2) and vy =2 —y.
The successive powers of v are 2+ 4y, 3+y, =1, y+7, dy+7, 8y+6 and 1 i.e. v is a primitive
8" root of 1. Let C be the BCH code of length 8, alphabet Zg and designed distance 5 defined using
v as in Example 3.4.

For the error e = (0,3,0,0,0,0,6,0), we have the syndrome sequence 3,3y,3,3. Algorithm MP
computes the monic minimal polynomial p = X? — yX — vy, [11, Example 7.12]. Thus @ =
X2 —yX —y = u, which has roots ¥ and ¥° in K = GF(3)[y]/(y®> +y +2) = GF(9).

We compute o, = (X —v)(X —~%) = X2 4+ 5y X + 8y + 6 and o, = 2X + 5y. Multiplication gives

we = 3X. The error magnitudes are:
ez =3v/(v(2y+5y)) =3/(1+3(y+ 1)) =31 -3(y+1)) =3

and

er =37%/(v%(2v% + 5y)) = =3/(1 = 3(2y + 2)) = —=3(1 + 3(2y + 2)) = -3 = 6.

Thus our algorithm returns the 0 codeword, as expected.

REMARK 5.3 Another method of computing the error locations once we have a monic minimal
polynomial of the syndromes is proposed in [6] for BCH and Reed-Solomon codes over a Galois
ring. It involves computing the roots of a monic minimal polynomial in R and then determining

which powers of v differ from these roots by a zero-divisor (cf. Theorem 4.8).

Our computation of the roots of i in K is more efficient than the computation of roots in R. If we
do it by searching, our approach requires the values of i at n points (viz. oa,...,an), whereas the
approach of [6] requires the values of a monic minimal polynomial at np'@=1) points in the worst
case (all the lifts of aa,...,ay). Finding the roots of a polynomial f € R[X] by lifting requires the
computation of the roots of f in K in the first place.
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The algorithms we described can decode, in particular, the examples of alternant codes we presented
in Section 3. Namely, for decoding BCH codes over the p-adic integers (Example 3.6) we use the
algorithm for domains described at the beginning of this section. For decoding BCH and Reed-
Solomon codes over a Galois ring (Examples 3.4 and 3.5) and for generalised Reed-Solomon codes

over a finite chain ring (Example 3.7), we use Algorithm 5.1.
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Note added in proof. Related work appears in ’Construction and decoding of BCH codes over finite
commutative rings’ by A. A. de Andrade and R. Palazzo, Jr., Linear Algebra and its Applications,
286:69-85, 1999.
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