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Abstract
Codes Ci,...,Cn of length n over F; and an M x N matrix A over F, define a matriz-
product code C = [C1 --- Cn]- A consisting of all matrix products [c1 --- cnm] - A. This

generalizes the (u|lu + v)-, (v + v + w|2u + v|u), (a + z|b + z|a + b + z)-, (u + v|u — v)- etc.
constructions.

We study matrix-product codes using Linear Algebra. This provides a basis for a unified
analysis of |C|, d(C), the minimum Hamming distance of C, and C*. It also reveals an
interesting connection with MDS codes.

We determine |C| when A is non-singular. To underbound d(C), we need A to be ‘non-
singular by columns (NSC)’. We investigate NSC matrices. We show that Generalized Reed-
Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-
Muller codes, as are the ternary 'Main Sequence codes’. We obtain a simpler proof of the
minimum Hamming distance of such families of codes. If A is square and NSC, Ct can be
described using Cf, ..., Cy; and a transformation of A. This yields d(Ct). Finally we show

that an NSC matrix-product code is a generalized concatenated code.

Keywords
Binary (u|u+ v)-construction, ternary (u+ v+ w|2u+ v|u)-construction, generalized Reed-

Muller codes, generalized concatenated codes.

1 Introduction

If C; is an (n, K1,d;) code and Cs is an (n, K,d2) code, Plotkin’s (u|u + v)-construction gives a
(2n, K1 K5, min{2d;,ds}) code, [10]. It is a standard iterative way of defining the Reed-Muller
(RM-)codes. The ternary (u + v + w|2u + v|u)-construction produces good codes, giving a
(3n, K1 K3 K3, min{3d;,2ds, ds}) code, where C; is an (n, K;,d;) fori = 1,...,3, [5]. This construc-

tion is iterated to produce a ‘Main Sequence (MS)’ subfamily of the ternary Reed-Muller codes in
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[5, Section IV.C], which we write as MS3. The matrices
1 21
and | 1 1 0
1 00

are associated with the (u|u + v)- and (u + v + w|2u + v|u)-constructions. More generally, it was
conjectured in [5, Section IV.D] that for any prime p a family (‘Main-Sequence’) M S, codes over F,
’having properties similar to those of the binary R M-codes’ would be obtained using a construction
with associated upper-triangular px p F,-matrix M S, = [(;’:;) mod p]. A (u+v|u—v)-construction
(see [12, Theorem 6]) has also been applied to construct new codes in [4] and generalizations of

Turyn’s (a + z|b + z|a + b + x)-construction appear in a study of quasi-cyclic codes in [6].

We define matriz-product codes which include the above as special cases. The matrix-product code
C =|[C; --- Cp]- A consists of all matrix products [¢1 -+ cpr]-A where ¢; € C; and Aisan M x N
matrix over F,. Here M < N and C; is (n,|C;|,d;) code over F, for i = 1,..., M. We show that
|C] = |C1|---|Cum| if A has a right inverse and d(C) > min{Nds,...,(N — M + 1)da}, provided
A is ‘non-singular by columns (NSC)’; see Definition 3.1 for precise details. We show that the
generalized Reed-Muller (GRM )-codes (which are not equivalent to the p-ary Reed-Muller codes
of [7]) are iterative NSC matrix-product codes, thus generalizing the iterative construction of RM-
codes and the iterative description of their generator and parity check matrices. Our approach
based on Linear Algebra gives a new proof of the minimum distance of GRM-codes (see Theorem
3.7), which is simpler than [1, Corollary 5.5.4]. We also show that M .S, is an NSC matrix, and
in fact our proof of Theorem 3.7 is valid for any iterative ’triangular’ NSC matrix-product code.

Thus we also obtain the minimum distance of the 'Main Sequence Codes’.

In Section 6 we show that for square matrices, the dual of an NSC matrix-product code is an
explicit NSC matrix-product code. This yields d(C*), see Theorem 6.6. In Section 7 we show that
NSC matrix-product codes are generalized concatenated codes, as was already known for codes
obtained by the (u|u +v)- and (u + v + w|2u + v|u)-constructions. Thus in particular GRM-codes

are generalized concatenated codes.

Viewing GRM-codes as iterative NSC matrix-product codes may be useful in studying other aspects
of these codes. For example, it follows that GRM -codes are decomposable and hence can be decoded
by multistage decoding in the terminology of [3]. Studying matrix-product codes using e.g. [8]

may yield interesting codes over finite rings.

A preliminary version of this paper was presented at the 23"% Australasian Conference on Combi-

natorial Mathematics and Combinatorial Computing, July 1998 in Brisbane.

Conventions: Throughout this paper, p is a fixed prime and ¢ denotes a prime power; Jy the
elementary matrix formed by reversing the rows of Iy, the N x N identity matrix. When N is

understood we put I = Iy and J = Jy.



2 Matrix-product codes

2.1 First steps

DEFINITION 2.1 Let A = [a;;] be an M x N matriz A with entries in Fy and let Cq,...,Cum be
codes of length n over F,. The matrix-product code [C; --- Cy]- A is the set of all matriz

products [c1 --- cp]- A, where ¢; € C; is ann X 1 column vector fori=1,...,M.

We shall also say that a code C over F, is a matrix-product code if C' = [C} --- Cy]- A for

commensurate codes C1,...,Cy and matrix A. The codewords of [C} --- Cpy] - A are n x N
matrices
c11a11 + -+ cipmapm1 - C11@N + -+ CiMAMN
c=
Cn1Q11 + -+ CpmaM1  c Cr1QIN t+ -+ CRMAMN

and we regard [C} --- Cp]- A as a code of length nN by reading the entries of the matrix in
column-major order: for1 < k < nN, ¢ = Zf\il chiaij where h—1 = (k—1) mod nand 1 < j < N.

We begin with a number of examples:

EXAMPLE 2.2 The matrices

give the (ulu 4+ v)- and (u + v + w|2u + v|u)-constructions respectively.

EXAMPLE 2.3 Let ¢ = p and M S, be the p x p matriz with entries (M Sp);; = (g’:;) mod p, let

0 ifr <0
M8,y =4 O T

F, ifr>0
and form > 1, let MSy(r,m) = [MS,(r,m—1) --- MS,(r—p+1,m—1)]-MS,. Forp=2, MS,
is the (ulu + v) matriz and MSs(r,m) = RM(r,m). For p=3, MS, is the (u + v + w|2u + v|u)

matriz and we have the ternary ‘Main Sequence’ codes of [5].

EXAMPLE 2.4 For q = 3, the matriz

1 1
1 -1
gives the (u + v|u — v)-construction.
EXAMPLE 2.5 Ifq =2 and
1 01
A=|10 1 1|,
1 11



then [C1 C1 Ca] - A is Turyn’s [a + x|b + z|a + b + x]-construction.

EXAMPLE 2.6 The code [C1, --- ,Cp] - In is the ‘direct sum’ of Ci,...,Cuy, [9, p. 76]. If Cy
and Cy are linear with C1 N Cy = {(0---0)} and A = [11]7 then [Cy Cs] - A is the vector space
direct sum of Cy and Cs.

In Section 5, we shall show that the generalised Reed-Muller codes GRM(r, m) are iterative matrix-

product codes via a certain matrix GRM,.

If C4,...,Ch are linear with generator matrices Gy, ..., Gy respectively then [Cy -+ Cp] - A is

linear with generator matrix

Gian s Giain

Guay -+ Gumamn

We shall need to discuss codes arising from row and column permutations of A; we say that A, is

a row permutation of A = [a;;] if p permutes {1,..., M} and A, = [a,;);]-

EXAMPLE 2.7 Let p interchange the rows of M Sa, C1 = Fy and Cy = {0}. Then [Cy Cs]- M Sy =
RM(0,1) = {00,11} whereas [C1 Cs] - (M S2), = {00,01} = [Cy C1]- M Sy. Thus matriz-product
codes depend on the order of the codes and [Cy Cs] - A, need not be equivalent to [Cy Cs] - A.

A column permutation A, of A is defined similarly. The following is immediate:

PROPOSITION 2.8 (i) If A, is a row permutation of A, then [Cy --- Cy]-A = [Cp1y -+ Coaan]-4p
(i) If Ay is a column permutation of A then [Cy --- Cuy| - Ay is equivalent to [Cy --- Cp) - A.
2.2 |[Ci - Cu]- A

Here we determine |[Cy --- Cp]- Al. Recall that a right inverse of A is an N x M matrix A~!
such that A- A=! = Ijs. In this case we say that A is non-singular. We have M S5 L= MS, and

0 0 1
MS;'=]0 1 -1
1 -2 -1

In fact, it follows from Proposition 5.12 that M S ! = J-GRM,, where J denotes the elementary
matrix formed by reversing the rows of an identity matrix. For the (u+v|u —v) matrix, A=1 = %A

if 2 is invertible.

Note that a necessary condition for A to have a right inverse is that M < N, so from now on we

assume that M < N. Let us write A(1,..., M) for the matrix consisting of the first M columns



of A. Then if A(1,..., M) is non-singular with inverse A(1,..., M)~!, the N x M matrix whose

first M rows are A(1,...,M)~! and whose last N — M rows are zero is a right inverse for A.

Throughout, if A is non-singular then A1 denotes a right inverse of A.
PROPOSITION 2.9 If a matriz consisting of some M columns of A is non-singular then
€1+ Cal- 4] = [Cal -+ Cal.

PRrROOF. By Proposition 2.8, we can assume that A(1,..., M) is non-singular. It is sufficient to

show that [ -+ ]-A:Cy x---xCpy = [Cy -+ Cpr] - Ais 1-1. This is almost immediate, since if
[cl CM]A:[c;_ CIIM]A,

multiplying both sides on the right by A~' gives [c; -+ em] =[c} -+ cy)- O

If A is as in Example 2.5,

so that |[010102] . A| = |Cl|2|02|

3 Non-singular by columns matrices

This section discusses a strictly stronger condition than non-singularity which is required for esti-

mating the minimum distance of matrix-product codes in Theorem 3.7 below.

For 1 <t < M we write A; for the matrix consisting of the first ¢ rows of A and for 1 < j; <--- <

jit < N, we write A(j1,...,J:) for the ¢t X ¢t matrix consisting of columns ji,...,j: of A;.

DEFINITION 3.1 We call A non-singular by columns (NSC) if A(j1,...,jt) is non-singular
foreach1<t<Mandl<j; < ---<j <N.

The matrices of Example 2.2 are NSC. It is clear that an NSC matrix is non-singular; however the
matrix of Example 2.5 is non-singular but is not NSC. We shall say that a matrix-product code is

NSC if its matrix is NSC. Thus Reed-Muller codes are iterative NSC matrix-product codes.

EXAMPLE 3.2 Let F, = {a1,...,a4}. For 1 < M < q the Vandermonde matriz

1 . 1
aq P aq
Vi = .
-1 M-1
o ag



is an NSC matriz, as is Var(j1,...,jn) for any M < N < qand1 < j; < --- < jnv < q. Thus
there exist NSC M x N matrices over Fy for all1 <M < N <gq.

We shall see in Section 5.2 that the "Main Sequence Codes’ and the generalised Reed-Muller codes

are iterative NSC matrix-product codes.

We conclude this subsection with the possible values of M and N > M for which there is an M x N
NSC matrix over F,. First we note that for M = 1 there is no restriction on N, since the 1 x N

all 1 vector is clearly NSC. For M > 2 however, there is a severe restriction.
ProrosITION 3.3 For M > 2 there is an NSC M x N matriz over F, if and only if M < N <gq.

Proor. Example 3.2 demonstrates the sufficiency. Let A be a 2 x N NSC matrix. We assume
that N > ¢ + 1 and derive a contradiction. We know that there are no zeroes in the first row of
A and at most one in the second row, for otherwise A is not NSC. Without loss of generality we
assume that ass,...,azn are non-zero. For 2 < j < N we put a;; = @’ and az; = a® where « is

a primitive element of IF,. Then by hypothesis,

ayj; a1k

az; Q2

is non-zero for 2 < j < k < N, which is to say
ri+spZErrk+s; mod(¢g—1) for2<j<k<N. 1)

In particular r9 Z 1, — s + s2 for any 3 < k < N. Thus r — si + s2 takes at most ¢ — 2 different
values (mod(q — 1)) as k takes at least ¢ — 1 values from 3 to N > ¢ + 1. Thus there exist k; and
kz, 3< k1 < ko < N, such that

Thy — Sky + 82 = Tg, — Sky, + 52 mod (¢ — 1),
which implies that 7y, + Sg, = Tk, + Sk, (mod(g — 1)), contradicting (1). O

It follows that no row permutation of the (a + z|b + z|a + b + x) matrix can be NSC (as can be
easily checked directly).

REMARK 3.4 In Section 7 we shall see that NSC matrices can be characterised as generator matri-
ces for certain MDS codes. Thus, in view of the Main conjecture for MDS codes, it is not surprising

that the possible size of an NSC matrix is restricted by the size of the field over which it is defined.

3.1 Triangular matrices

Recall that A is an upper-triangular matrix if a;; = 0 for all ¢ > j. A column permutation of an

NSC matrix is an important special case in Theorem 3.7(iii), so we call a matrix triangular if it



is a column permutation of an upper-triangular matrix. Clearly M.S, is upper-triangular for all p,

but the (u 4+ v|u — v) matrix is not triangular.

We shall see below that M .S, is an NSC matrix over [, for each p. We shall also see that there are
NSC triangular ¢ x ¢ matrices—and hence NSC triangular M x N matricesforall1 < M < N < g—

over I, for each q.

PRrROPOSITION 3.5 A triangular NSC matrix has exactly i — 1 zeroes in row i for 1 <i < M and

no NSC matriz can have more.

Proor. If row ¢ of A has more than ¢ — 1 zero entries then A is not NSC, since if a;j,, ..., asj; are

zero then det A(j1,...,5;) =0. O

We also have
LEMMA 3.6 If A is triangular then J - (A=1)T is triangular.

Proor. If A is triangular then A - P is upper-triangular for some permutation matrix P. Thus
(A-P)~t = PT. A~! is upper-triangular so that (PT-A~1)T = (A~17T . P is lower-triangular and
J(A=H)T . P - J is upper-triangular. Hence

is triangular since (P - J)T is a permutation matrix. O

3.2 A minimum distance theorem

THEOREM 3.7 If A is NSC and C =[C; --- Cp]- A then
(i) |C] = |C1]---|Cum]

(ii) d(C) > d* = min{Ndy, (N — 1)ds, ..., (N — M + 1)dar}
(#1) if A is also triangular then d(C) = d*.

PRrROOF. The first part follows from Proposition 2.9 since an NSC matrix is non-singular. In
particular C consists of a single codeword, and hence has minimum distance oo, if and only if each

of C1,...,C)y does, so that the result follows in this case.

For the rest of the proof we take |C| > 1. Take distinct codewords ¢ and ¢’ in C. Then ¢ =
[c1 --- em]-Aand ' =[c] --- c},] - A for distinct [¢1 --- em] and [¢f --- ¢)]. We wish to show
that d(c,c') > d* i. e. that

! '
Ch1G1j + ** F ChmQmj 7# Cp101j + *+* + ChmGmj (2)



for at least d* values of h and j.

Put t = max{i : ¢; # c}}. Then (2) holds if cp1a1; + - - - + cpeas; # ¢jya15 + - - - + ¢} a5. We show
that if cpe # ¢}, then cpiar; + - - + cheay; # cha1j + - -- + chyaq; for at least (N — ¢ + 1) values
of j between 1 and N. Since ¢y # ¢}, for at least d; values of h between 1 and n, it follows that
d(e,d') > (N —t + 1)d;.

So take h with cpy # c}lt. To obtain a contradiction we assume that cpia1; + --- + cpeay; =

Chraij + - - + chpae; for at least ¢ values of j, 1 < ji < jo <--- < ji <N, say. Then

/! /! —
(Cr1 = chy)arjy  + + (emt —lay, = 0
! ! —
(ch1 — ¢hy)arj,  + + (ent—chlag, = 0
/ ! —
(en1 —dparj, + -+ + (e —chlay, = 0
so that the linear system
ayj, ot G,
G2j,  ccc o 025
[ X1 Xy -+ Ty . . . =
atj, Gty 0

has a non-trivial solution and the ¢ x t coefficient matrix is singular. This matrix is however
A(j1,-..,jt), which by assumption is non-singular. Thus we have the required contradiction and
d(e,d) > (N —t+1)d, > d*.

For part (iii), we can assume that A is upper-triangular by Proposition 2.8. We need only show
that there are codewords at most d* from each other. Let (N — ¢ + 1)d; be the smallest value of
the (N — i+ 1)d; (so that in particular d; < 00). Let ¢ and ¢’ be codewords of [Cy --- Cy]- A
with ¢, ¢j € Cy such that d(c, ¢}) = d; and ¢; = ¢ € C; for i # ¢. Then

d(C - A, CI - A) = d(ctatt, C;(ltt) + d(Ctatt+1, C;att+1) +---+ d(CtatN, CéatN) S (N —t+ 1)dt
O

For p = 2,3, M S, is triangular and NSC, so that M Sp,-product codes have minimum distance
min{2d;,d>} and min{3d;,2ds,ds} respectively, as expected.

EXAMPLE 3.8 Let A be the (u + v|u — v) matriz. Any ternary cyclic code C of even length can be
written as C = [C1 Ca] - A for certain codes C1,Cs, [12, Theorem 6]. In Example 22.10, loc. cit.,
we have d(C) = d(Cy) = 12 from Table 1, loc. cit.. Thus d* is a tight lower-bound in Theorem 3.7

for matriz-product codes with non-triangular matriz. See also [{, Example 8.3].



EXAMPLE 3.9 Let g = 3,

1 2 1
A=]101 1],
01 2

which is NSC, Cy be the (3,2,2) ternary parity-check code and let Cy, C3 be the (3,1,3) ternary
repetition code. Theorem 3.7 gives d ([Cy1 Ca C3] - A) > 3. In fact with ¢; = (000)T and ¢y = c3 =
11D)7T, [e1 ez e3]- A = [(000)T (222)T (000)T]. Again, d* is a tight lower-bound in Theorem 3.7

for matriz-product codes with non-triangular matriz.

REMARKS 3.10 1. We can slightly strengthen Theorem 3.7 by noting that if some row permuta-

4

tion A, of A is NSC then, applying the theorem to [Cp1) - -+ Cyar)]-A, and using Proposition
2.8,
d([Ch --- Cum]-A) > min{Ndp(l), (N - ].)dp(2), ey (N= M+ 1)dp(M)}.

. If the it" row of A has strictly more than i — 1 zero entries, then A is not NSC by Proposition

3.5; however d([Cy --- Cy]-A) < d* —1.

. The statement of Theorem 3.7 would be the same if we just considered N x N matrices A

and took Cpr41,...,Cn to be one-word codes.

. Ordering C1,...,Cn such that d; < dj if i < j ensures that d* is mazimised. To see this let

(N —t + 1)d; minimise the (N — i + 1)d;. If there is an s < t such that ds > d; then both
(N —t+1)ds and (N — s + 1)d; are strictly greater than (N —t + 1)d;, so that swapping
the positions of Cs and Cy will not reduce d* and will increase d* unless there is t' # t with
(N =t +1)d, = (N — t + 1)d,.

. Let A be the (a + z|b + z|a + b+ z) matriz. Since no row permutation of A is NSC, so we

cannot apply Theorem 3.7 or Remark 1 to underbound its minimum distance. (It is known
that in general there is no simple formula for the minimum distance of codes obtained by the

(a + z|b+ z|a + b + x)-construction, [9, p. 587].)

NSC and matrix operations

We now give some examples to show that matrix operations which preserve NSC are quite special.

One particular operation (hinted at in Lemma 3.6) will be of particular interest in discussing the

dual of a matrix-product code in Section 6.

Obviously a non-zero scalar multiple of an NSC matrix is NSC. Being NSC is clearly independent

of the ordering of the columns, but is dependent on the ordering of the rows (consider M Ss).
The transpose of an NSC matrix need not be NSC (consider M S3) and the product of two NSC
matrices need not be NSC (since M Sy ' = M Sy and MS, - MS, ' =1).



EXAMPLE 4.1 Let A be as in Example 3.9. Then A is NSC but

10
At=10 2
0 2

— N =

so the inverse of an NSC matriz need not be NSC.

We note that J - B is B with its rows reversed and that for M S, and Example 3.9, J - (A~ 17T is
NSC. We shall now show that this is true in general. The proof uses the following standard result
e. g [2, p.- 198].

LEMMA 4.2 If X and Y are square matrices, X non-singular, such that

Y %
Y, Z

X =

for some matrices Y1,Ya,Z of appropriate size (Z being square) and

Z' Y
Y, v

X1 =

where Y' is the same size as Z then det(Y) = det(Y') det(X).
LEMMA 4.3 If A is a square NSC matriz then J - (A1) is NSC.

PROOF. Let B = J-(A™1)T. We need to show that B(j, ..., ;) is non-singular for each 1 <t < N
and 1 < << < N. If (Ail)z'j = /Bij then B,’j = /Bj(N—z'—i-l) and so
Ban o Biun
B(jla'-'ajt): :
Bisn—t+1 - BjN—t+1

We put {177N}\{.7177.7t} = {klr"akat} and

a1k, -0 O1ky-, Q15 - Q1

A, =
GNk: " QNkn—_, ONj; °°° GNj,

Since A, is a column permutation of A it is NSC. Also

Bri1 - BN
1 Brn-el  Brin—eN
A7t =
Binr - Ban
Bj1 -+ Bin

10



Now in Lemma 4.2 we take X to be A, Y to be the first N — ¢ rows and columns of A, and Y’ to
be the last ¢ rows and columns of A !. Since A4, is NSC we have that Y is non-singular and so Y’
is non-singular. Also B(ji,...,j:) = J - (Y")T and so B(j1,...,:) is non-singular and the lemma

is proved. g

5 GRM-codes are matrix-product codes

5.1 An iterative description of GRM-codes

From now on we take F, = {ai,...,a,} where for ¢ prime, a; = i — 1 € Z, and order F, by

a < < ay.
We begin this section with a brief discussion of ‘polynomial codes’. Put

F, ifm=0

Fo[ X1y, Xom] .
XT—XrXiox, Hm2>L

EX1,..., Xm] =

Let m > 0 and P a subspace of E,;[Xy,...,X,,]. For P € P we have the evaluation of P,

ev(P) = (P(m),...,P(yg»)) where F = (v1,...,7gm).

Thus P gives rise to a length ¢™ code over Fy, ev(P) = {ev(P) : P € P}. Since no two polynomials
of E¢[X1,...,Xn] have the same evaluation there is often no need to distinguish between ev(P)
and P. Thus we refer to the code P.

The ordering of the codewords of P is determined by the ordering of Fj*. Throughout Fj* will be

ordered lexicographically. Thus the k** element of F7* is (ck, 41, - - -, @k, +1) Where Y% kgt~ is

the g-ary expansion of k¥ — 1 and the k*" symbol of ¢(X1,...,Xm) € P is c(Qry 41, - -k, +1)-

For P € E;[Xy,...,X,,;] we write deg(P) for the total degree of P. Then
GRM 4(r,m) = {P € Ej[X1,...,Xn] : deg(P) <r}.

In particular for r < 0, GRM ;(r,m) = {0} and for r > m(q — 1), GRM ;(r,m) = E¢[X1,...,Xp].
In the case ¢ = 2 lexicographic order of F5* gives the standard bit-ordering of RM-codes.

We give a polynomial version of Definition 2.1 when A is a ¢ x ¢ matrix. For this we need a
polynomial description of the point functions on F,. We note that the product of the distinct
non-zero elements of a finite field is —1 (e. g. since X9 1 —1 = [Toer,\jo3 (X —a)) sofor 1 <j<gq

we can take

X—01) (X -« 1 for X = «;
(X — ) 0 for X = ap # ;.

Then we have

11



DEFINITION 5.1 (POLYNOMIAL VERSION OF MATRIX-PRODUCT CODE) Given a q X q matriz A
and q polynomial codes C1,...,Cqy C E¢[X1,...,Xm—1] we define [C1 --- Cq]-A C Eg[X1,...,Xn]

by
q

q
[Cr - Cil- A=< xi(Xm) Y cilX1,..., Xm1)aij 1 e1 € Ch,...ycq € Cy
Jj=1

=1

PROPOSITION 5.2 For a ¢ X ¢ matriz A and codes C1,...,Cy C E[X1,...Xm_1], Definitions 2.1

and 5.1 are equivalent.

PROOF. We show that the k" symbol of ¢ € [C} --- C,]- A does not depend on which Definition
is used. We write ¢ for the k'* symbol of ¢ where 1 < k < ¢™ . We put n = ¢™ ! (the
length of C1,...,C,) and k = (j —1)n + h for some 1 < j < gand 1 < h < n. Also we write
h—1=Y7""hg" " sothat ky = by for 0 <1 <m—1and k,, = j — 1.

Firstly if c=[c1 -+- ¢4]- A is as in Definition 2.1 then c¢* = E?:l chiaij- Now take

g q

CcC = Z X,(Xm) Z Ci(Xl, . ,Xm_l)az-j
7j=1 i=1

as in Definition 5.1. For 1 <i < q, ¢p; = ¢i(Qpy41,--->Qh,,_,+1) and

a 7 a
F = c@hy 41y Qhp115@5) = Y X5(@5) D Cil @ity e Qg +1) @i = Y Chitti
j'=1 i=1 =1

O

We generalize the iterative description of RM-codes by showing that for m > 1, GRM ,(r,m) =
[GRM4(r,m —1) --- GRM 4(r —q+1,m — 1)] - A for a certain ¢ x ¢ matrix A.

The matrix we use will need a ‘choice function’ defined on F, x F, which generalizes (1) mod p.
The following notation will be useful here and later. For 0 < k < ¢ — 1 we put

X'=(X—ai)--- (X —ox) sothat a;* =(aj—a1)--- (o — ).

Also for 1 <4 < g we put

(X) = X so that (aj) _ g man)ee(ay = ai)

ai) @t a;) (o =) (o —aio1)

We note that if k = 0 then @;* = 1 and if ¢ = 1 or i = j then ({7) = 1. Also a;*~" = (%) = 0/if
andonlyif1 <j<i-—1.

DEFINITION 5.3 We put



We note that GRM, is upper-triangular and has 1’s on its leading diagonal. In particular it is
non-singular; it is the matrix we use in our iterative description of GRM ,-codes. Polynomials of

the form
(X —a) (X — )
(X — o)

will occur in the proof that the description is valid. We note that for 0 < ¢ < g — ¢ the coeflicient

where 1<:<j<gq

such that jy,...,J: €

t

of X%=! in this polynomial is the sum of all products (—1)ta;, --- o

{iy...,q}\{j}. For 1 <i<j<qgand 0 <t <qg—iweput

Si(t) = > aj, -aj, and  Si(t) = > oy + 0y,

j17~~~,jt€{i7~~~,q} j1a~~~7jie{ia~“7q}\{j}

Then
LEMMA 5.4 For1<i<j<qand0<t<q—1—i, Si(t) = S k_o(—a;)*Si(t — k).

PrOOF. We note that S;(t + 1) = S;;(t + 1) + ;S;;(t). The proof is then a straightforward

induction on t. O

We also use
LEMMA 5.5 If deg(P) < ¢ — 2 then 2;21 P(aj) =0.

Proor. It suffices to show that Z;’.:l of =0for 0 <k <q—2 Fork=0, Z;’.:l 1 =0, so we
take 1 < k < ¢ — 2. Now it suffices to show that 37> o’* = 0 for a primitive element a of F,. To

see this we have (1 — o) Y1 2a* =1 -t D* =0and 1 —a* £ 0 since 1 <k < g — 2. O

THEOREM 5.6 The GRM -codes can be iteratively defined by

{0} ifr<o0

GRM(r,0) =
F, ifr>0

and form > 1

GRM ,(r,m) =[GRM ,(r,m —1)---GRM,(r —q+1,m —1)] - GRM,.

PROOF. Only the m > 1 part of the statement requires proof. So we take m > 1 and put
C=[GRMy(r,m—1) --- GRM,(r —q+1,m—1)]-GRM,. Since GRM, is invertible, Proposition
2.9 implies that dim(C) = 7, dim(GRM(r + 1 —i,m — 1). Also GRM,(r,m) is spanned by
monomials of the form XX/ ' where 1 <i < gand X € GRM (r +1—1i,m — 1) so that

dim(GRM 4(r,m)) = > dim(GRM ,(r + 1 —i,m — 1)) = dim(C).

i=1
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Thus it suffices to show that C C GRM ;(r,m) i. e. that deg(c) < r for all c€ C.
Now from Definition 5.1 if ¢ € C then

=3O 5 ()

i=1 i

where ¢; € GRM 4(r + 1 — 4,m — 1). Reversing the order of summation we get

_ : Xm : i1 X —ay) - (X — )
c__izzl(ai)cz.(4_.aj (Xm—aj) )

j=i

Since deg((¥™)¢;) <i— 1+ (r+1—1) =r it is sufficient to show that for 1 <i < ¢

s

q—

—i— Xm —ag)- \ —i— —i—
Z 1 ( (X) — Z a; lsij (t) X1qn t
m J t:O j=i

has degree 0 i. e. that

q
Za—Jz 1SzJ Za—z 1Szg -0
j=0
for0<t<qg-—1-—i.
Now by Lemma 5.4
q ) ) t ¢
Zoz_j'_ls"j(t) = Za—jz—l (Z(_aj)ksi(t — k)) = Z( Zak—z 1
' j k=0

which is zero for 0 <t < g — 1 — i by Lemma 5.5 since for 0 < k < t, P(X) = X*X' ' has degree
k+i-1<t+i-1<gq—2. 0

REMARKS 5.7 1. It is clear from the proof of Theorem 5.6 that we could also take (GRMy);; =
a;'"1. The choice of (GRM,);; = (‘;J) means that (GRMy);; =1 for 1 <i <gq.

2. The identity dim(GRM ¢(r,m)) = > !, dim(GRM ,(r + 1 — i,m — 1) used in the proof of
Theorem 5.6 also follows from the fact that if (1 + 2z + -+ + 297 1H)™ = Zg%]_l) P2 then
dim(GRM ((r,m)) = >°1_o P (c¢f. [9, Section 13.3], [1, Theorem 5.4.1] and [11, Ezercise
13(a) p. 104)).

Finally here we note that if G,(r +1 —i,m — 1) are generator matrices for GRM ,(r +1—i,m —1)
where 1 < i < g then by Theorem 5.6

Gy(rym—1) - Gy(r,m—1)(%") Gy(r,m —=1)(57)
Gy(rym) = 0 ‘ ‘
q” Gy(r—q+2) Gq(r—q+2,m—1)(a‘;‘il)

0 0 Gy(r—qg+1,m-1)

is a generator matrix for GRM 4(r, m).

14



5.2 GRM, and MS, are NSC

It is clear that GRM, and M S, are upper-triangular. We now show that they are also NSC. This
will mean that we can apply Theorem 3.7 to determine the minimum distance of the corresponding

codes in the next subsection.

PROPOSITION 5.8 For 1 <t<qand0<7; <---<Jj: <g,

() ()
: - : = H (@5, — @5.)
. . . (as _ ar) .
s s 1<r<s<t
(oftl) e (O-Ztt)
PRrROOF. This is similar to a proof for the Vandermonde determinant and is by induction on ¢. For
t=1and 1 < j; < ¢, both sides of the equation in the statement are 1. Thus we assume the

statement holds fort =u < g—1andeach 1 <jj <---<jl, <gq Take 1 <j; < -+ < jyuy1 < g

and put
G G @)
T
@) (@) Q)
() o (o) (ah)
We wish to show that D(ej,;,) = [Ti<,<s<utt %
Now D has degree u and zeroes o, ,...,q;,. Thus,
=Lp H Oégk
where

1

Lp = —
P (oug1 — o)

. , k=1
() - (W)
is the leading coefficient of D. Thus by the inductive hypothesis

u

D(X) = H ?J: — Z.:r H a]k:

Oé —
1<r<s<u k=1 utl k

and D(aj,,,) is as required. O

COROLLARY 5.9 GRM, is NSC.

REMARK 5.10 It would be interesting to know if there are NSC q x g matrices over F, other than
GRM,, the Vandermonde matriz and their J - (( )~1)T transformations.
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We also use Proposition 5.8 to show that M.S, is NSC.
COROLLARY 5.11 M S, is NSC.

Proor. Since M S, is NSC if and only if M S, - J is NSC, it suffices to show that M S, - J is NSC.
Thus we need to show that for each 1 <t <pandeach0<j; < ---<j<p-—-1,

(p—pl_—ljl) o (pfl_—ljt)

—2 —2
Dl(jl . jt) — (pfplfjl) T (pflfjt)
(p—pl_—tjl) o (p—pl_—tjt)

is non-zero. Since p is prime

G2 )=0o ey ()

foreach1 <s<tand 1<r <t Thus

v =120 )00) T

s=1
(tJ—11) T (tj—t1)
since in the product on the right-hand side, the first term is independent of r and the second term

is independent of s. Finally the right-hand side is non-zero for each 1 <t <pand 0<j; <--- <
ji < p— 1 by Proposition 5.8. O

PROPOSITION 5.12 GRM, ' = MS, - J.

Proor. We have

(MS, - 7)- GRM,) Z( "0

=0

()

by Vandermonde’s identity, which is 0if j —i < 0 (sincethen p—i+j—1<p—1)orif j—i >0

(since then p divides the integer-valued (P~ '+’1 "), and is 1 if j = i. O

5.3 The minimum distance of GRM- and MS-codes

We now use Theorem 3.7 to obtain a simple proof of the minimum distances of GRM ,(r, m) and
MS,(r,m). In fact, let F(r,m) be any family of codes over F, defined for m = 0 by

{0} forr<0

F(r,0) =
F, forr>0

16



and for m > 1 by F(r,m) = [F(r,m —=1) --- F(r —q+1,m —1)] - F, where F is an NSC ¢ x ¢
triangular matrix over F,. (Recall that GRM-codes are of this form by Theorem 5.6 and Corollary
5.9; MS-codes are of this form by definition and Corollary 5.11.)

Clearly
oo forr<0

1 forr>m(g—1).

d(F(r,m)) = {

PROPOSITION 5.13 For 0<r <m(qg—1) writer =Q(¢g—1)+ S with0 < S < q—2. Then

d(F(r,m)) = (g = S)g™ .

PROOF. We first note that for r = m(g—1), S =0, Q = m and (g — S)g™ 1@ = 1 = d(F(r,m)).
In particular the result holds for m = 0 and 0 < r < m(¢g — 1). We assume that the result
holds for m = k and 0 < 7’ < k(¢ — 1) and need to show that it holds for m = k + 1 and
0<r<(k+1)(¢g—1)—1 (since we know it holds for r = (k + 1)(¢ — 1)).
Sowetake 0 <7 < (k+1)(g—1)—1and writer = Q(¢— 1) + S where 0 < S < g — 2. We know
that

d(F(r,k + 1)) = min{ed(r, k),...,d(r — g+ 1,k)}.
Thus d(F(r, k+1)) is no more than (¢—S)d(F(r—S, k)) which is (g—S)(g—0)¢* 1@ = (¢—S5)¢" ¢
since 0 <r — S < k(g — 1). Thus we need to show that for 0 < j <q—1, (¢ — H)d(F(r —j,k)) >
(g — S)g*=%. For r < j < ¢ — 1 this is clearly true so we take 0 < j < min{r,q — 1}. We write
r—i=Qia-1)+5;.
Firstly we take k(¢g—1) <r < (k+1)(¢—1)—1. We need to show that (¢—j)d(F(r—j,k)) > ¢—S.
For 0 < j < S this is clearly true. For S +1 < j < min{r,q — 1} we have @; = k — 1 and
S; =8 —j+q—1so that from the inductive assumption (¢ — j)d(F(r,m)) = (g—7)(j —S +1)

and
@=NG-5+1)-(g=9)=04-N0-9-0-9=>e-j-1DG-5 20 (3)
since S+1<j<q-1.
Next we take 0 < r < k(g —1)—1. f S+ 1 < j < min{r,q — 1} then Q; = Q — 1 and again
S; =8 —j+¢q—1 and from the inductive assumption
(= HAF(r —j§,k) = (a—§)(G - S+1)g" @

which is at least (g — S)g*~@ by (3). If 0 < j < S then @; = Q and S; = S — j and from the

inductive assumption

(g—5)(g—S+45)g" 19
= q¢g- 9" +qidF T —jlg-S+4)g"
(a=9)¢" % +4i(S -5 79> (¢- 8" <

(g —J)A(F(r -4, k)
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since 0 < § < 4. O

6 On the dual of [C; --- Cy]- A

6.1 The dual when A is square

For linear codes Cj,...,Cy and a square matrix A we show that ([Cy --- Cu]- A)t is also a

matrix-product code.

Let A and B be M x N matrices and C4,...,Cy,D1,...,Dy length n linear codes. Then
[Ci - Cum]- A and [Dy --- Dy] - B are linear, and are dual to each other if and only if
dim([Dy -+ Dpy]-B)=Nn—dim([C; --- Cy]-A) and

n N M M
Z (Zch,aw> (Zdhkbk1> =0 forall ¢; € Cl, .,Cp € CM, dy € Dl,...,dM € Dyy.

h=1j=1 \i=1 k=1
Now
n N M M M N n M M N
S5 (Sewes ) (St ) = 303 2 coidne =3 D, ) aigbesel i
h=1j=1 \i=1 k=1 i=1 k=1 j=1 = i=1 k=1 j=1

Also (A . BT)z'k = Ejvzl az-jbkj so that

LEMMA 6.1 For N x M matrices A and B and linear codes C1,...,Cpr,D1,..., Dy of length n
over Fy, [C1 -+ Cum]-A and [D1 --- Dy - B are dual codes if and only if
dim([Dy --- Dpy]-B) = Nn—dim([Cy --- Cum]- A)

and

M M
ZZA BT,chdkzo for each ¢y € Cy,...,cpr € Cpyp and dy € Dy, ...,dpy € Dy

i=1 k=1

We begin with the case that A is non-singular with right inverse A=1. Then by Proposition 2.9,
dim([Cy -+ Cy]-A) = ki + -+ + kpr. Putting B = (A™1)7T we get

ZZ (A- BTl dy _Zc di

i=1 k=1
which is zero for all ¢; € C1,...,cpr € Cy and dy € Dy,...,dy € Dy if we put D; = Ci- for
1 <3< M. Also B has right inverse AT so by Proposition 2.9

dim([C{ --- C4]*B) = —k1)+---+ (n—kp) = Mn — (k1 +--- + k).

Thus when M = N, i. e. when A is square, Lemma 6.1 implies that [C{ --- C3;] - B and

[C1 --- Cu] - A are dual codes. In summary we have
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PROPOSITION 6.2 If A is an non-singular N x N matriz and Cy,...,Cn linear codes then
(Cy -+ CN]- A =[Cf -+ CE]- (A HT.

EXAMPLE 6.3 We have (M Sy )T = M ST and so ([C1 Cs]-MS)* = {(u4v|v) : u € Ci-,v € C5-}
as in [9, p. 77].

EXAMPLE 6.4 For the (u + v|u — v)-construction we have (A~1)T = 1A and so ([Cy Cs]- A)*t =
{f(u+vlu—v):u€eCi,veCy}, of [4, Lemma 9.1(iii))].

EXAMPLE 6.5 For the (a + x|b + z|a + b+ x)-construction we have

10 1 01 1
A=|0 1 1|, A'=AaH'=]10 1
111 111

Thus ([C1 C1 Cs] - A)*r ={(b+zla+2zla+b+2):a,be Ci,x € Cs-} asin [9, p. 78).

As we have seen for M S,, A square and NSC need not imply that (A~1)? is NSC. Thus, while the
description of ([Cy --- Cn]-A)t in Proposition 6.2 is quite natural in the context of Proposition
2.9, it is not very useful in the context of Theorem 3.7. As suggested by Lemmas 3.6 and 4.3, a
better choice is J - (A~1)T since it will be triangular and NSC if A4 is.

So let A be a square NSC matrix and take B = J - (A~1)?. Then A - BT = J and

ZZAB ,kcdk—Zc dN,

i=1 k=1 i=1

which will be zero for all ¢; € Ci,...,ecxy € Cx and di € Dy,...,dy € Dy if we put D; = Cx_;
Also since B is NSC Theorem 3.7 yields

dim([C% - C1-B) = (n—hkn) + -+ (n = k1) = Nn = (ky + -+ ky)

so that from Lemma 6.1 we see that [Cx --- Ci’]- B is the dual of [C; --- Cn]- A.

We write d;- for the minimum distance of C;-. Thus Theorem 3.7 gives us that
d([CF -+ CF B) > (d4)* = min{Ndg, ..., d¢}.

Moreover by Lemma 3.6 if A is triangular then so is B. Thus in this case Theorem 3.7 yields
d([Cx -+ C1]-B) = (dH)".

In summary we have

THEOREM 6.6 IfCy,...,Cn are linear codes, A is an N x N NSC matriz and C = [Cy --- Cn]-A
then
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(i) J-(A~Y)T is NSC

(i) C+ =[Cx --- CT]-(J- (A H)T)

(i) A(CL) > (d*)* = min{Nd%, ..., di}

(iv) if A is also triangular then so is J - (A~1)T and d(C*) = (d*)*.

REMARKS 6.7 1. Remark 3.10.4 says that d* is mazimised with the C; ordered such that d; < d;
fori < j. For nested codes then dyy_; < dy_; for i < j. In this case (d)* is also mazimised

when the C; are ordered this way.

2. Proposition 6.2 and Theorem 6.6 imply that for an NSC matrixz A and linear codes C1,...,Cn
[Cf - Cx]- (AT =[Oy -+ C1]-(J-(A7HT).

This is a special case of Proposition 2.8.

6.2 The dual of GRM ,(r,m)

Of course we can apply Theorem 6.6 to GRM-codes. Here N = ¢, A= GRM, and C; = GRM (r +
1—i,m—1) for 1 <i < g. When ¢ is prime, Remark 5.12 implies that A=! is M S,-J = J-AT.J
(it is not true that A=! = J- AT . J for all q). Thus in the prime case Theorem 6.6 gives the dual
of ([Cy --- Cgl- At =[Cf --- C{]-B where B=J - (J- A" - J)T = A-J. We now show that
we can take B = A for all q.

Firstly we note that Proposition 2.9 implies that
dlm([C SO A) =gn— (k1 +---+ k)

so from Lemma 6.1 it suffices to show that
7 a
ZZ(A AT iwel ey, =0 foralle € Cy,...,cq€ Cgand cf € CF,...,ct €CE. (4)
i=1 k=1
Now cq+1_kc;-+1_k = 0forall cgy1-k € Cyt1—k and all c;_—i-l—k € C;_J,-l—k' Thusif C; C Cyy1-k, i. e.
if i >q+1—F, then cicyy, , =0foralle; € Ciand ¢y € Cpyy - Thus o7, 370 ) (A-
AT)ikeicyy y, = 0 and to show that (4) is satisfied, it suffices to show that

qg—1 g—i

h&

,kcicj‘_ka =0 foralle €Ch,...,¢-1 € Cymyand ¢ € Cf,...,c5 € C5. (5)
i=1

=~
Il

1

We take 1 <i < g—1and 1 <k < g —i and show that (A - AT);; = 0, from which (5) follows.
Now 1<i+k <gqand

B )T e

20



so that (A - AT)y = 0 if and only if

q i—1 k—1
> (e —as) [] (e —ar) = 0. (6)
j=1s=1 r=1

But P(X) = H;;ll (X —as) H’:;i (X — a,) is a polynomial of degree i + k —2 < ¢ — 2 so (6) holds
by Corollary 5.4. Thus we have proved

PROPOSITION 6.8 The dual of (GRM (r,m —1) --- GRM(r —q+1,m —1)]- GRM, is
[GRM(r—q+1,m—1)* --- GRM(r,m — 1)*]- GRM,.

Combining Theorem 5.6 and Proposition 6.8 gives an easy inductive proof of

COROLLARY 6.9 The dual of GRM (r,m) is GRM (m(q —1) —r — 1,m).

7 Matrix-product and generalized concatenated codes

It is well-known that for p = 2,3, M .S, product codes are generalized concatenated codes (GCC).
We show that NSC matrix-product codes are GCC. This leads to a natural characterisation of an

NSC matrix. For this section it will simplify notation to take a; =0 € I, .

We start with a family {Mys,..., M1} of 1 < M < N MDS codes over F, such that M, is an
[N,r,N —r + 1] code and My D --- D M;. (For N < g we could take M, = RS(N,r), the

[N,r, N —r + 1] Reed-Solomon code.) For such a family of codes there exists a generator matrix

ai aii ... aiN

apr api1  --- QGMN

of My such that A, is a generator matrix for M, (recall that A, is the matrix consisting of the

first r rows of A).

DEFINITION 7.1 We call {Ms,..., M1} aclose nested family of MDS codes and A a nested

generator matrix.

With the notation of [9, p. 590-592] we use My, ..., My and their cosets as the inner-codes of a
GCC in the following way. For 0 < i < M — 1 we put Bi_, = M—;, where there are i zeroes in
the subscript. Then B® = {aan + Bj : a € F,} so it is natural to put By = ax,an + By for 0 <
k1 < ¢—1. Similarly Bj = {aan—1 + B3, : @ € F, } and it is natural to put B, = ag,an—1+ By

and then B} . = ax,an + ap,an—1 + Bfy. Continuing in this way,

B;;?l---ki =ap,ap + -+ apap—ir1 + My—;for 0<i < M - 1.
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Then B,ngl[mkM = {ak,apm + -+ + ag, a1} so that by, gy, = ag,apm + -+ + ag,,a1 (really this is

bak1+1~~~akM+1)' We note that the inner codes are determined by A.

The outer codes can be any M length n codes Cu,...,Cy over F,—in the notation of [9] 4; =
Cr—ir1- We write (Cpr --- Cy) - A for the GCC so formed.

If C; is an (n, K;,d;) code then (Cpys --- C1) - Ais an (nN,Ky---Kp,d* > min{(N — M +
1)dp, ..., Ndi}) code by [9, Theorem 14, p. 591]. The central observation of this section is

PROPOSITION 7.2 Let Cy,...,Cyr be length n codes over F; and A an M x N matriz. Then A is
NSC if and only if it is a nested generator matriz for a close nested family of MDS codes and in
this case

[Cy -+ Cul-A=(Cy -+ Cy)-A.

PRrROOF. Let M, be the linear code generated by A,. If A is NSC then A, has rank r so that M,
is an [N, r] code. That M, is MDS follows from the definition of NSC and [9, Corollary 3 p. 319],

which also implies that a nested generator matrix is NSC.

Now the codewords of (Cpr --- C1) - A are the n x N arrays of the form

bclM---Cll
anM---Cnl
where cpr € Cyr,...,c1 € Crandfor 1 < h <m, be,y,..cny = Chmam + -+ +cpiai, i. e. those n x N
arrays of the form
ciMapm1 + -+ c11a11 -0 CiIMAaMN + -+ Cl1a1N
)
CnMQM1 + -+ Cp1@11 0 CaMOMN + -+ Cp1GIN
as are the codewords of [C} --- Cy] - A. O

REMARK 7.3 In view of Propositions 3.3 and 7.2 there exists no family of close nested MDS codes

of length greater than g over IF,.

EXAMPLES 7.4 We take M < N =q— 1. Since

1 1
a1 Qg
H, = .
q—1-—r qg—1—r
af ool
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is a parity check matriz for RS(r, q) it follows from Lemma 5.5 (with Py(X) = X* for0 < k < ¢—2)

that the Vandermonde matriz

1 1
a1 Qg
V= )
r—1 r—1
(7} aq

is a generator matriz for RS(r,q). Thus Vi is an NSC matriz and for length n codes Cy,...,Cuy,

It also follows from Lemma 5.5 that (GRMy), is a generator matriz for RS(r,q).
COROLLARY 7.5 Generalized Reed-Muller codes are generalized concatenated codes.

ProoF. Use Theorem 5.6, Corollary 5.9 and Proposition 7.2. O

E-mail address: tim.blackmore@infineon.com, ghn@maths.uq.edu.au

URL: http://wuw.maths.uq.edu.au/~ghn
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