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Abstract

We study the solution module (of n-dimensional sequences over a domain R) of an ideal
containing (X;™ —1,...,XM» —1) and generalize the known (1-dimensional) result for the
solution space of an ideal of F,[X] containing (X™ —1). We show how to compute a groebner
basis for the solution module, and apply this to compute the dual and check ideal of a 2-

dimensional cyclic code (without using roots of unity or a semisimplicity hypothesis).

1 Introduction

This paper is a preliminary report on a constructive study of [1], [2], [3], [4], which were written
before the advent of constructive ideal theory [5] and which require non-trivial Commutative Al-
gebra (over a finite field). The first two papers are non-algorithmic in nature and are based on the
zeroes of a code (and thus require a semisimplicity hypothesis); the work of Sakata is algorithmic

but again requires non-trivial results from Commutative Algebra.

Our interest was to try to simplify the Commutative Algebra used in these papers by using construc-
tive ideal theory (groebner bases). We also felt that this approach would be helped by clarifying
the role of 2-D sequences. In particular, a goal was to compute the dual of a two-dimensional (2-D)
cyclic code using the elements of Algebra and standard, established algorithms only, i.e. by what

we may call Elementary Algebra, without using semisimplicity or noetherian hypotheses, nor the
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variety associated with an ideal.

We begin the key 1-D result: let F be a finite field with ¢ elements, g € F[X] and let Sol(g) be
the solution space of linear recurring sequences (Irs) annihilated by g. If M > 1, g|(X™ — 1),
ged(q, M) = 1 and g* is the reciprocal of g, then Sol(g) = (XM —1)/g*). See e.g. [6, p79].

To state our main result for ideals of R[X1,...,X,], where n > 1 and R is any commutative

domain, we need to give some additional notation. (See Sections 2 and 3 for precise definitions.)

Let R[X] = R[Xi,...,X»] and ¢g* denote the reciprocal of g € R[X]; S™(R) denotes the set of
N"-indexed sequences of elements from R. Shifting defines an action of R[X] on S™(R), which we
denote by o . If I is an ideal of R[X], let Sol(I) be the R-module Sol(I) = {s € S™(R) : Vf €
I,fos=0}.

We write Py for the ideal (XIM1 —1,..., XM~ 1), on the understanding that M; > 1,for 1 < i < n.
For an ideal I of R[X], we write w(I) > 1 if some Py C I. (For n =1 and I = (g),w(I) > 1 if the

order of g is at least one.)

We show in Section 3 that if w(I) > 1, there is a well-defined (replicant) R-homomorphism
p:Sol(I) = R[X]/Py.

THEOREM 1. Letn > 1,w(I) >1and Py CI. If I = Ejej(gj), then the replicant homomorphism
p : Sol(I) — R[X]/Py induces
p:Sol(l) = (Pa : | ) 97)/Pu.
Jj€J
(Recall that for an ideal P and a subset S of R[X],(P :S) = {f € R[X]: P D fS} is the ideal
quotient of P by S.) If g|(XM — 1), then (XM — 1 : g*) is generated by (XM —1)/g*, and we
recover the 1-D result over R. Our proof does not use the roots of the generators of I and in

particular, they do not have to be distinct.

In Section 4, we apply the ideal quotient algorithm of [7] (which uses groebner basis computations)
to compute Sol(I) using standard, well established algorithms. Our algorithm has been imple-
mented in MAPLE for all n > 1 and for all finite prime fields. Also, we can actually write down

Sol(I) in certain cases which arise in practice (see Corollary 11).

We discuss 2-D cyclic codes in Section 5, computing the dual and check ideal of a 2-D cyclic code.



We take a ”rootless” approach i.e. we do not use roots of unity and so do not need a semisimplicity
hypothesis. Examples from [1] and [2] are recomputed. Finding a reduced groebner basis for the
check ideal yields the ”independent point set” of [4] and so enables us to design encoders for 2-D

cyclic codes.

We conclude this Introduction with an overview of the notation. In general, we use Roman letters

for elements, Greek letters for functions and short names for sets.

Notation Meaning

n {1,2,...,n}.

i Projection of Z™ onto the i** component, i € n.
X Monomial X' ... X% where a; € Z.

&if Degree of f in X;, where 7 € n and f € R[X].

r* Reciprocal of f € R[X].

Py (XM —1,..., XM~ _ 1), where M; > 1 for i € n.
S™R) n-dimensional sequences over R.

L(s) Generating function of s € S™(R), as element of R[[X]].
fos Polynomial f acting on s via shifting.

Ann(s) Characteristic ideal of s.

Sol(I) Solution module of an ideal I of R[X].

[] Equivalence class of f in a quotient of R[X].

For a,b € A, a commutative ring, (a,b) is the ideal generated by a and b and we write a|b if b is a

multiple of a. We equate sums and products over the empty set to 0 and 1 respectively.



2 Preliminaries

This paper is a sequel to [8] and we continue that notation for sequences, power series and poly-

nomials.

Weletn>1, n={1,2,..,n} and Z = {0,%1,+2,...}; addition and negation in Z™ are defined
componentwise. For i € n,7; : Z™ — 7Z is the projection onto the i** factor; we also write a; for
m;a, where a € Z™ and i € n. We let 0,1 be the points in Z™ with all components 0, 1 respectively.
(We use the notation n in the context of an index i € n, so that no confusion between n and 1 €
Z™ arises.) Z" is partially ordered by the relation < on each component: a < b iff ma < m;b for

alli € n.

Let R be a commutative ring with 1 and let R[X] = R[X3,..., X,] be the ring of polynomials in n
commuting variables with coefficients from R; R[[X]] and R((X)) have their usual meanings. For
g € R((X)) \ {0}, the subset Supp(g9) = {a € Z™: g, # 0} of Z™ is called the support of g. We set
Supp(0) = 0. Polynomials are those elements in R[[X]] of finite support.

The degree of g € R[X] is written §g (and 60 = —o0). For f € R[X] and i € n, we let §; f be the i*"
partial degree of f, that is, the degree of f regarded as a polynomial in X;; f is the n-vector with
components d;f. For a € Z™, we abbreviate X7 ... X2 to X*. If f € R[X]\ {0}, the reciprocal
of fis f* =X f(X71,...,X, 1) and 0* = 0.

We write f € R[X] as f = f(X) =) fa X7,

a€Supp(f)

It is clear that for f € R[X]\ {0}, d;f = max{a; : a € Supp(f)}, so that for a € Supp(f),df —a is
a well-defined point in N”.

If f =3, coupp(s) faX" » the reciprocal of fis f* =3, coupp(s) faX° . Clearly 6f* < &f; it is
easy to verify that f = X%/=%" f** and that (fg)* = f*g*.

An n-D sequence over R is simply a sequence of elements of R, indexed by N* : S"(R) = {s :
N* — R}. If addition and scalar product are defined componentwise, S™(R) becomes a unitary
R-module. There is an action of R[X] on S™(R) given by

Z (faxa) oS = Z faSatb

a€Supp(f) b a€Supp(f)

where b € N*.



Thus (X%0s)p = sa4b. 1t is easy to check that S™(R) is an R[X]-module and that fo(gos) = (fg)os,
where fg denotes the product in R[X].

The annihilator ideal of s, Ann(s) = {f € R[X]: fos =0}, is also called the characteristic ideal

of s, and we say that s is an (homogeneous) n-dimensional linear recurring sequence (n-D lrs) if

Ann(s) # {0}.

Thus s is an n-D Irs if there is a non-zero f € R[X] with fos=0. If f = ZaeSupp(f) foX?, then

f os =0 is equivalent to

imyen=( £ axer) - T s

a€Supp(f) a€Supp(f)

for all b > 0, and we recover the usual definition of an Irs. Finally, the generating function of
5 € S™(R) is T'(s) = }_,50 5. X" € R[[X]].

3 The main result

We define the replicant homomorphism and state three lemmas which are used to prove the main

result (Theorem 6).

DEFINITION 2. Sol(I), the solution module of an ideal I of R[X] is Sol(I) = {s € S®(R) : I C
Ann(s)}.

The following lemma was stated for S™(F) in [9, Corollary 4.2], but is in fact valid for S™(R) (see
[8, Corollary 2.11]):

LEMMA 3. Let s € S™(R),p; € Ann(s) N R[X;] for i € n and p = [[, pi- Then p*T'(s) € R[X]
and §;p*T'(s) < 0p; — 1 for i € n.

Thus if w(I) > 1 and Py C I, there is a well-defined replicant homomorphism p : Sol(I) —
R[X]/Pus given by p(s) = [[Tj=, (1 - X]")T(s)].

Lemma 3 and the next lemma ( which is a simple extension of [9, Lemma 2.2] ) are used to show

that the replicant map is 1-1.



LEMMA 4. (Reduction Lemma). Let R be a domain and f = " p;u; for some p; € R[X;],u; €
R[X]. There are r € R,v; € R[X] such that rf = )" | p;v; and for all i € n, dp;v; < df.

The next result is used to show that p maps onto an ideal quotient. It was inspired by [10, Theorem
7.1, p 183], which applies to S'(F). (Note that in [10, loc. cit.], one-to-oneness is proved using a

dimension argument over F.)
We need several definitions before stating Lemma 5:

if M > 1 and a > 0, define a mod M by 7;(a mod M) = a; mod M; for alli € nandif §f < M—1,
define U(f) € Sn(R) by U(f)a = fa mod M -

Clearly po(f) = [f] if o(f) € Sol(I).

LEMMA 5. Let M > 1, f, g € R[X],6f < M —1 and M' € N* be defined by m;(M') =

gf= Y (900(farmr—s5,X*(mod Py)
0<a<M—-1

The proof of Lemma, 5 is a straightforward consequence of the definitions.

Recall that for an ideal P and a subset S of a commutative ring A,(P :S) = {a € A: P D aS}.
It is an ideal of A, called the ideal quotient of P by S, and it contains P. We write (P : a) for
(P : {a}). It is easy to check that (P : {a,b}) = (P:a)N (P :b).

We can now state the main result:

THEOREM 6. Let I =37, ;(9;) C R[X], w(I) > 1 and Py C I. Then

p:Sol(I) = (ﬂ(PM : g;)> /Par.

JjEJ
4 Computing Ideal Quotients

We first show how we can write down certain ideal quotients that arise in practise and then give

the main algorithm.



The following Lemma is proved for polynomial rings in [7, p256] but is in fact valid for any R.

LEMMA 7. Let r € R and let I be an ideal in R. If INn (r) = (g1,...,9%) then (I : r) =
(gl/ra"'agk/r)‘

As a simple application,
PROPOSITION 8. If g|p € R, then (p: g) = (p/9).
LEMMA 9. Suppose that R is a factorial domain.

(a) Let g1(X1)|f1(X) € R[X] and f; € R[X>,...,X,] for 2 < i <n. Then
<Z(f’)> N(g1) = (f1) + Z(glfi)'
(b) If g;|p;(X;) then

1y-- ;pn ng —Z(pz H g])

=1 i=l,j#i

(c) If gi|p;(X;) then

ﬂ ((Qi) + Z(Pj)) = (H 9i) + (p1,-- -, pn)-

i=1 J#i i=1

Combining Lemmas 7 and 9 parts (b), (¢) now yields:

PROPOSITION 10 Let R be a factorial domain and let g;|p; € R[X;] fori € n and P = (p1,...,Pn)-
Then

(P ng = Z (pi/9:) and (P : i(gi)) = (ﬁm/m) + P.

i=1
Combining the previous result with Theorem 6 (and identifying a polynomial and its equivalence

class in R[X]/Pxs for simplicity), we obtain

COROLLARY 11. Let R be a factorial domain, g; € R[X;], M; = w(g;) > 1. Then

Sol( Hg, ) = Z (pi/9%)/ Pur
i=1

Sol(D_(pi/g7) = ng /Pu
i=1



We remark that Corollary 11 yields reduced groebner bases for any term order. More generally,
when R is a field F, we can determine a lexicographic (reduced) groebner basis of any ideal quotient

((p1y---,pn) : (91,---,9k)), where p; € F[X;], as follows:

ALGORITHM 12

Input: n>1, k>1, g; €e FX]for 1 <j<k, P=(p1,...,pn), pi € FX;].
Output: A lexicographic (reduced) groebner basis for (P : (g1,-.-,9k))-

(i) Using the F-basis {X*: 0 < a < ép — 1} for F[X]/P, find an F-basis {fi;, f2j,---, fi;;} for the
(polynomial) solutions to fjg =0 in F[X]/P, 1 <j <k.

(ii) Compute a reduced groebner basis B; for {fi;, f2j,..., fi;;} UP, 1<k <k.
(iii) Compute ﬂle B; as in [7, Section 4.3].

It follows that we can compute Sol(I) given a basis of any ideal I of F[X] (which will be finitely
generated by Hilbert’s Basis Theorem). The following example is essentially [9, Example 3.5].

EXAMPLE 4.7. We compute ((p1,p2) : g), where R = GF(2), p; = X} + X? +1,i = 1,2 and
9(X1, X)) = X3X3 + X3X2 + X2X2 + X1 Xo + X1 + 1.

Step (i) yields the basis {X1 X2+ X1+ 1, Xo+ X7+ X1 +1, XPX3+ X3XZ+ X3 X, + X3 +1,
XP+ X7+ 1L,XPX3 + X34+ X7X5 + X3+ X{Xo + Xo + X7+ X0 +1, X5+ XPX3 + X1 X5 +
XX+ XX+ X0 X5+ X1 Xo + X7+ X1 + 1}

which has reduced groebner basis {X> + X3 + X1 +1, X{ + X7 + 1}.
REMARKS 14

(i) It is easy to see that if d; = (p;,g9) and d = dy ...dy, then (P : g) = (3 (pi/d;) : g/d), so we
may assume without loss of generality in Algorithm 12 that for all i, j, (p;,g9;) = 1.

(ii) Step (i) of Algorithm 12 is an application of [5, Method 6.7], which applies since {p; : ¢ € n}

is trivially a reduced groebner basis for the ideal it generates (with respect to any term order).



(iii) Step (ii) may be rendered more efficient using ” k-elimination” term orderings. See [7, Chapter

I1] for details.

(iv) It is possible to generalize Algorithm 12 to more general domains. Firstly, as in [7], Step (i) can
be done by computing a groebner basis of the P N (g;) and then applying Lemma 7. (This avoids
solving linear systems over domains.) Secondly, more general groebner basis algorithms have been
studied e.g. in Euclidean domains, [11] and in noetherian (M-L) rings, [12]. Thirdly, [7, Theorem
3.11] and the Elimination Theorem [7, Theorem 3.2] also hold in R[X] when R is noetherian (M-L)
if we use [12, Theorems A, B]. As shown in [7, Section 3.3], this suffices to compute the intersection
of two ideals and hence to compute a groebner basis for an ideal quotient in a noetherian (M-L)

domain.

5 2-D cyclic codes

We define the dual and check ideal of a 2-D cyclic code and recompute some examples from [1],

[2] and [3] using Algorithm 12.

Let F be a finite field, M, N > 1 and P = (X™ —1,Y"™ —1). Consider

N-1 M-1

X, Y) =) (D e XH)YI

j=0 =0
€ F[X,Y]/P, which also represents an M x N array of elements from F. Multiplying ¢(X,Y’) by
X (by Y) corresponds to a cyclic column (row) shift of ¢. Now a linear subspace of F[X,Y]/P is
an ideal iff it is closed under multiplication by X and by Y. This motivates the following:

DEFINITION 15. ([13]) An M x N 2-D cyclic code over F is a proper ideal of F[X,Y]/P.

ExaMPLE 16. (Product Codes) Let (f) and (g) be (M, k) and (N,1) cyclic codes respectively. The
set of all M x N arrays in which the columns belong to (f) and the rows belong to (g) is closed
under row and column shifts, and thus defines a 2-D cyclic code, called the product code defined
by (f) and (g). It is well known and easy to prove that this product code is (fg). In particular, it
is an (M N, kl) cyclic code.

The following example is from [1, p34].



EXAMPLE 17. Let C;, 1 < i < 5 be the following ideals in GF(2)[X,Y]/(X3+1,Y5 + 1) :

Ci=X+1L,Y+1),Co=(X*+X+1,Y+1), C3=(X+1,Y*+ Y+ Y2 +Y +1)

and
Cy =(X>+X+1L,Y24+(X+1)Y +1), Cs=(X*+X+1,Y2+XY +1).

Observe that the last two are ideals since (Y2 + (X + 1) Y + 1)(Y? + XY + 1) =YV* + V3 4+ V2 +
Y + 1(mod X2 + X + 1). Also, none of these codes is a product code.

We define the dual of a 2-D cyclic code as in [1]:

DEFINITION 18. For f,g € F[X,Y]/P, define f L g = 3.V E] ! fiigij € F. The dual of an
M x N 2-D cyclic code C is

={feFX,Y]/P:VgeC,fLg=0}

It is easy to see that C is an ideal in F[X, Y]/ P. The next result gives two convenient polynomial
characterizations of the dual code, and can be proved using [14, Theorem 1] and the fact that X
and Y are invertible in F[X,Y]/P.

PROPOSITION 19. Let C be an ideal of F[X,Y]/P. Then in F[X,Y]/P,

={f:VgeC,fg" =0} ={f:Vg € C, f*g=0}.

CoOROLLARY 20. If P C (g1,---,9%), then

k
(gla' '7gk (ﬂ P g] )
j=1

COROLLARY 21. If f|p and g|q, then
(@) (f9)* = (p/f*,q/g%) and
(b) (f,9)" = (pa/"9")-

EXAMPLE 22. A codeword ¢ of the M x N array code over F is an M x N array [c;;] satisfying

Ei]\; ! cij = 0 and E, —o Cij = 0. In other words, the column and row check polynomials are

10



1+X+...+ XM 1 and 14+Y +...+YN~1. Thus the M x N array code is just the product code
defined by X —1and Y — 1.

The duals of C;, Cs and C3 in Example 5.3 are easily seen to be product codes by Corollary 5.7.

However, for Cy and Cs, we obtained
Cr=(X+D¥ +1)Y*+Y2+X)), C+ =(X+ )Y +1D)Y*+Y2+ X +1))

using Algorithm 12.

REMARK 23. The ”dual ideals” calculated in [1,p34] are not the dual codes Cf‘, but the check
ideals C}’ : the check ideal of a 2-D cyclic code C is CV = Anng[x,y}(C). It is easy to see that
CY = (P : C)/P. In particular, we can compute it using Algorithm 12. For example, to compute
CY,wefind (X?+1,Y5+1): X2+ X+1)N((X3+1,Y>+1): Y2+ (X +1)Y +1) is

(X+L,Y+1)N(X3+1L,Y° +1,(X + 1)(Y + (Y2 + XY +1))

which is
(X*+ 1LY +1L,(X+1)(Y +1)(Y? + XY + 1))

sothat CY = (X+1)(Y+1)(Y2+XY +1)). Similarly, CY = (X+1)(Y +1)(Y?+ (X +1)Y +1)).
Compare [1,p34].

Notice that dimp Cy = dimp CY = 5 whereas dimg Cj = dimg C’5L = 2. Thus in general, the dual

and check ideal of a 2-D cyclic code are not equivalent subspaces, in contrast to 1-D cyclic codes.

EXAMPLE 24. Let Cg = ((X +1)(Y2+X2Y +1), (X%2+ X +1)(Y +1)) which is [2, Example 2a], and
let Crbe (YA+Y3 4+ XV2+(X2+X+1)Y+X,(X+1)Y3+(X2+1)Y2+(X2+1)Y + X +1) which
is [2, Example 3]. Tt is stated in [2] that C3- = C7. However, we obtained C3- = (Y4 +Y + X + 1),
not Cr (as would be expected from the calculation on [2, p4,5]) and C7- = (Y3 + Y2 + X +1).

The following example is partly due to A.Au:

EXAMPLE 25. Let Cs = (X +1)(Y2+ XY +1),(X2+ X +1)(Y +1)). Then Cf = (XY*+VY3+
V24 XY+ X2+ X+1)and Cgt = (Y2 +Y2+ X +1).

Thus Cs = C7 , so C3- = C7 and the first generator of Cs above i.e. of [2, Example 2a] should be
(X +1)(Y2+ XY + 1), not (X +1)(Y2 + X?Y + 1). With this change, Cg- = Cs.

11



EXAMPLE 26. Let Cy = (Y2 +Y + X2 + X) of [16, Example 6, p43]. We obtained C3- =
Y*+Y3+Y24+Y +1)(X2+ X +1)) = Cy . In particular, Cy and Cg- are equivalent, even

though the generator of Cy is not equal to its reciprocal.

6 Conclusion and Further Work

We have shown, using elementary techniques, that the solution module (of n-D sequences) of certain
polynomial ideals is an explicit ideal quotient. This generalizes the known 1-D result to domains.
We have also shown how to compute the solution module over fields using standard algorithms.
As a consequence, we are able to compute the dual and check ideal (and hence encoders) of 2-D

cyclic codes using standard algorithms.

It would be interesting to apply Section 5 to generalized array codes ([17],[18]) and to know, for a

given a 2-D cyclic code C, when C+ and CV are isomorphic F-subspaces.

We also hope to apply the techniques of this paper to [19], [20].

AcCKNOWLEDGEMENTS.The author would like to thank P. Fitzpatrick for helpful correspondence
on 2-D codes, A. Au for implementing Algorithm 12 in MAPLE, as well as the U.K. Science and

Engineering Council and the Centre for Communications Research for financial support.

References

[1] Ikai, T., Kosako, H. and Kojima, Y. Two dimensional cyclic codes. Electronics and Communi-
cations in Japan. Vol 57-A (1975), 27-35.

[2] Imai, H. A theory of two-dimensional codes. Inform. Control, Vol. 34 (1977) 1-21.

[3] Sakata, S. General theory of doubly periodic arrays over an arbitrary field and its applications.
IEEE Trans. IT, Vol. IT-24 (1978), 719-730.

[4] Sakata, S. On determining the independent point set for doubly periodic arrays and encoding
two-dimensional cyclic codes and their duals. IEEE Trans. IT, Vol IT-27 (1981) 556-565.

12



[5] Buchberger, B. Groebner bases: an algorithmic method in polynomial ideal theory. In ”Multi-
dimensional Systems Theory (N.K. Bose, ed.) Dordrecht: Reidel (1985), 184-232.

[6] van Lint, J.H. Introduction to Coding Theory. Springer Verlag, NewYork (1980).

[7] Cox, D., Little, J. and O’Shea, D. Ideals, Varieties and Algorithms. Springer Verlag. (1991).

[8] Norton, G.H. On n-dimensional sequences, I. Generating functions. Preprint, Dec 1991.

[9] Fitzpatrick, P. and Norton, G.H. Finding a basis for the characteristic ideal of an n-dimensional
linear recurring sequence. IEEE Trans IT, Vol. IT-36 (1990), 1480-1487.

[10] Peterson, W. and Weldon, E.J. Error Correcting Codes (Second Edition) MIT Press, Cam-
bridge Mass. 1972.

[11] Kandri-Rody, A. and Kapur, D. Computing a groebner basis of a polynomial ideal over a
Euclidean domain. J. Symbolic Computation, Vol. 6 (1988), 37-57.

[12] Jacobsson, C. and Lofwall, C. Standard bases for general coefficient rings and a new construc-

tive proof of Hilbert’s basis theorem. J. Symbolic Computation, Vol. 12 (1991), 337-371.

[13] Berman, S.D. ”Semisimple Cyclic and Abelian Codes II”. Cybernetics, Vol. 3, No. 3, 17-23
(1967).

[14] McWilliams, J. Codes and Ideals in Group Algebras. In ” Combinatorial Mathematics and its
Applications”. (Bose, R.C. and Dowling, T. Eds.). University of North Carolina Press, Chapel
Hill (1969), 317 - 328.

[15] Blaum, M., Farrell, P.G. and van Tilborg, H.C.A. A class of burst error correcting array codes.
IEEE Trans. IT, Vol. IT-32 (1986), 836 - 839.

[16] Imai, H. Multivariate polynomials in Coding Theory. Proceedings of AAECC-2, Springer Lec-
ture Notes in Computer Science Vol. 228, 36-60.

[17] Blaum, M. and Roth, R.M. "New array codes for multiple phased burst correction.” IEEE

13



Trans. Vol. IT- 39 (1993), 66 - 77.

[18] Honary, B., Markarian, G.S. and Farrell, P.G. ” Generalised array codes and their trellis struc-
ture.” Electronic Letters, Vol. 29 (1993), 541 - 542.

[19] Ikai, T., Kosako, H. and Kojima, Y. ”Basic theory of two-dimensional cyclic codes. - periods
of ideals and fundamental theorems.” Electronics and Communications in Japan. Vol 59-A (1976),
31-38.

[20] Ikai, T., Kosako, H. and Kojima, Y. Basic theory of two-dimensional cyclic codes - structure
of cyclic codes and their dual codes. Electronics and Communications in Japan. Vol 59-A (1976),
39-47.

14



