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Abstract

We study trellises of Reed—Muller codes from first principles. Our approach to local trellis
behaviour seems to be new and yields amongst other things another proof of a result of
Berger and Be’ery on the state complexity of Reed—Muller codes. We give a general form
of a minimal-span generator matrix of the family of Reed—Muller codes with their standard
bit—order. We apply this to determining the number of parallel subtrellises in any uniform
sectionalisation of a Reed—Muller code and to designing trellises for Reed—Muller codes with
more parallel subtrellises than the minimal trellis, but with the same state complexity.

1 Introduction

1.1 Overview

We write Fs for the field with two elements. By a code we mean a linear block code. A trellis T
for a code C' is a directed graph, the vertices of which are placed at ordered depths. The edges
of T join vertices at adjacent depths and are directed according to the order of the depths. Paths
through T pass through one vertex at each depth and are in one-to—one correspondence with
the codewords of C. The most important application of a trellis for a code is Viterbi decoding
(dynamic programming). Trellises with low vertex counts at each depth are of interest, and the
state complexity of a trellis measures this. A code has a unique trellis which simultaneously
minimises the number of vertices at each depth, its minimal trellis, [13].

Here we are interested in trellises and related generator matrices for Reed—-Muller (RM)—codes,
which have received considerable interest, e. g. in [10, 12] and the articles cited there.

Equivalent codes can have different trellises and so the order of the bits of an RM—code is impor-
tant. The bit—order of a length 2™ RM-—code is determined by the order of F§* (see Section 1.3).
The standard bit-order of such an RM—code comes from the lex[icographical] order of F5*. (This
is the natural order from both the ‘boolean function’ and the ‘(u|u + v) construction’ approaches
to RM-—codes.) It is known that the standard bit—order of RM—codes is optimal with regard to
minimising state complexity, [6], and that the extended cyclic bit—order of RM-—codes is worst
possible, [7].

In Section 2 we characterise the local trellis behaviour of a length 2™ RM-code whose bit—order
is determined by any monomial order of FJ*. (We note that lex order of F}* is a monomial order
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but that the extended cyclic bit—order of RM—codes comes from an order of F§* which in general
is not monomial.) We use this to show that a total degree order is as bad as the extended cyclic
bit—order with regard to state complexity. From Section 2.2 onwards we consider only the standard
bit—order. We use our description of the local trellis behaviour to give new (and simpler) proofs of
some known results on the state complexity of RM-—codes, such as the recurrence relations of [10]
and the actual value of the state complexity found in [2]. In the process, we determine a depth at
which state complexity is attained, which we use later.

In [9] an algorithm for converting a generator matrix for a code C into a trellis for C is given. A
generator matrix that gives the minimal trellis is called a minimal-span generator matriz. ' In
Section 3 we give a general form for minimal-span generator matrices for the family of R M—codes
with their standard bit—order. (A minimal-span generator matrix can be determined for any given
RM-—code using an algorithm in [11], however, as far as we are aware, there is no known general
form for minimal-span generator matrices for the family of R M—codes.)

A subtrellis of T is a trellis whose paths are a subset of the set of paths through T'. Subtrellises are
parallel if they have no vertices in common other than the initial vertex and a final vertex. Parallel
subtrellises in a trellis can be used for parallel processing, [12]. The number of parallel subtrellises
can be increased by dividing a trellis into sections (as described in Section 4). In Sections 4 and
5 we use the general form minimal-span generator matrix and results of [12] to determine the
number of parallel subtrellises in uniform sectionalisations of the minimal trellises of RM—codes
and to design trellises for R M—codes with more parallel subtrellises than the minimal trellis, but
with the same state complexity.

Some of the results on the local trellis behaviour and state complexity of RM—codes first appeared
in [3].

1.2 Trellises

For n > 1, a length n trellis T over an alphabet A is an edge-labelled, directed graph with the
following properties:

e its vertex set, V', has an (n + 1)-way partition, V = U"_1 Vis

i=—1

e its edge set, E, has an n—way partition, £ = U?:_(Jl E; such that E; is a set of triples
(vi—1,a,v;) with v;_1 € V;_1, v; € V; and a € A; such an edge is from vertex v;_; to vertex
v; and has label a.

We also require the following connectivity properties:

o for 1 <i<n—1,if (vi_1,a;,v;) € E; then there exists v;_s € V;_5 and a;—1 € A such that
(Vi—2,@i-1,v—1) € E;_1 and

e for 0 <i<n—2if (v;—1,a;,v;) € E; then there exists v;y1 € Viy1 and a;41 € A such that
(Uia A1, 'Uz'+1) € FEi1.

We note that {—1,...,n — 1} is refered to as the set of depths and that V; is the set of vertices at
depth ¢ etc. Usually the depths are labelled from 0 to n but —1 to n — 1 will prove to be more
natural when considering trellises for R M—codes. Typically the first and last depths each contain
a single vertex, the initial and final vertices, but we deal with trellises with more than one final
vertex. A consequence of the ‘edge—set property’ is that all edges are between vertices at depths
i — 1 and ¢ for some 0 < ¢ < n — 1 and that distinct edges between the same two vertices must

1 A minimal-span generator matrix was initially called a trellis—oriented generator matrix in [4], before the advent
of deriving non—minimal trellises from generator matrices. We prefer the term minimal-span generator matrix as
trellis—oriented generator matrix does not reflect the minimal nature of this generator matrix.



have different labels. We note also that the fact that a trellis is connected ensures that there is an
edge from the initial vertex.

When n and A are understood, T will always denote a length n trellis over A.

For —1 < i < j < n — 1, the set of branches between depth i and depth j of T consists of those
triples

(vi7 (ai+17 iy 2, .- 70’,7')7“]')
such that there exists (v;, @jt1,Vit1) € Eit1, (Vit1,Qit2,Viy2) € Eiga,...,(vj_1,a;,v;) € E;. Such
a branch is directed from v; to v; and (@it1,@i42,---,a;) is the branch label. By convention, the

set of branches between depths i and i is V;.

The set of paths through T consists of those n—tuples of the form

((U—IJG’OJUO)J (’U07a17v1)7 [EEE} (Un—27an—17vn—1))7

such that (v;_1,a;,v;) € E; for each 0 <4 <m — 1. Such a path has label (ag,...,a,_1). If there
is a unique path for each path label then T is called one—to—one. All the trellises that we consider
will be one—to—one.

Let C be a length n code with symbols from A. If the set of path labels of T is equal to the set of
codewords of C' then T is a trellis for C.

EXAMPLE 1.1 A trellis for a code is not necessarily planar. For example, the reader may verify
that the trellis for the (5,3) code in [14, Fig. 2] contains the ‘utility’ graph Ks 3 on vertex sets
{v1,v4,v10} and {vs,vs,vs}, where the root is vy and vertices are labelled consecutively within each
depth. (We remark that the Viterbi algorithm does not require that the trellis be planar.)

The complexity of Viterbi decoding is determined by trellis features.

DEFINITION 1.2 Let T be a length n trellis over Fy. For —1 < i < n — 1, we write $;(T) for
log, |Vi|, where V; is the set of vertices of T at depth i. The state complexity of T is

s$(T) =max{s;(T) : —1<i<n—1}.

Similarly, for —1 <i < j <n—1, we write b; j(T) for log, |B; ;|, where B; ; is the set of branches
of T between depths i and j. The branch complexity of T is

b(T) = max{bi,l,i(T) :0 S i S n — 1}.

We note that s;(T) = b;;(T) and that b;_1;(T") = log, |E;|, where E; is the set of edges of T
between depths ¢ — 1 and i.

There are other measures of trellis complexity, such as the the edge complezity, given by |E| =
S 2b-14(T) and the actual number of computations used in Viterbi decoding with the trellis,
given by 2|E| — |V|+ 1, where [V| = 3277 2%(T)_ If T is the minimal trellis for C then we refer to
any of the trellis complexities of the minimal trellis of C' as a trellis complexity of C. In this case
we also write s;(C) for s;(T), b; ;(C) for b; ;(T), s(C) for s(T') and b(C) for b(T'). We calculate
the trellis complexities of an RM-code and its dual in Example 2.3.

1.3 Reed—Muller codes

We work from the definition of Reed-Muller (RM—)codes given in e. g. [1], using variables
Xi,...,Xm. For 0 <r <m, we put

Mon(r,m) = {X;, -+ X;, :0<k<rand1<i <i» <---<ip <m}



and Poly(r, m) equal to the Fy—linear span of the monomials in Mon(r,m).

For o € Fy* we write

a=(a(l),...,a(m)),
where a(j) € Fy for 0 < j < m. We put F5* = {ay,...,a2m_1} and assume given a (total) order
of FI*, ap < a1 < -+- < agm_1. The order of FJ* is

e a monomial order if a;(j) < a; () for all 1 < j < m implies that a; < ay;
o a total degree order if 327", a;(j) < X0L, ey (j) implies that a; < ay;
o lexficographical] order if i = E;nzl a;(7)2971, so that «; is the (standard) binary representa-

tion of 1.

Lex order and total degree orders are monomial orders. Lex order is the usual counting order of
Fpe.

For a polynomial f € Poly(r,m) and the given order of Fj*, we have the evaluation of f,

ev(f) = (f(a(])a ey f(a2m—1))7
and for 0 < r < m we define RM(r,m) by
RM(r,m) = ev(Poly(r,m)).

If F* is ordered by a monomial (respectively total degree) order then we say that RM(r,m) has
a monomial (respectively total degree) bit—order. As in Section 1.1, if Fj* has lex order then we
say that RM (r,m) has its standard bit-order. We remark that, although the standard bit—order
minimises the state complexity of an RM-code, [6], this does not guarantee that the standard
bit-order minimises the other trellis complexities of RM—codes.

We label the columns of a generator matrix of RM(r,m) from 0 to 2™ — 1 and write dim(r,m)
for the dimension of RM(r, m).

2 State complexity of RM—codes

We study local trellis behaviour and introduce points of gain/fall. We then characterise the points
of gain/fall of RM (r,m) with any monomial bit—order. We use this characterisation

(a) to show that the state complexity of RM(r,m) is worst possible when it has a total degree
bit—order,

(b) to give a new proof of the recurrence relations of [10] and

(c) to give a new proof of the value of the state complexity found in [2] when RM (r,m) has its
standard bit—order.

2.1 Points of Gain and Fall

While a minimal-span generator matrix produces a minimal trellis, measures of trellis complexities
for a length n code C can also be determined without a minimal-span generator matrix. For
—1 < i < n—1the it" past subcode of C, C; is defined as the linear space of codewords of the
form (cg,...,¢;,0,...,0) and the i** future subcode of C, C’z?" , is the linear space of codewords of
the form (0,...,0,¢it1,.-.,¢n—1). In [5] it is shown that for i < j,

J



In particular, s;(C) = dim(C) — dim(C; ) — dim(C}").
Now dim(C;") increases from 0 to dim(C) in unit steps and dim(C;") decreases from dim(C) to

0 in unit steps as i goes from —1 to n — 1. An increase in dim(C;") leads to a possible decrease

in s;(C) and that a decrease in dim(C}") leads to a possible increase in s;(C). Thus we make the
following definitions

DEFINITION 2.1 Let C' be a length n code. For 0 <i<mn—1,
(i) if dim(C;") = dim(C}t ;) — 1 then i is a point of gain of C' and
(ii) if dim(C; ) = dim(C;_;) + 1 then i is a point of fall of C.

2

We note that if ¢ is both a point of gain and a point of fall of C' then s;(C) = s;—1(C).

Writing «;(C) for the number of points of gain of C' before and including j and 6;(C) for the
number of points of fall of C' before and including i we have that,

v;(C) = dim(C) - dim(C]?L) and 6;(C) = dim(C;)
and hence
bi,;(C) = %(C) = &:(C). 1)
In particular, s;(C) = v;(C) — 6;(C).

Knowledge of where the points of gain and points of fall of C' occur describes how the minimal
trellis of C' behaves locally. In the terminology of [§],

e if  is neither a point of gain nor a point of fall then there is an ‘extension from each vertex
at depth ¢ — 17,

e if i is a point of gain but not a point of fall then there is a ‘simple expansion from each vertex
at depth ¢ — 17,

e if ¢ is not a point of gain and a point of fall then there is a ‘simple merger into each vertex
at depth ¢’,

e if { is a point of gain and a point of fall then there is a ‘butterfly between connected vertices
at depths i — 1 and 7’.

In particular if all the points of gain and points of fall of C' are known all the usual measures of
trellis complexity for C' can be determined (as in Example 2.3 for RM(1,4) and RM(2,4)).

Now for ¢ = (cg, - --,¢n—1) 7 (0,...,0) we have the initial point of c,
initial(¢) = min{i : ¢; # 0},

and the final point of c,
final(c) = max{i : ¢; # 0}.

(We note that 0 < initial(¢) < final(c) < n — 1.) Thus ¢ is a point of gain of C if and only
if there exists ¢ € C with initial(c¢) = ¢ and ¢ is a point of fall of C' if and only if there exists
¢ € C with final(c) = i. A set of dim(C) codewords with distinct initial (respectively final)
points can be used to form a generator matrix for C' called a future—oriented generator matriz
(respectively past-oriented generator matriz). We extend the notion of initial and final points to
polynomials. So for 0 # f € Poly(r,m) we put initial(f) = initial(ev(f)) = min{i : f(a;) # 0}
and final(f) = final(ev(f)) = max{i : f(a;) # 0}. Thus the points of gain of RM(r,m) occur
at the initial points of polynomials in Poly(r,m) and the points of fall of RM(r,m) occur at the
final points of polynomials in Poly(r,m). In the proof of Proposition 2.2 we give a past—oriented
generator matrix and a future—oriented generator matrix for RM(r,m).

For a € FJ* we write |a|o for the number of 0’s in « and |a|; for the number of 1’s in a.



PROPOSITION 2.2 If RM(r,m) has a monomial bit—order then

(i) i is a point of gain of RM(r,m) if and only if |a;|1 <r
(i) i is a point of fall of RM(r,m) if and only if |a;lo < 7.

ProOOF. Fix a monomial order on F35*.

Firstly for 0 < k <rand 1 <i; <iy < --- < i < m we have that X;, --- X;, € Poly(r,m). Now
for a = (a(1),...,a(m)) € Fy*, X;, --- X;, () is non—zero if and only if a(i;) = a(iz) = --- =
a(ix) = 1. Since our order is monomial, we have that Qlinitial(X;, X, ) has 1’s in positions i1, ..., ik
and 0’s elsewhere. Thus each ¢ with |a;|1 < r is an initial point of an element of Poly(r,m) and
hence a point of gain of RM(r, m). Moreover there are dim(r, m) such points, which is the number
of points of gain of RM(r,m).

A similar argument with polynomials of the form 1 + X;, --- X;, for 0 < k < r gives the points of
fall of RM(r,m). O

We recall that RM(r,m)t = RM(m —r —1,m). It is straightforward to see from Proposition 2.2
that (i) if » < m—r —1 then all points of gain and points of fall of RM(r, m) are respectively points
of gain and points of fall of RM(m —r — 1) and (ii) that ¢ is a point of gain of RM(m —r —1,m)
that is not a point of gain of RM(r,m) if and only if 7 is a point of fall of RM(m —r — 1,m)
that is not a point of fall of RM(r,m). In particular s;(RM(r,m)) = s;(RM(m —r —1,m))
(as we would expect since s(C) = s(C*) for all codes C, [4]) and the other trellis complexities of
RM(r,m) are typically less than those of RM(m —r — 1, m). This is illustrated in Example 2.3,
where we use Proposition 2.2 to determine the trellis complexities of RM(1,4) and RM(2,4) with
their standard bit-orders.

EXAMPLE 2.3 Proposition 2.2 yields the following table when RM(1,4) and RM(2,4) have their
standard bit—orders.

i -1 012 3456 789 10 11 12 13 14 15
0000O0O0O0GO0OTI1IT1T1 1 1 1 1 1

o 00001111000 0 1 1 1 1
001100110071 1 0 0 1 1
01010101010 1 0 1 0 1

wRM(1,4) |0 I 2 3 3 444455 5 5 5 5 5 5
§i(RM(1,4) |0 0000000111 1 2 2 3 4 5
siRM(1,4) | 0 1 2 3 3 4 4 43 44 4 3 3 2 1 0
bi_1,i(RM(1,4)) 1 233 444444 4 4 3 3 2 1
v(RM(2,4) |0 I 2 3 45 6 7 7 & 9 10 10 11 11 11 11
Si(RM(2,4) |0 000 112 3445 6 7 8 9 10 11
siRM(2,4) |0 1 2 3 3 44 43 44 4 3 3 2 1 0
bi_1,i(RM(2,4)) 1 234455445 5 4 4 3 2 1

Thus
(a) B(RM(1,4)) =4 and b(RM(2,4)) =5,
(b) the edge complezities of RM(1,4) and RM(2,4) are 172 and 252 respectively and

(c) the total number of computations needed for Viterbi decoding with the minimal trellises of
RM(1,4) and RM(2,4) are 195 and 355 respectively.

We now show that RM(r,m) with a total degree bit—order has state complexity reaching the Wolf
upper-bound, [14].



COROLLARY 2.4 If RM(r,m) has a total degree bit-order, then

s(RM(r,m)) = min{dim(r, m),dim(m —r — 1,m)}.

PROOF. Since the state complexity of a code is equal to the state complexity of its dual (e. g. [4]),
it is sufficient to show that for r < m — r — 1, the state complexity of RM(r,m) (with a total
degree bit—order) is dim(r,m).

Since there are dim(r, m) points of gain of RM (r,m) it is sufficient (from Equation (1) with j = 1)
to show that all points of gain come before all points of fall i. e. that if i is a point of gain and j
a point of fall then a; < a;j. Now from Proposition 2.2 if 4 is a point of gain then |a;|; < r and if
J is a point of fall then |a;lo < r so that |aj|y > m —r > r > |a;|1. By the definition of a total
degree order if |a;|1 < |aj|1 then a; < ¢ . |

2.2 Recurrence relations for RM(r, m) with its standard bit—order

For the rest of the paper we take RM(r,m) to have its standard bit—order. Thus for 0 < i < 2™ —1,
«; is the binary representation of i:

a; = (a;(1),...,a;(m)) if and only if { = Z ai(5)27 L.
j=1

Where there may be ambiguity regarding the value of m we write agm) for a;. Thusif 0 < i =
2?21 a; ()27t <2n~! — 1 and m > n then

o™ = (ai(1),..., (), 0, 0).
S——

m—n

We will use the following abbreviations:

Yi(r,m) | %(RM(r,m))
61’ (’l“, m) 61 (RM (’f‘, m))
bij(r,m) | bij(RM(r,m))
si(r,m) | si(RM(r,m))
s(r,m) s(RM(r,m)).

We will make considerable use of a special case (Corollary 2.6) of the next result. While Proposition
2.5 may be known, we include a proof based on Proposition 2.2 for completeness.

PROPOSITION 2.5 For —1<i<j<2™m™—1,

bi,j(r,m) = bam_j_3.9m_;2(r,m).

PrOOF. We write 'y;f (r,m) for the number of points of gain after and including j and &} (r,m) for
the number of points of fall after and including i. We note that

vf (r,m) = dim(r,m) — ;1 (r,m) and & (r,m) = dim(r,m) — 61 (r,m).

Now if i has binary representation (a;(1),...,a;(m)) then 2m—1—j = Y";°  2k=1_3""  q,(k)2k—1
has binary representation (1 —a;(1),...,1—a;(m)). Thus with lex order of F§*, |a;|o = |aem —i—1|1
and |a;|1 = |aam—i—1]o- In particular, from Proposition 2.2, ¢ is a point of gain (respectively point



of fall) if and only if 2™ — ¢ — 1 is a point of fall (respectively point of gain). Also, with lex order
of Ff*, a; < ¢ if and only agm_;—1 > agm_j_1. Thus

’YJ'(T7 m) = 52+m—j—1(7'7 m) and &(r,m) = ’72+m—i—1(7'7 m)
and from (1),

biaj (T7 m) = % (T’, m) —0; (Ta m) = 5;_’" —j—l(T7 m) - ’Y;_m —i—l(ru m)

(dim(r,m) — dgm —j—2(r,m)) — (dim(r,m) — yam i —2(r,m))

= Yam_j—2(r,m) — om_j_a(r,m) = bam_;_22m_;_2(r,m).

Putting ¢ = 7 in Proposition 2.5 gives,
COROLLARY 2.6 For —1<i<2™—1,

si(r,m) = sam_;_a(r,m).
Next we use Proposition 2.2 to give a new proof of the recurrence relations of [10]. We begin with

PRrROPOSITION 2.7 For 0 <n <m,

cem= 5 ()

j=r—m-+n+1

PROOF. Since ol | = (1,...,1,0,...,0), if i < 2" — 1 then a{™ = (a;(1),...,ai(n),0,...,0) for

e’ N —r N——r
n m—n m—n
some a;(1),...,a;(n) € Fy. From Proposition 2.2 i is a point of gain if and only if |a§")|1 <r and

i is a point of fall if and only if |a{™ |y < r —m + n. Thus

T T—m—+n
vzn_l(r,m)=z<7) and Gy _q(r,m)= > (“)

from which the result follows. O

In [7, Example 1], the values of s;(r,m) are calculated for i = 2™ 2 —1,2m~2 — 1, 2m~2 4 2m=3 _
1,2m~! — 1. In view of Corollary 2.6 these give the values of s;(r,m) for i = 2m~1 4 2m=3 —
1,2m~t 4 9m=2 _1 9m~1 L 9m=2 4 9m=3 _ ] also. Thus effectively these are the values of s; for
the ‘8-way uniform sectionalisation’ of the minimal trellis of RM(r,m). (Sectionalisations are
described in Section 4.) In Example 2.8 we illustrate how Propositions 2.2 and 2.7 can be used
to calculate the values of s; for uniform sectionalisations of the minimal trellis of RM(r,m) by
recalculating the values of s;(r,m) given in [7, Example 1].

EXAMPLE 2.8 Let m > 3. From Proposition 2.7 we get

et~ (222) ()= (7)o

and



in agreement with [7]. To proceed from som-2_1(r,m) to sgm-zom-s_1(r,m), we need to count the
number of i in the range 2™ 2 < 4§ < 2™~2 4 2Mm=3 _ 1 that are points of gain and the number that
are points of fall. For 2m 2 <4 < 2m 24 2™ 3 — 1 we have agm) = (a;(1),...,a;(m —3),0,1,0)
for some a;(1),...,a;(m — 3) € Fy. From Proposition 2.2 such an i is a point of gain if and only
if |a§m73)|1 <1 —1 and is a point of fall if and only if |a§m73)|o <r—2. Thus

r—1 m—3 r—2 m—3
82m—2+2m—3_1(’f’, m) = $2m—2_1(’l", m) + Z ( . ) - ( . )

(m - 1) (m - 3)
+ .
r r—1
The value of sgm-24om-s_1(r,m) given in [7] is 377 _, (mgl) - Z;;g (m;2) -2 E;;g ("73) , which
agrees with the value above after a little rearrangement.

We now prove the recurrence relations of [10] using points of gain/fall.

THEOREM 2.9 Let 1 <r<m—1. For0<n<m—2and 2" <i< 2"l _1,

si(r,m) = si_an(r —1,m — 2) + Z (")

j=r—m+n+1 J
Proor. We take 2" < i < 2"t — 1 and count the number of points of gain and points of fall
between 2" and i. We treat the cases n < m — 3 and n = m — 2 separately.
Firstly if 27 < ¢ < 2"l — 1 for some 0 <n <m — 3 and 2" < j < ¢ then
o™ = (a;(1),...,a;(n),1,0,...,0)
~—
m—n—1

for some a;(1),...,aj(n) € Fo, wherem —n—1>2. Now 0 < j—2" <§—2" < 2™ 2 -1 and
using Proposition 2.2

1. j is a point of gain of RM(r,m) if and only if |a§-m_2)|1 < rif and only if |a§-7f2_n2) i <r-1

if and only if j — 2" is a point of gain of RM(r — 1,m — 2) and
2. j is a point of fall of RM(r, m) if and only if |a§-m72) lo < r—2if and only if |a§7f;,.2) lo<r—1
if and only if j — 2" is a point of fall of RM (r,m).

Secondly if 2m~2 <4 < 2™~ —1 and 2™ 2 < j < i then a;m) = (a;(1),...,05(m — 2),1,0) for
some a;(1),...,a;(m—2) € F,. Again 0 < j—2m~2 <§—2m~2 < 2m~2_1 and using Proposition
2.2

1. j is a point of gain of RM(r,m) if and only if |a§-m_2)|1 <r—1lifandonly j —2™ 2isa
point of gain of RM(r — 1,m — 2) and similarly

2. j is a point of fall of RM(r,m) if and only if j — 2™ 2 is a point of fall of RM(r —1,m —2).

In both cases, the number of points of gain between 2" and ¢ (inclusive) is equal to v;_an (r—1,m—2)
and the number of points of fall between 2™ and i is d;—an (r — 1,m — 2). Thus

8i(r,m) = san_1(r,m) +vi—on (r—1,m —2) —§i_on(r—1,m—2) = san_1(r,m) + sj—an (r —1,m — 2)

and the result follows from Proposition 2.7. O

We note that in view of Corollary 2.6 it does not really matter that Theorem 2.9 does not give
recurrence relations for 2m~1 <§ < 2™ — 1.



2.3 A result of Berger and Be’ery revisited

In [2], a rather technical proof of the formula

T S 0

r—
=0 J

is given. We give a simple inductive proof of Equation (2), based on Theorem 2.9. We show at the
same time that state complexity is attained at i(r, m) with

(rmy = (0,...,0,1,0,1,0,...,1,0)
—_———
2min{r,m—r—1}

i. e. that si(;,m)(r,m) = s(r,m). We will require the following lemma:

LEMMA 2.10 Let g, p, v and v' be integers. If 0 < v < V' and o > V' — u then

2 ()2 ()

j=rv—p J=v'—nu
PRroOOF. It is sufficient to show that the result holds when v = v + 1. Then
o o 0
> (7). 0= 6))-05)
J=r+i—p J j=v—p J J=r+i—p i1 voH

which is non—negative since p > v + 1 — . m|

The notation
sr(r,m) = max{s;(r,m) : i € I'}
for I C {0,...,2™ — 1} will be useful. Often I will be of the form [4, 4] % {i,i+1,...,5}.

Tt is straightforward to see that (2) holds and that state complexity is attained at i(r,m) for r =0
and r = m. In particular this is true for m = 1 and 0 < r < m. Thus we assume inductively that,
forallm’ <mand 0 <7r' <m/,

min{r’',m'—r'—1} , .
m' —2j5—1
RUEED SN (i 3)

!
o
=0 J

and that s m (r',m') = s(r',m'). We then show that (2) holds and that s;(, m)(r,m) = s(r,m)
for all 0 < r < m. Since we know that the latter are true for r = 0 and r = m, we take
1<r<m-1.

Firstly we note that from Corollary 2.6, s(r,m) is attained at some 0 <4 < 2™~ ! — 1. Next from
Theorem 2.9 we have that for 0 <n <m — 2,

T
n
S[2n 27 +1_1] (r,m) = 5[0,21»—1](7‘ —-1,m—2)+ Z ( )

j=r—m+n-+1 J

We note that sjg 2»_17(r —1,m — 2) is non-decreasing as n increases, so that it is sufficient to show

that 327 1,41 (7) is also non-decreasing as n increases to deduce that s(r,m) is attained at
some 4 € [2m~2 2m~1 — 1]. This then implies that
-2 -2 -1
s(r,m) =s(r—1,m—2) + (T: 1) + (mr ) =s(r—1,m-2)+ (mr ) (4)

10



Applying Lemma 2.10 with p = r, p=m—-r—1land 0 <n=v <n' = v < m — 2 (since
r>n'—(m—r—1)) we have that >>7_ . ., (%) is indeed non—decreasing as n increases so
that s(r,m) is attained at some i € [2™~2,2™~! —1] and (4) holds. Thus from (3) with m' =m —2
and ' =r — 1 < m — 2 we have that

min{r—1,m—r—2} . min{r,m—r—1} .
_ m—2-—-2j5—1 m—1) m—25—1 m—1
em= (R (ET)A()

=0 =1

and so (2) holds.

Finally since we know that s(r,m) = spm-2 ym-1_1)(r,m) we have from Theorem 2.9 that if
s(r — 1,m — 2) is attained at j then s(r,m) is attained at i = j + 2™~2. From the inductive
hypothesis we can take j = i(r — 1,m — 2) which gives 1 = i(r,m). Thus we have

THEOREM 2.11 Form>1 and 0 <r <m,

min{ri—r—l} (m _9j— 1)

S(T, m) = Si(r,m) (T, m) = r—j

Jj=0

3 Minimal-span generator matrix for RM/(r,m)

Recall that a minimal-span generator matrix for a code C' is a generator matrix that gives the
minimal trellis of C' using the algorithm of [9]. Equivalently a minimal-span generator matrix is a
generator matrix which is simultaneously a past—oriented generator matrix and a future—oriented
generator matrix, e. g. [9]. (Past—oriented generator matrices and future—oriented generator ma-
trices were defined in Section 2.1).

The two generator matrices for RM(r, m) implicit in the proof of Proposition 2.2 are well-known.
A generator matrix can be converted into a minimal-span generator matrix, e. g. [9]. Thus it is
possible to determine a minimal-span generator matrix for a given R M-code (with any bit—order).
In this section we determine a general form for minimal-span generator matrices for the family of
RM-codes when they have their standard bit—order.

The 2™ x 2™ identity matrix is a minimal-span generator matrix for RM(m,m). For the rest of
the paper we assume that 0 <r <m — 1.

For 0 < k < r we define U(k,m) to be

m

[I &Xi+1483):8(G)eRform—k+1<j<m
j=m—k+1
and V(k,r,m) to be
r—k r—k
I %6 (X + 1) + [ (s, + DX g s 1<in < <dipp <m—k—1
j=1 j=1

We note that, by convention [], = 1, so that ¢(0,m) = {1} = V(r,r,m —r — 1). The sets U(k,4)
and V(k,2,4) for 0 < k < 2 are given in Example 3.7.

For sets of polynomials P, Q) we write P-Q = {p-q:p € P,q € Q} and [ev(P)] for a matrix whose
rows are the elements of ev(P).

11



THEOREM 3.1 Form>1and0<r<m-1,

G(r,m) = lev (U U(k,m) - V(k,r, m))]

k=0

is a minimal-span generator matriz for RM(r,m).

ProoF. We take m > 1 and 0 < r <m — 1. We prove the theorem by showing that
(i) the rows of G(r,m) are in RM(r,m) (Lemma 3.2)

(ii) the initial points of the rows of G(r,m) are distinct (Lemma 3.4)

(iii) the final points of the rows of G(r,m) are distinct (Lemma, 3.5)

(iv) each point of gain of RM(r,m) is an initial point of G(r,m) (Lemma 3.6).

We note that (i)—(iii) imply that G(r,m) is a minimal-span generator matrix for a subcode of
RM(r,m) and that (iv) ensures that this subcode is RM (r,m).

Throughout the proof we take 0 < k < r, p € U(k, m), given by

m

p= JI &5+1+80))

j=m—k+1
for some B(m —k+1),...,8(m) € Fy and ¢ = gy + ¢1 € V(k,r,m), where

r—k r—k
g =[] Xi,(Xm—r+1) and ¢ = [](Xs, + 1) Xy,
j=1

=1

for some 1 <3 < -+ < i,_p <m —k—1. We remark that p is determined by k and B(m — k +
1),...,8(m) and that ¢ is determined by k and 41, ..., %r—g-

Part (i) of the proof of Theorem 3.1 follows directly from
LeMMA 3.2 For 0 <k <r,U(k,m)-V(k,r,m) C Poly(r,m).

ProOOF. Both ¢y and ¢; are in Poly(r — k + 1,m) and have X;, ---X; _, X, as their only
monomial in Mon(r — k + 1,m). Thus ¢ € Poly(r — k,m) and p - g € Poly(r,m). O
For parts (i) and (iii), we use
LEMMA 3.3 The initial point of p- q is
. . . m .
initial(p- q) = 21 422 g2l N ()20
j=m—k+1
and the final point of p- q is
final(p - ¢) = 2™~ % — 1 — initial(p - ¢)
1. e.

Ginitial(p-g) = (00, 1,0-0,1,0-0,...,0-0, 1 ,0-0, 0 ,f(m—k+1),...,5m)) (5
21 2 K2 k m—

»—

and

Ofinal(p-q) = (1—1,2,1—1, Z2,1—1,...,1—1, 0,11, 1k,,3(m—k‘+1),...,,8(m)). (6)



ProOF. For a = (a(l),...,a(m)) € FJ* we have that go(a) # 0if and only if a(i;) = a(iz) =--- =
a(ir—k) = 1 and a(m—k) = 0. Likewise, ¢; (a) # 0 if and only if a(i1) = a(iz) =+ = a(i,—x) =0

and a(m — k) = 1. Also, p(a) #0 if and only if a(m —k+ 1) =8(m —k+1),...,a(m) = f(m).
Thus initial(p-q0) 18 the right-hand side of (5) and
aﬁnal(P'QO) = (17 RS 17 mqk 7/8(m —k + 1)7 s ,ﬁ(m)) (7)
m—k—1
and
Qinitial(p-q1) = (07"'707 1 7ﬂ(m_k+1)77ﬂ(m)) (8)
~——r m—k
m—k—1

and Qfinal(p.q,) is the right-hand side of (6). Since (7) is less than (8) in lex order of F3*, all non—zero
points of p-go come before all non—zero points of p-¢; and in particular initial(p-q) = initial(p- qo)
and final(p - ¢) = final(p - q1). i

For the proofs of parts (ii) and (iii) we take 0 < k' <, p' € U(k',m), given by

m

P= I &+1+80)

j=m—k'+1

for some B'(m — k' +1),...,6'(m) € F» and ¢’ = ¢ + ¢} € V(k',r,m), where

'

ﬁ
|

s

=

.
=] Xo(Xmw+1) and ¢ = || (Xe +1)Xpnp,
Jj=1 J

I
-

for some 1 < i} < ... < i._,, < m—k'—1. As for p and ¢, p' is determined by %' and
B'(m—k'+1),...,6'(m) and ¢' is determined by &' and i},...,i,_,,.

LEMMA 3.4 The initial points of the rows of G(r,m) are distinct.

Proor. From Lemma 3.3,

o‘init‘,ial(p’-q’) = (0707 1 70707 1 70707 - - '70707 1 70707 0 , Jﬁl(m - kl + 1)7 - Jﬁl(m))

) . -7
i1 2 [ m—k

We assume that Qinitial(p-q) = Qinitial(p'-q) and show that p-q = p'-¢".
Firstly if & = k' then iy =14},...,4y = i}, sothat ¢ = ¢’ and f(m—k+1) = f'(m—k+1),...,8(m) =
B'(m) so that p = p'. Thus it suffices to show that k = k.

We put (a(1),...,(m)) = tnitial(p-q) = initial(p/-q’)- LhUS Z;n:_lk_l a(j)=r—k,alm—-k)=0

and Z;":]klfla(j) =r—k,am—k)=0. Nowif k' <k thenm —k'—1>m —k and

m—k—1 m—k'—1
r—k'= Z a(j)+0+ Z a(f ) <r—-k+[m-k-1)-m-k+1)+1]=r—k —1.
j=1 j=m—k+1
Similarly k& < k' implies that r — k <r — k— 1. |

LEMMA 3.5 The final points of the rows of G(r,m) are distinct.
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ProOOF. From Lemma 3.3,

Qnal(pr-g) = (11, 0,1—1,0,1—1,...,1—1, 0 ,1—1, 1 ,B(m—K +1),...,8(m)).

i in -~ m—k

We assume that afinai(p.q) = Qfinai(p'.¢) and show that p-q =p'-¢'.

Again if k = k' it is straightforward to see that p = p' and ¢ = ¢’ so it is sufficient to show that
k=k'. We put (a/(1),...,0/(m)) = Qnal(p-q) = Qfinal(p'-¢’)- LThus

m—k—1 m—k'—1

Z d@)=(m—-k-1)-(r—k)=m-r—-1= Z o' (5)

Jj=1 Jj=1

and o/(m—k) =a'(m—k)=1. fk' <kthenm—k'—1>m—-kandm—-r—1= Z;’;kl*l a'(j) >
= O

E;n:_lk a'(j) = m —r. Similarly k¥ < k' implies that m —r —1>m —r.
Finally we prove part (iv):

LEMMA 3.6 FEach point of gain of RM(r,m) is an initial point of G(r,m).

PROOF. Let ¢ be a point of gain with a; = (a;(1),...,a;(m)). From Lemma 3.3 it suffices to show
that there exists a k, 0 < k < r, such that Z;":_lk_l a;(j) =r —k and a;(m — k) = 0.

We know from Proposition 2.2 there exists a 2z, 0 < z < r, such that ETzl a;(j) =r —z. Put
K=Aw: E;”:m_w a;(j) <w—=z}. Now E;-n:m_T a;(j) < r—zsothat r € K and K is non—empty.

Let k be the least element of K. Then 0 < k < r and Z;”:m_k a;(j) <k—=z Alsok—1¢ K, so
that 370 .1, @i(j) > k — 2. Thus we have

k—z< Y ()< Y () <k-z
j=m—k+1 j=m—k

so that there must be equality throughout. From the central equality we have a;(m — k) = 0 and
using the right—-hand equality we have

m—k—1 m m
a() =3 al)— 3 al)=(r—2)-(k—2)=r—F
7j=1 j=1 j=m—k
O
This completes the proof of Theorem 3.1. O

EXAMPLE 3.7 We take m = 4 andr = 2 and work from the statement of Theorem 3.1. Withk = 0,
U(0,4) = {1} and V(O, 2,4) = {X1X2 +XaXs+Xo Xy + X4, Xa X+ X0 Xy + X3 X4 + Xy, Xo X3+
Xo X4+ X3X4 + X4} With k = 1, U(1,4) = {X4,X4 + 1} and V(1,2,4) = {X1 + X3, X2 + Xg}
With k = 2, U(2,4) = {X3X4,X3X4+X4,X3+X3X4, 1+ X3+ Xy +X3X4} and V(2,2,4) = {1}
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This gives

0001000110001000
0000010110100000
0000001111000000
0000000001011010
0000000000111100
G(2,4) = | 0101101000000000
0011110000000000
0000000000001111
0000000011110000
0000111100000000
1111000000000000

Finally for this section, we note that, while the generator matrices implicit in the proof of Proposi-
tion 2.2 are a past—oriented generator matrix and a future-oriented generator matrix for RM (r, m)
with any monomial bit—order the generator matrix of Theorem 3.1 is not in general a minimal-span
generator matrix for RM(r, m) with a non-lexicographical monomial bit—order.

4 Parallel subtrellises in uniform sectionalisations of the
minimal trellis for RM(r,m)

We start with a trellis T over an alphabet A, with vertex set V = U?;jl V; and edge set E =
U:.:Ol FE;, as in Section 1.2. A sectionalisation of T is another edge-labelled, directed, connected
graph. So given h_y = -1 < h; < --- < hy,_1 = n — 1, the sectionalisation T},_, . p,_, of T with

section boundaries h_1,...,h, 1 consists of

v—1

1. the vertex set Vi_,,. . h,_, = szfl Vi, and

2. the edge set By_,,. h,_, = U;;& Bp;_,,n; where Bp,_, p; is the set of branches between

v—

depths h;_; and h;.

We refer to the edges of Tj,_,,... »,_, as branches. Clearly Tj,_, . x,_, can be regarded as having
v sections and so we call it a v—way sectionalisation of T'. For 0 < 5 < v —1, hj — h;j_; is the
length of section of j. If all the sections have the same length then the sectionalisation is said to be
uniform. We note that a v—way uniform sectionalisation of T necessarily has section boundaries
-1,2-1,207 . | @ —1,n—1. Also for v = n we identify T_19,....,—1 With T in the obvious
way (i. e. by identifying the branch (v;—1, (a;),v;) € B;—1,; with the edge (v;_1,a;,v;) € E;).

The set of paths through T}_, ... » are those v—tuples of the form

v=1

((v—la (a07 sy aho):”’m): (vhoa (ah0+17 ) ah1)7vh1)> ey (Uhu—27 (ahu—2+17 s 7a’n—1)7vn—1))7
such that (vp;_,,(@h;_y41,---,0n;),Vh;) € Bp,_,,n; for 0 < j < v —1. Such a path has label
(ag,--.,an—1) and vertex set {v_y,vp,,-..,Vn—1}. Paths with vertex sets {v_1, Vng,---,Vhy_s,Vn—1}
and {v_1,v} ,..-,V} _,,V,_1} are parallel if vy, # v;” for0<j<wv-—2.

A subtrellis of Ty _, .. p,_, is a trellis whose set of paths are a non-empty set of paths through
Th_y,....h,—,- Two subtrellises {P1,...,F,} and {F],..., P}, } are parallel if P; and P} are parallel
forall 1 < i< pand1 < j < . We note that parallel subtrellises are necessarily disjoint.
Subtrellises Si, ..., S\ are parallel if they are pairwise parallel. We are interested in the largest
number of parallel subtrellises that form a partition of Ty, _,. .. p,_,, which we write ||Th_,,.._h,_4]|-
Thus

A
Th s, hys|l = max{[{S1,...,Sx} : T = | Sk and S,..., Sx are parallel}.
k=1
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We refer to ||Th_,,...,n,_.|| as the number of parallel subtrellises in T}_, . 4 We note that

[|Th_+,...,h,_. || is not the number of sets of parallel subtrellises.

v—1

ExAMPLE 4.1 Let T be the trellis over A with verter set V = V_1UVoUV; and edge set E = EgUE;
given by

o Vfl = {’Ufl}; VO = {’U(],Ué} and Vi = {Ul};

o Ey = {eoo = (v—_1,a00,v0),€01 = (V_1,a01,v0),€p0 = (V_1,a09,v)), €01 = (v—1,a01,v0)} and
E, = {610 = (U07a10;U1)7611 = (anan,?}l),e'lo = (06,0'10,1)1)76'11 = (Ué);allla/ul)}:

as shown if Figure 1.

Vo

U1

!
!
0

Figure 1: Trellis of Example 4.1

The number of parallel subtrellis in T is 2. We note that {{(ego,€10)},{(€b0;€10)}}

{{(e0o0, €10), (€01, €11)}, {(€bos €10)}} and {{(eoo, €10), (€01, e€11)}, {(€ho; €10), (€01, €11)}} are all sets
containing only parallel subtrellises (and that there are many more).

In [12] a minimal-span generator matrix for a code is used to determine the number of isomorphic
parallel subtrellises in uniform sectionalisations of the minimal trellis of the code. Large numbers
of such subtrellises are good for Viterbi decoding using parallel processing, [12]. We use our general
form minimal-span generator matrix for R M-codes and a result of [12] to calculate the number of
isomorphic parallel subtrellises in uniform sectionalisations of the minimal trellises of R M-codes.
Uniform sectionalisations of trellises for RM—codes are necessarily 2“%—way sectionalisations for
some 0 < u < m and the sections are of length 2. All parallel subtrellises will be isomorphic
so we just refer to parallel subtrellises.

DEFINITION 4.2 For 0 < u < m, we write ||r,m,2%|| for the number of parallel subtrellises in the
2%—way uniform sectionalisation of the minimal trellis of RM(r,m).

For example, ||r,m,1|| = 2dim(r;m) “and each parallel subtrellis consists of a single path. From now
on, we assume u > 1.

The span of a non—zero codeword ¢ is defined to be [initial(c), final(c)] (where as previously, [i, j] =
{i,i+1,...,75}). The following is an immediate consequence of [12, Remark 4, p. 55].

LEMMA 4.3 The number of rows in a minimal-span generator matriz for RM(r,m) whose span
contains {2m~% —1,2™ — 2™~} s log, ||r, m, 2¥]|.

Thus we are interested in the spans of the rows of G(r, m). By Theorem 3.1 and Lemma 3.3 a row
of G(r,m) has initial point with binary representation

(070, .1;0707 ,]-70707---707(% ,1 ,0—0, Okaﬂ(m_k"_l)a'--aﬁ(m)) (9)
1 12 K3 k m—

—
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and final point with binary representation

(1-1,0,1-1,0,1-1,...,1-1, 0 ,1-1, 1 ,f(m~k+1),...,5(m)) (10)
21 72

forsome 0 < k<r,1<i1 <<t p<m-—-k—1and B(m—k+1),...,8(m) € Fy, and
conversely for all such k, 41,...,i,— and B(m—k+1),...,06(m) there exists a row of G(r,m) with
initial point with binary representation (9) and with final point with binary representation (10).
We write p(k,i1,... 00—k, B(m —k+1),...,8(m)) for this row. We note that p = ev(p - q) where
p=plk,B(m—k+1),...,6(m)) and q¢ = q(k,i1,...,ir—k) are as given in the proof of Theorem
3.1.

PROPOSITION 4.4 For 0 <r <m—1 and 1 <u <m, log, ||r,m,2%|| = (™).

r

ProoF. Take a row p = p(k,i1,...,5r—k,B(m — k +1),...,8(m)) of G(r,m). Then initial(p) <
9™ _ 1 if and only if

Qinitial (p) < (17'-'71707"'70) (11)

and final(p) > 2™ — 2™~ if and only if

Asnai(p) > (05-..,0,1,...,1). (12)

In this case u > 1 implies that ¥ = 0 (for otherwise 0 = B(m) = 1) and from (11) (or (12)),
ir = ir—r <m —u. Conversely if k=0 and i, < m — u, then (11) and (12) hold.

Thus the span of p contains {2™~% — 1,2™ — 2™~ %} if and only if p = p(0,41,...,4,) for some
1<% <... <4 <m—u. The number of such rows of G(r,m) is (m;“) and so the result follows
from Lemma 4.3. O

COROLLARY 4.5 For 0 <r <m—1, ||r,m,2%|| > 2 if and only if u <m — .

EXAMPLE 4.6 Propositions 2.7 and 4.4 imply that som—1_41(r,m) = (mr_l) = log, ||r,m,2||. Thus
the 2—way uniform sectionalisation of RM(r,m) consists of ||r,m, 2|| parallel subtrellises each with
a single vertex at each depth.

Similarly it follows from Proposition 4.4 that for m > 2,
Sgm—2_1(1,M) = Sgm-1_1(r,m) = Sgm-1,9m-2_1(r,m) = log, ||r,m, 2||

so that the 4—way uniform sectionalisation of RM(r,m) consists of ||r,m,4|| parallel subtrellises
with ||r — 1,m,4|| vertices at each depth excepting the first and last.

As Corollary 4.5 suggests the minimal trellis of a low—rate RM-code has a higher degree of
parallelism than its dual. More formally,

COROLLARY 4.7 Letr <m —r —1. Then |[r,m,2|| = |lm —r — 1,m,2|| and for u > 2,
u 22||m_T_1ama2u|| ifugm—r
[frm, 2| { = |lm—r—-1m,2%| =1 otherwise.
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ProOF. For u = 1, we have

m—1 m—1
togs I, 2l = ("7 = (L1 ) =toms -~ 1m,2

(as we would expect from Example 4.6 and the fact that s;(r,m) = s;(m —r — 1,m) for each
—1<i<2m—1).

Alsoif u > m—r+1thenu >7r+2 =m—(m—r —1)+ 1 so that from Corollary 4.5
[lr,m, 2¥|| = [jm —r —1,m,2"|| = 1.

For 2 <u <m —r we have

(m—u)l! (m — u)!
m—-—u—n)lrl (r—u+1)l(m—-—r—-1)!

log, ||r,m, 2%|| — log, [|m —r — 1,m, 2"|| =

which equals

(m — u)!

m[(m—T—1)(m—7‘—2)---(m—u—7'+1)—r(r—l)---(r—u+2)]

which is positive sincem —r—1—j>r—jandm—r—u+1>0. O

For 1 < j < 2%, the vertices at depths (j — 1)2™ ® — 1 and j2™ * — 1 in the 2%-way uniform
sectionalisation of the minimal trellis for RM (7, m) are adjacent. Adjacent vertices v;_; (at depth
(j —1)2m~* —1) and v; (at depth j2™~* — 1) are connected if there exists a branch from v;_; to
vj. We note that there may be more than one branch between adjacent connected vertices (the
branches having different labels) but that for fixed j the numbers of branches between pairs of
connected vertices at depths (j —1)2™ % —1 and j2™ % —1 are all equal. In [12], it is noted that
sectionalisations with more than two branches between adjacent connected vertices are disadvan-
tageous for decoding purposes.

DEFINITION 4.8 Let 1 < j < 2%. We write {r,m,2%,j) for the number of branches between
connected vertices at depths (j —1)2m % —1 and j2™~ % —1 in the 2%—way uniform sectionalisation
of the minimal trellis of RM(r,m).

The following is a corollary of well-known facts about sectionalisations of minimal trellises.

LEMMA 4.9 For 1 < j < 2%, log,(r,m,2%,j) is the number of rows in a minimal-span generator
matriz for RM(r,m) whose spans are contained in [(j — 1)2™m~%, j2m~* —1].

PRrROOF. Recall that our depths are labelled from —1 to 2™ — 1. Set e = (j — 1)2™ % — 1 and
n =j2m"% — 1. From [5, p. 1751], logy(r,m,2%,j) = dim RM(r,m)cy1,, where

RM(r,m)et1,y = {c € RM(r,m) : ¢y =0for k & [e+ 1,7]}.
From [9, Property 4, p. 1930], log,(r,m, 2%, j) is therefore equal to the number of ‘atomic classes’

whose span is contained in [e + 1, 7] i. e. the number of rows in a minimal-span generator matrix
whose span is contained in [e + 1,7]. O

We use a combinatorial lemma to determine {r,m, 2%, j):

LeEMMA 4.10 5, 28 (™75 = S8 (MUY
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PROOF. We can assume that u < r. We start with the left—-hand side of the required equation.

Writing 2F—% = ;:0“ (*,*) and reversing the order of summation, we get
i 2 m— k—l TZMZ“ m—k—-u—-1) _
= m—r—1 N
— < m—k—-—u-—1 - —/ m-u
;0 Pt ()( m—r—1 ) ZZ( —r+l> ;(r—u—l)’

which is the right-hand side on putting k =r —u — . O

ProOPOSITION 4.11 For 0<r<m-1and1<u<m,
r—u m—u
1 2%, 4y = .
0g2(r,m, 5.7) Z( k )

ProOOF. We count the number of rows p = p(k,é1,...,%r—, B(m — k +1),...,8(m)) of G(r,m)
whose spans are contained in [(j — 1)2™ %, j2™ * —1].

Let 1 < j < 2% with j —1 =", a;_1(1)2!! for some a;_1(1),...,a;_1(u) € Fs. Set € =
(G-12m % —landn = j2m % —1. Since e+1=3" . aj_1(l—m+u)2~" and n =
2m v —1)+e+1=3"7"2""+ e+ 1, we have

ey1 = (0,...,0,a;-1(1),...,aj-1(u)) (13)
—-u
and
ap=(1,...,1,051(1),...,j_1(u)). (14)
—Uu

Thus if [initial(p), final(p)] C [e+1,7], (13) and (14) imply that m — k < m —u (since from (9) and
(10) Qinitial(p) 7é COfinal p)) and that /6( ) = QG- 1( ) . aﬁ( —u+ 1) = ajfl(l)- Conversely if
k>wand B(m) = aj_1(u),...,B(m—u+1) = a;_1(1) then dinisial(p) is at least (13) and agnai(y)
is no more than (14).

. . . . —u(m—k—1
Thus the total number of rows of G(r, m) whose span is contained in [e+1,7] is >y _, 25 *(™ * 1)

and the result follows from Lemmas 4.9 and 4.10. O

We note that Proposition 4.11 implies that (r,m,2%,j) = (r,m,2%,j') for all 1 < j < j' < 2%, as
in [7, Corollary 1].

COROLLARY 4.12 For 0 < r < m—1 and 1 < u < m, there are no more than two branches
between adjacent connected vertices in the 2%—way uniform sectionalisation of the minimal trellis
of RM(r,m) if and only if r < u.

Corollaries 4.5 and 4.12 suggest that for parallel decoding purposes, the most interesting uniform
2¥—way sectionalisations of the minimal trellis for RM(r,m) are those for which r <u < m —r.
In particular for r > m — r, all sectionalisations of RM (r,m) having parallel subtrellises have at
least four branches between adjacent connected vertices.
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5 Trellises for RM(r, m) with parallel subtrellises

As noted in Section 4 parallel subtrellises in trellises can be utilised to speed up decoding using
parallel processing. In [12] knowledge of a minimal-span generator matrix for a code C is used to
design trellises for C with more parallel subtrellises than the minimal trellis, but with the same
state complexity. An analysis of the advantages of such non-minimal trellises is given in [12,
Section IV]. We apply a ‘coset trellis construction’ to the minimal-span generator matrix, G(r, m),
obtaining a trellis T'(r, m) for RM(r,m) with complexity s(r,m) (Theorem 5.5) and with 2¢(r>™)
parallel subtrellises, where ¢(r,m) is determined in Lemma 5.2.

5.1 Coset trellises

We describe the trellis construction of [12]. For all trellises in this section v_; is the vertex at
depth —1. We recall that our definition of a trellis allows for more than one final vertex.

Given a trellis T’ with vertex set V' = (JI=', V/ and edge set E' = |JI—; E} over an additive
alphabet (A, +) and a = (a1,-..,a,) € A we wish to define the coset trellis 7' + a. For a' # a
we would like 7' + a and T' + a' to have the same number of vertices at each depth and the same
vertex at depth —1, but disjoint sets of vertices at depth 4 for 0 < 4 < n — 1. Thus we put the

n—1

vertex set of 7' 4+ a equal to V' +a =J;__; (V' + a); where

/ o {v_1} ifi=-1
v +a),—{ {vi+a:v;eV/} if0<i<n-1

and v} +a is merely the formal adjunction of a to v]. The edge set of T'+ais E'+a = U?:_ol (E'+a);
where

(B'+a); = {(v_1,ay + ag, vy + a) : (v_1,a(,v}) € E§} ifi=0
¢ {(Wj_; + a,a} +a;,vj+a): (vi_;,a},v}) € B} if1<i<n-1.

Let C be a length n code over a field F. If C is the union of cosets C = Ufcvzl(C’ + ¢i), where
C'CCande,...,cy € C are distinct, and T" is a trellis for C' then we can form a trellis T for C
n—1

by taking the trellises 7' + ¢;,...,T" + cx in parallel. Thus T has vertex set V = |J,__; V; where
Vi =Un_; (V' + c); and edge set E = U E; where E; = Up_, (E' + c&)i- We note that T' has
a single vertex at depth —1 and N|V}| vertices at depth i for 0 < ¢ <n —1. Thus if C is a binary
code then s(T) = logy N + s(T"). Also ||T|| = N||T"||]- We wish to construct trellises with state
complexity no more than C' but with parallel trellises.

Now let G be a minimal-span generator matrix for C. If p is a row of G we write p € G. The
active span of p € G is defined as AS(p) = [initial(p), final(p) — 1]. It is straightforward to see that
for0<i<n-1,

HpeG:ie AS(p)}] dim(C) — |{p € G : final(p) < i}| — |{p € G : initial(p) > i + 1}|

= dim(C) - 6;(C) — (dim(C) —7(C)) = s:(C). (15)

(Actually this is well-known, e. g. [11].)

For p1,...,pt € G we put G\ [p1,-..,p:] equal to the (dim(C) — t) x n matrix whose rows are
the rows of G excepting pi,...,pr and we put C' \ [p1,...,pt] equal to the code generated by
G\ [p1,---,pt]- With

M(C) = {i::(C) >s(C)—1+1} C {~1,...,n—1}

we have
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PROPOSITION 5.1 If p1,...,p; are rows of a minimal-span generator matriz G for C' such that
M;(C) C AS(pr) for each 1 <1 <t then s(C \ [p1,---,pt]) = s(C) —t.

ProOOF. We write Cy for C' \ [p1,...,pt]- Let 0 <i <n — 1. From (15) clearly s;(Cy) > s;(C) — ¢t
so that s(Cy) > s(C) —t.

Now if 8;(C) < s(C) —t then s;(C;) < 5;(C) < s(C) —t. Otherwise, s;(C') = s(C) — 1+ 1 for some
1<I<tandice€ ﬂZ:l AS(px) so that from (15), s;(Cy) < 8;(C) = (t=1+1) =5s(C) —t. O

Let p1,...,p be as in the statement of Proposition 5.1 and put Cy = C'\ [p1,...,pt]. Since G is a
generator matrix for C, C' is the union of the N = 2¢ cosets of C; of the form Cy +a1py +. ..+ aps,
where ay,...,a; € Fy. Thus if T; is the minimal trellis for C; we can form a trellis T for C' by
taking the 2¢ coset trellises Ty + aip; + ...ayp; in parallel. Then s(T) = t + s(Cy) = s(C) by
Proposition 5.1 and T has 2!||T;|| parallel subtrellises.

We note that from [12, Remark 4, p. 55] the minimal trellis of a code has two or more parallel
subtrellises only if a minimal-span generator matrix for the code contains the all one vector. Thus
[|T¢|| # 1 only if C is the code containing only the all zero and all one vectors. In this case the
minimal trellis for C' has two parallel subtrellises and no trellis for C' can have more.

5.2 A maximal submatrix of G(r, m)

We specialize to C = RM(r,m) and write M;(r,m) for Mj(RM(r,m)). The case r = 0 is described
in the last paragraph of Section 5.1, so we take r > 1. Thus no subcode of RM(r,m) generated
by rows of a minimal-span generator matrix for RM(r,m) has a minimal trellis with two or more
parallel subtrellises.

Now recall from Section 2 that
(i) si(r,m) = sam _;—a(r,m) (Corollary 2.6)
(ii) 4(r, m) was defined by a;(,,m) = (0,...,0,1,0,1,0,...,1,0) and
2 min{r,m—r—1}
(iii) 8i(r,m)(r,m) = s(r,m) (Theorem 2.11), so that i(r,m) and 2™ —i(r,m) — 2 are in M, (r,m).

Recall also from Section 3 that the rows of G(r,m) are those length 2™ vectors of the form

p=pkit,...,ir—k, B(m —k+1),...,8(m))

forsome 0 <k<r,1<ii<---<i,p<m—k—1and f(m—k+1),...,8(m) € Fy and that
the initial and final points of p are given by (9) and (10).

If My (r,m) C AS(p) then initial(p) < i(r,m) and final(p) > 2™ —i(r,m) — 1. Now @;(y,m)(m) =0
and agm _j(r,m)—1(m) = 1 and for k > 0, @initial(p) (M) = Qfinai(p)(m) = B(m), (where as usual
for a € F?, a(m) is the mt® entry of ). Thus if M;(r,m) C AS(p), we must have k = 0 and
p=p0,i1,...,0) for some 1 <4y < --- <4, <m—1. We put

t(r,m) = |{p(0,41,...,ir) € G(r,m) : initial(p(0,iy,...,3,)) <i(r,m)}|
and
{p17 s 7pt(r,m)} = {p(077:17 s 77:7‘) € G(r7 m) : lnltla‘l(p(oa 7:17 ) 7’7‘)) < 1:(7', m)}

We assume that the p; are ordered such that initial(p;) > --- > initial(py(,m)) (and hence
final(p1) < -+ < ﬁnal(pt(r,m)))-

Now {p1,---,P¢rm)} is the largest possible set of rows of G(r,m) each containing M; (r,m). Also
if pi,...,p; € G(r,m) are such that M;(r,m) C AS(p;), for 1 <1 < t, then M;(r,m) C AS(p))
for 1 <1<t sothat {p},...,pt} C{p1,---sPe(r,m)}- Thus {p1,-..,pe(r,m)} is the largest possible
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set of rows of G(r,m) (or any other minimal-span generator matrix for RM(r,m)) satisfying
the conditions of Proposition 5.1. Hence the construction of [12] described above could not be
used to produce a trellis T for RM(r,m) with s(T) = s(r,m) and more than 2™ parallel
subtrellises. Although we do not explicitly show that M;(r,m) C AS(p;) for each 1 <1 < ¢(r,m),
we will use a construction similar to that of [12] to produce a trellis T'(r,m) for RM(r, m) with
s(T(r,m)) = s(r,m) and 21"™) parallel subtrellises. First we evaluate t(r,m).

We note that the initial points of pi, ..., py(rm) are those i, 0 <4 < i(r,m), with binary represen-
tation

(0—o0, 1,0—0,...,0—0, 1,0—0,0) (16)
11 ir
forsome 1 <41 <--- <, <m-—1.

LEMMA 5.2 With {p1,. .-, pe(r,m)} defined as above,

min{r,m—r—1}
-2k -2
t(r,m) = Z (m K )

r—k
k=0

PRrOOF. Obviously t(r,m) = |{initial(p1), ..., initial(pym)) }|- Now {i : 0 < i <i(r,m)} is equal

to the disjoint union, U?;%{T_l’m_r_ﬂ I(k) where

I(k)={i:(0,...,0,1,0,1,0,...,1,0) < a; < (0,...,0,1,0,1,0,...1,0)}
—_———’ e — —_—— ———— —_—
m—2k 2k m—2(k+1) 2(k+1)
(e. g. by induction). Also i € I(k) if and only if
a; = (ai(1),. .., ai(m — 2k — 2),0,0,1,0,1,0,...,1,0)

2(kt1)

for some (1), ..., a;(m—2k—2) € Fy, which is of the form (16) if and only if |a{™ 72|, = r— k.
Thus the number of i < i(r,m) with «; of the form (16) is

min{rlZmT'Z} m— 2k —9
r—k '

k=0
Finally a(y,m) is of the form (16) if and only if min{r,m —r — 1} = r and it is easy to check that

m—2min{r,m —r—-1} -2\ [ 1 if r<m-r-1
r —min{r,m —r — 1} 10 if m—r—1<r.

5.3 The coset trellis 7'(r,m)

We recall that G(r,m) \ [p1,-- -, pt(r,m)] is the (dim(r,m) — t(r,m)) x 2™ matrix whose rows are
the rows of G(r,m) excepting pi,...,pyr,m) and that RM(r,m) \ [p1,...,p¢rm)] is the code
generated by G(r,m) \ [p1,-..,pyr,m)]- We write G¢(r,m) for G \ [p1,...,pyrm)] and C¢(r,m)
for RM(r,m) \ [p1,..., ps(r,m)]- Also we write T;(r,m) for the minimal trellis of C;(r,m). Next
we form T'(r,m) by taking the 21" coset trellises Ty(r,m) + ayp1 + .. + At (r,m)Pt(r,m), Where
ai,---,arm) € Fa, in parallel. Clearly T'(r,m) consists of 2t(rm) parallel subtrellises. It remains
to show that s(T'(r,m)) = s(r,m), i. e. that s(Cy(r,m)) = s(r,m) — t. We begin with
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LEMMA 5.3 For -1 <¢<2™ -1

, 8i(C(r,m)) = sam_o_;(Ce(r,m)). In particular there is an i,
0<i<2mt —1, with 5;(C¢(r,m)) =

s(C(r,m)).

PRrROOF. From Proposition 2.2, 7 is a point of gain of RM(r, m) if and only if 2™ —¢ — 1 is a point
of fall of RM(r,m). Also initial(py) = 2™ — final(p) — 1 for 1 < k < t(r,m) (since this is true for
all p(0,41,...,ir) € G(r,m) by Equations (9) and (10)). Since the points of gain of Cy(r,m) are
the points of gain of RM(r,m) excepting initial(p1),...,initial(ps(,m)) and the points of fall of
Ci(r,m) are the points of fall of RM(r,m) excepting final(pi), ..., final(py(r,m)), we deduce that i
is a point of gain of Cy(r,m) if and only if 2™ — ¢ — 1 is a point of fall of C¢(r, m). The proof of
the lemma is then similar to that of Proposition 2.5 with ¢ = j. O

For I C {0,2™ — 1} we write s;(Cy(r,m)) for max{s;(Ci(r,m)) : i € I'}.
LEMMA 5.4 For1<r<m—1, s(Ci(r,m)) =s(r—1,m—1).

PROOF. In view of Lemma 5.3 we need only find sjg.9m-1_1)(Ct(r,m)). We use Proposition 2.2
without reference.

We first find spg i(r,m)](Ci(r,m)). So take 0 < j < i(r,m). Now the points of gain of Cy(r,m) are
the points of gain of RM(r, m) excepting initial(p1), . . . ,initial(p(r,m)). Hence j is a point of gain
of C¢(r,m) if and only if j is a point of gain of RM(r,m) for which a; is not of the form (16) if
and only if |a§m_1)|1 = |a§-m)|1 < r—1if and only if j is a point of gain of RM(r—1,m—1). Also,
since final(py(r,m)) > ... > final(py) > 2™! — 1, j is a point of fall of Cy(r,m) if and only if j is a
point of fall of RM(r,m) if and only if |a§-m)|0 < r if and only if |a§-m_1)|0 < r —1if and only if
j is a point of fall of RM(r —1,m — 1). Thus for 0 < i < i(r,m), s;(Cy(r,m)) = s;(r — 1,m — 1),
and in particular sy ;(r,m)](Ce(r,m)) = 5[0,i(r,m)](r —1,m —1). Since i(r —1,m —1) <i(r,m), we
have that (g i(r,m)](Ct(r,m)) = s(r —1,m —1).

Finally, if i(r,m) < j < 2™~! — 1 then j is a point of gain (respectively point of fall) of Cy(r,m) if
and only if j is a point of gain (respectively point of fall) of RM(r,m). Since s;(r,m) < s;(,p) (7, m)
for i(r,m) < i < 2™ ' —1it follows that s;(Cy(r,m)) < $i(p.m)(Ci(r,m)) for i(r,m) <i <2m~1—1
and the lemma is proved. O

THEOREM 5.5 For 1 <r <m—1, s(T(r,m)) = s(r,m).

ProOF. From Lemma 5.4, Theorem 2.11 and Lemma 5.2 we have

s(Ce(r,m)) +t(r,m) = s(r—1,m—1)+t(r,m)

min{r—1,m—r—1} m— ZJ _9 min{r,m—r—1} m— ZJ _9

= > o) > L

i=0 J =0 J

min{r,m—r—1} (m _ 2J _ 1)

= Z ) = s(r,m).

=0 rd
Thus s(Cy¢(r,m)) = s(r,m) — t(r,m) and so s(T'(r,m)) = s(r,m). O

We note that for r =m — 1 we get t(r,m) = 0.
EXAMPLE 5.6 For the length 32 RM—codes we get t(1,5) = 4, t(2,5) = 5 and t(3,5) = 2 and for

the length 64 RM—codes we get t(1,6) = 5, t(2,6) = 9, t(3,6) = 9 and t(4,6) = 1. These values
agree with the left most values of Prax,r, 0 [12, Table IV].
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An alternative approach to that of this section is to form a generator matrix G’ (r, m) from G(r,m)
by replacing the rows p1, ..., py(r,m) With 14p1,..., 14 py(y.m). That G'(r,m) is a generator matrix
for RM(r,m) is not hard to prove. Also, since r > 1, initial(1+ p1) = -- - = initial(1+ py(r,m)) =0
and final(1 + p1) = --- = final(py(,m)) = 2™ — 1. Thus the trellis construction of [9] produces a
trellis with 2¢(™) divergences at i = 0 and 2("™) convergences at i = 2™ — 1. The proof that
the trellis has state complexity s(r,m) is similar to the proof for T'(r,m). This approach has the
advantage that the trellis has only one vertex at depth 2™ —1 whereas T'(r,m) has 2t(""™) vertices at
depth 2™ — 1. Thus decoding using T'(r,m) requires an extra comparison at the end. However the
approach via coset—trellises gives immediately that T'(r,m) consists of 2t(rm) parallel subtrellises.
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