On the minimal realizations of a finite sequence. *

GRAHAM NORTON

Centre for Communications Research, University of Bristol, England.

July 19, 2001

Abstract

We develop a theory of minimal realizations of a finite sequence over an integral domain R,
from first principles. Our notion of a minimal realization is closely related to that of a linear
recurring sequence and of a partial realization (as in Mathematical Systems Theory). From
this theory, we derive Algorithm MR which computes a minimal realization of a sequence of
L elements using at most L(5L + 1)/2 R-multiplications. We also characterize all minimal
realizations of a given sequence in terms of the computed minimal realization.

This algorithm computes the linear complexity of an R sequence, solves non—singular linear
systems over R (extending Wiedemann’s method), computes the minimal polynomial of an
R-matrix, transfer/growth functions and symbolic Padé approximations. There are also a
number of applications to Coding Theory.

We thus provide a common framework for solving some well-known problems in Systems

Theory, Symbolic/Algebraic Computation and Coding Theory.

AMS subject classifications (1991). Primary: 13P05, 68Q40; secondary: 93B20, 94A55, 94B35.

1 Introduction

Minimal polynomials occur frequently in Coding Theory and Cryptography. Likewise for partial
realizations in Systems Theory. Both are instances of rational approximation of a finite sequence in
F, [[X]] and R[[X ~']] respectively, where F, denotes a field with ¢ elements and R denotes the reals.
In this paper, we develop a theory of minimal realizations of a finite sequence from first principles,
where the elements of the sequence are from an integral domain R. Our resulting iterative minimal
realization algorithm for sequences over R (Algorithm 4.6 — MR) is division—{ree and requires at
most 5L(L + 1)/2 R—multiplications for a sequence of length L. If R is a field F, Algorithm MR

performs rational approximation in F[[X ~!]].

*Research supported by U.K. Science and Engineering Research Grant GR/H15141. Current addresses: Dept.
Mathematics, University of Queensland, Brisbane 4072, ghn@maths.ug.edu.au. Copyright 1995, Academic Press

This work continues the study of sequences over R via R—Laurent series in negative powers begun
in Norton (1994). Our approach is to relate minimal realization to the theory of linear recurring
sequences (Irs) over R, starting from a basic identity (Proposition 2.2) in R((X!)). (We note
that F((X 1)) was used (with different indexing) to study F-sequences in Niederreiter (1988).)
We relate minimal realization to finding a recurrence of least degree satisfied by a finite sequence,
a problem which has been studied by many authors, most notably Massey (1969). Massey rein-
terpreted the error—locator of Berlekamp’s solution of the “key equation” (Berkekamp (1968)) as a
connection polynomial of a shortest—length shift-register (in F[[X]], with L > 0) and was thus able
to decode BCH codes. See also Trench (1964). A number of authors have also suggested ways of
justifying the Berlekamp—Massey (BM) algorithm (Dornstetter (1987), Dai & Wan (1988), Ferrand
(1988), Fitzpatrick & Norton (1995), Imamura & Yoshida (1987), Jonckheere & Ma (1989), Lidl
& Niederreiter (1983), Mills (1975), Niederreiter (1988), Welch & Scholtz (1979), Zierler (1968)).
See also Camion (1989).

We may consider the preceding algorithms as being either intrinsic (which do not assume anything
about the sequence or its length) or ertrinsic (which do). The BM algorithm and our minimal
realization algorithm are intrinsic. Extrinsic algorithms typically use continued fractions or Hankel
matrices and require L > 2§ terms, where § is the degree of some recurrence satisfied by the first L
terms. In Fitzpatrick & Norton (1995), we discussed Irs over a factorial domain and showed that
the XPRS algorithm (which generalizes the Extended Euclidean algorithm) could be applied to
compute the minimal polynomial — when “enough” terms are known. That approach is therefore

also extrinsic.

Extensions of the BM algorithm to more general partial realization problems have appeared (Dick-
inson et al. (1974), Sain (1975)). Kalman has solved a parametrized partial realization problem by
using Hankel matrices and by relating parametrized intermediate minimal realizations to continued
fractions / the Euclidean algorithm in F[X] (Kalman (1979)). See also Chapter 10 of Kalman et

al. (1969). Minimal realizations over domains are also discussed in Rouchaleau & Sontag (1979).

The basic theory, constructions and applications of minimal polynomials are given in Section 3.
We can now compute the minimal polynomial (using Algorithm MR — 3.19 or 4.2) of an lIrs over
any domain without polynomial remainder sequence (PRS) constants (c¢f. Fitzpatrick & Norton
(1995)). We have verified that the complexity of the first L prime numbers is [L/2], L < 25,L #
7,8 and conjecture that the complexity of the first L prime numbers is [L/2] for L suitably large.
We extend the method of Wiedemann (1986) to solve non—singular linear systems over R and to

compute the minimal polynomial of an R—matrix.

The minimal polynomial constructions and algorithms are extended to minimal realizations in
Section 4. We recompute the example of Kalman (1979) by applying Algorithm MR in R =
Z[€,n] and compute the transfer function of a convolutional code or a trellis code without using
PRS constants (¢f. Fitzpatrick & Norton (1991), Chan & Norton (1995)). An application of

Algorithm MR to computing Padé approximants appears in Sheppard (1994). Some applications
of Algorithm MR to Coding Theory are being written up separately in Norton (1995). We conclude
by characterizing all minimal realizations of a given sequence in terms of the one computed by
Algorithm MR.

Some of the results of this paper were presented at the 10** British Colloquium on Theoretical
Computer Science (Bristol, April 1994) and at Eurocodes '94 (Cote d’Or, France, October 1994).

2 Realizations and Annihilators

In general, we use lower case Roman letters for elements, Greek letters for functions, and short
names for sets. N = {0,1,2,...} and we use standard notation to describe intervals in the integers
Z; thus N = [0, 00).

R denotes an (integral) domain with 1. The letters f, f',g will always denote f, f',g € R[X]; 6f
denotes the degree of f; 60 = —co. We write fl|g if ¢ is a multiple of f.

We will often work in R((X!)) i.e. with Laurent series in X ! over R, which contains R[X].
In addition, R[X] acts on R((X~1')) by multiplication in such a way that R[X] is the standard
R[X]-module.

For F € R((X™ 1))\ {0}, AF denotes its leading coefficient and the support of F is Supp(F) =
{a € Z: F, # 0}, where F, denotes a coefficient of F’; Supp(0) = 0.

As in Niederreiter (1988), we use the (exponential) valuation on R((X~!)), which extends the
degree function on R[X]; for convenience, we also denote it by 6. Thus for F € R((X~1))\{0}, 6F =
max Supp(F). The following well-known properties of § on R((X 1)) will be used without further
ado: 0FG = 6F + 0G, 6(F + G) < max{dF,6G} and §(F + G) = max{0F,dG} if 0F # 6G.

We denote by S1(R)~ the set of functions —N — R i.e. the set of R-sequences indexed by —N, and
the value s(a) € R is written s,. If addition and scalar product are defined componentwise, S*(R)~

becomes a unitary R-module. The generating function of s € S*(R)™ is I'(s) = 2 a<oSaX® €
R[[X).

DEFINITION 2.1 We call [1,8f] the border of (—00,0] in (—o0,df] and

B(f,9(X) = Y (fT(s)aX"

1<a<df

the border polynomial of f and s.

There is an action of R[X] on S'(R)™: if f = Y./ f,X* then

of
(fos)y = Zfasb_a where b < 0.

a=0

This makes S'(R)~ into an R[X]-module. Recall that f is a characteristic polynomial of s if
fos=0, Ann(s) = {f : fos = 0} is the annihilator ideal of s, and s is a linear recurring sequence
(rs) if Ann(s) # (0). Recall also that if f € Ann(s) and § = §f > 1, then Afsy = — 30—t fasb16-a
for all b < —4. It was shown in Theorem 4.4 of Fitzpatrick & Norton (1995), Theorem 4.4 of Norton
(1994) that if s is an Irs over a factorial domain R, then Ann(s) has a primitive generator y(s),

unique up to a unit of R.

The following basic (and easily proved) identity relating terms defined above is the main reason

for introducing the action o:
PROPOSITION 2.2 In R((X 1)), fT(s) = B(f,s) + T(f os).

This coherence of R[X]-modules avoids special arguments involving the order of Laurent or power
series, avoids the usual characterization of f € Ann(s) in terms of the reciprocal of f and its degree,
and simplifies many of our results (and their proofs). Clearly s is an Irs iff fT'(s) = B(f,s) for
some non—zero f iff T'(s) is the rational function S(f,s)/f for some non—zero f; see also Lemmas
1 and 2, p39 of Niederreiter (1988) when R is a field.

Proposition 2.2 is actually the case n = 1 of the decomposition formula for n—dimensional sequences
of Norton (1994), Section 3. In the general case n > 1, fI'(s) has 2" summands and the border
polynomial of Definition 2.1 is written as Bo(f, s). See Norton (1994) for details.

We now develop some properties of the border polynomial to be used below.

PROPOSITION 2.3 (a) Forr € R, B(r,s) =0

(b) if 6f > 1, 5f terms of s are needed to compute 3(f,s), and 63(f,s) < 5f
(c) B is linear in each argument

(d) For d >0, (X%, 5) = Tococq 1 5-aX?

(e) B(fg,5) = fB(g,8) + B(f,9°5)

(f) If s # 0 and f € Ann(s) \ {0}, then B(f,s) #0.

PROOF. Parts (a) to (d) are straightforward. It suffices to prove part (e) for f = X¢ and g = X*®
from the linearity of 8. The result is then a simple application of (d). To prove part (f), if
f € Ann(s) \ {0} and B(f,s) = 0, then fI'(s) = 0. Since R((X !)) is a domain, I'(s) = 0 i.e.
s=0. O

REMARK 2.4 Our border polynomial corresponds to the polynome initial of Definition 1.3.5 of
Ferrand (1988), defined using Newton’s divided differences. Propositions 2.2, 2.3 can be proved
using the polynome initial, but this requires some “summationology” and a product formula for

divided differences.

We have seen that the generating function of an Irs is always a certain rational function, and are

interested in to what extent the “generating function” of a finite sequence can be “realized”.

(s|L) will always denote a sequence of L elements of R, with L > 1 and indexed by 0,—1,...,—L+1.
We call T'(s|L) = 22:7L+1 34X ® the generating function of (s|L).

DEFINITION 2.5 We say that (f,g) is a realization of (s|L) or that (f,g) realizes (s|L) if f,g €
R[X], f # 0, Supp(g) C [1,6f] and 6(fT(s|L) —g) < —L +4f.

Tt is easy to see that if f # 0, then (f, g) realizes (s|L) iff there is an h € R[X] such that 6h < df—1
and the order of f*T'(s)(X) — h is at least L, where f* = X% f(X—') denotes the reciprocal of f.

Over a field F, realization is equivalent to rational approximation in F[[X ~']].

From Proposition 2.2, we can always write

0
ST(S|L) ~ B(f,8) =T(fos) +pX ™45 = 3™ (fos)Xi4qx 7+
i=—L+6f+1

for some p,q € R[[X 1]]. So if §f > L, the sum vanishes and any (f, 3(f,s)) realizes (s|L). We
therefore concentrate on realizations (f,g) with 6f < L — 1. It also follows from Proposition 2.2

that if s is an Irs and f € Ann(s), then (f, B(f, s)) realizes (s|L) for any L > 1.
PROPOSITION 2.6 If (f,g) realizes (s|L) and 6f < L, then g = B(f,s).

PROOF. By Proposition 2.2, B(f,s) + T'(f o s) = g + p(X 1) XL+ for some p € R[[X]]. Let
h = B(f,s) —g. Then X|h and éh < 0, so that h =0 and g = 8(f, s). O

We now define the “annihilators of (s|L)” and relate them to realizations of (s|L).

DEFINITION 2.7 If6f < L—1, we set fo(s|L) = (fos|L—45f). We say that f is a characteristic
polynomial for (s|L), and write f € Ann(s|L), if either (a) 6f > L or (b) 0f < L —1 and
fo(siL)=o.

Note that if §f < L —1,then L—4f > 1, so that (f os|L —df) makes sense; further, fo(s|L) =0
means that (fos), =0for —(L—1—-0f) <a<0.

PROPOSITION 2.8 Let L > 2 and f = Y.°_ foX°, where 1 <8 = 6f < L—1. Then the following
are equivalent:

(a) f € Ann(s|L)

(b) M sb=—30—t faSors—a for —(L—1) <b< =8

(¢)T(fos)<—L+4df

(d) (f,B(f,s)) realizes (s|L)

(e) for some g € R[X],(f,g) realizes (s|L).

PROOF. (a) <= (b): f € Ann(s|L) <= Af sp_5 = — >.0_p fasp_a for —(L—1-0) <b<0 <=
Afsp = — EZ;}) faSb4s—q for —=(L—1) < b < —4. (a) <= (c) is obvious; (¢) <= (d) follows easily
from fT(s|L) - B(f,s) =T(fos)—f-(Xic_1 5;X") and (d) <= (e) was shown in Proposition 2.6.

O

It follows that realizing (s|L) can be broken down into two steps (a) finding an annihilating
polynomial f with §f < L — 1 (if one exists) or taking f to be any polynomial of degree L
and (b) computing its border polynomial 3(f, s).

PROPOSITION 2.9 (a) If f € Ann(s|L) and g € R[X], then gf € Ann(s|L)
(b) Ann(s|L + 1) C Ann(s|L)

(c) if f € Ann(s|L) and 6f < L, then f € Ann(s|L +1) <= (fos)_(L—s5) =0

PROOF. (a) Firstly, ((9.)08)a = (90(f05))a = 352 95(fo5)a—s. Suppose —(L—1-3(gf)) < a <0.
Then for 0 <b<dg,—(L—1-6f)+b<—(L—1-6(9f)) <aandso —(L—1-4f)<a—-b<0

and ((¢f) © 8)a = 0.

(b) Let f € Ann(s|L +1). If §f > L, then f € Ann(s|L); otherwise if (fos|L+1—4df) =0, then
(fos|L—4f)=0. Thus Ann(s|L + 1) C Ann(s|L).

(¢) Omitted. O

We now come to a key concept (c¢f. Massey (1969)):
DEFINITION 2.10 Let f € Ann(s|L). We define the discrepancy A(s|L + 1)(f) by

A(s|IL+1)(f) = (fo8)—(L—sp) iféf <L
=0

A(s|L +1)(f) otherwise.

Tt is clear that if f € Ann(s|L), then f € Ann(s|L + 1) <= A(s|L + 1)(f) = 0; A(s|L + 1)(f) is
the obstruction to f € Ann(s|L + 1).

We end this section with a simple application of the theory so far (¢f. Justification 3.6.3(c),
p40 of Ferrand (1988)): (s|L) is a geometric sequence if L > 2,59 # 0 and s, = r~%sg for
—(L—-1)<a< —-1andsomer € R\ {0} (the common ratio).

THEOREM 2.11 Let L > 2, so,r € R\ {0}, and let A = A(s|L + 1)(X —).
(a) (s|L) is a geometric sequence with common ratio r <= X —r € Ann(s|L)
(b) so XL~ Y X —r) — A € Ann(s|L + 1)

(c) B(so X1 (X —7) = A,5) = s5X P!

(d) If (s|L) is geometric but (s|L + 1) is not and f € Ann(s|L + 1) then df > L.

ProOOF. Parts (a)—(c) are straightforward.

(d) If (s|L + 1) is not a geometric sequence with common ratio r, then A # 0, and if f €
Ann(s|L + 1), then § = §f > 1 since s9 # 0. Suppose that § < L — 1. We will show that A =0,

for a contradiction. Since (s|L) is geometric, s_, = r’sg for 1 < b < § and
5 5
F)so =" fir)so = fos—s = (f 0 8)0 = 0.
=0 =0

Then f(r) = 0 because so # 0. Let A = Af. Now

5—1 5—1
0 = (fos) Lys= Z faS—L45—a+As_L = Z far" %80 + As_ g,
a=0 a=0

(since —(L-1)<—(L—-4¢)—a<-1)
= rE0(f(r) = Ard)so + As_p

= Ms_g —rlsg) (since f(r) = 0)

L

= A(s—p —rs_r41) {since r “lgy = SL+1)

= AA

which is impossible. O

3 Minimal polynomials

3.1 The constructions

We define the notions of minimal realization, minimal polynomial and x(s|L), the complexity of
(s|L). We then prove an important inequality for x(s|L) and apply it to our first construction
of minimal polynomials. The second construction uses the notion of the antecedent a(s|L) of
k(s|L). Combining these two constructions will yield an iterative algorithm to compute a minimal

polynomial of (s|L).

DEFINITION 3.1 A realization (f,g) of (s|L) is called minimal if §f = min{df' : (f',g') realizes
(s|L)}. The minimal value of this degree is called the complexity k(s|L). Min(s|L) denotes the set

of minimal polynomials of (s|L).

Since the theory is essentially known for fields, the connection between the minimal polynomials of
a sequence over a domain R and its minimal polynomials over the fraction field of R is of interest.

This is summarised in the following proposition, the easy proof of which is omitted.

PROPOSITION 3.2 Let (s|L) be a sequence over R, let R' denote the fraction field of R, and let

(s'|L) be (s|L) considered as a sequence over R'. Then

(a) Ann(s|L) C Ann(s'|L)

(b) If f € Ann(s'|L) and r € R clears denominators in f, then rf € Ann(s|L)
(c) Min(s|L) C Min(s'|L)

(d) If f € Min(s'|L) and r € R clears denominators in f, then rf € Min(s|L).

The next result implies that, once we can compute a minimal realization of a sequence over R, we
can compute a minimal realization of a sequence over the fraction field of R using computations

in R only (thus avoiding gcd computations in the fraction field for example):

PROPOSITION 3.3 Let R' be the fraction field of R and let (s'|L) be a sequence over R'. For
0<i< L—1, define s; = ds; where d € R clears denominators in s, ...,s" ;. If (f,8(f,s)) is

a minimal realization of (s|L) over R, then (f,B(f,s")) is o minimal realization of (s'|L) over R'.

PRrOOF. Let (f,5(f,s)) be a minimal realization of (s|L). By the linearity of I'(|L) and S(f,),

d(fT(s'|L) = B(f,5")) = (JT(s|L) = B(f,) = p(X 1) X"+

for some p € R[[X]]. Thus (f, B(f,s")) realizes (s'|L). Hence if g € Min(s'|L), then §f > dg. Also,
if » € R clears denominators in g, then rg € Ann(s|L) and so dg = d(rg) > df, as required. O

We now return to sequences over R.

EXAMPLE 3.4 If L > 2 and (s|L) is a geometric sequence but (s|L + 1) is not, s¢XL~1(X —r) —
A(s|L +1)(X —r) € Min(s|L + 1) by Theorem 2.11.

We continue with some elementary properties of k(s|L).

PROPOSITION 3.5 (a) k(s|L) < k(s|L + 1)
(b) s(s|L) < L

(c) Let L >1,(s|L)=0and s_, #0. If f € Ann(s|L + 1) thendf > L+ 1.

PROOF.

(a): Ann(s|L + 1) C Ann(s|L) so that if f € Ann(s|L + 1), then x(s|L) < df. Thus k(s|L) <
k(s|L +1).

(b): L < 6f = f € Ann(s|L).

(c): If f € Ann(s|L + 1) then § = 6f > 1 since R is a domain and s_p # 0. If §f < L then
0<a<d§—1implies —(L—1) < —(L—-6§)—a<0andso

51
0= (fos)—(1-s = Z faS—(1—8)—a T Afs—L =Af s_L

a=0

which is a contradiction. O
If k(s|L) = 0 or k(s|L) = L, we trivially have Min(s|L) = R\ {0} or Min(s|L) = {f : f = L}.

PROPOSITION 3.6 Let u € Min(s|L). If A(s|L+1)(u) =0, then p € Min(s|L+1) and k(s|L+1) =
k(s|L).

PrROOF. We have pu € Ann(s|L + 1) and so dp = k(s|L) < k(s|L + 1) < dp. O

The following key result was proved for fields in Massey (1969), where it was noted that the result
was true for commutative rings ([loc. cit., VII Remarks]). The reader may easily verify that the
result fails if there are divisors of zero; for completeness, we prove the result for commutative

domains.

THEOREM 3.7 Let L > 2. If f € Ann(s|L) \ Ann(s|L + 1) and f' € Ann(s|L+ 1), of' > 1, then
0f' >L+1-4f.

ProoOF. If §f = 0, the result follows from Proposition 3.5(c). Suppose now that §f > 1. We will
show that f' € Ann(s|L + 1) and §f’ < L — §f leads to a contradiction. Set 6 = §f, §' = §f'.
Since 6 +6' < L, § <L —1and ¢’ <L — 1. Hence by Proposition 2.8, we can write

5—1
Af 8a = _Zfbsa-i-d—b for —(L-1)<a< -4
b—0

and
§'—1
M'sa==) fisars-p for —L<a< 0.
b=0

Since f ¢ Ann(s|L+1) and § < L —1, A = A(s|L +1)(f) # 0. Letting A = Af, X = Af"

51
NA = XN (fos)pis=X (Z fa 8—Lyé6—a+ As_L)

a=0
§—1

= Z fa(N's_r4s-a) + NAs_,

a=0

d-1 5 -1
- —Zfa (Z fy S(L+6a)+6’b) +Ms_p

a=0 b=0
(since —L<—-L+d-a<-L+4§<-¢)

§'—1 5—1
= - Z fi (Z fa 5(—L+6'—b)+6—a> +NAs_p

b=0 a=0
51
= Y fiAs_prs) +NAs_
b=0
(since —(L—1)<—-L+4+§-b<—-L+4§ <-4)
§'—1
= A Z fé S_Ly6'—b T Mis_p = =MNs_+XNXis_p =0
=0
since —L < —¢', which is the required contradiction. O

We can now prove the first main result for constructing minimal polynomials. Henceforth, for
pr € Min(s|L), we write A = A(s|L + 1)(pr)-

THEOREM 3.8 Suppose that k(s|L) = k(s|1). If A #0 for some pr, € Min(s|L), let

pr1 = 50X 'pup — A if so 0

b1 = fr4+1 if 50 =0

where fry1 € R[X] is any polynomial of degree L+ 1. Then pr41 € Min(s|L+1) and k(s|L+1) =
L+1 - «(s|L) =max{dur,L+1—0ur}.

PROOF. Suppose first that s = 0. Then k(s|L) = k(s|1) =0, pr = r for some r € R\ {0}, s, =0
for —(L—1) <a<0,and A =rs_r, so that s_ # 0. By Proposition 3.5(c), k(s|L+1) =L +1
and k(s|L+1)=L+1—k(s|L) = max{dur,L+1—dur} in this case.

Suppose now that sg # 0. Then x(s|L) = 1 and clearly dury1 = L. As in Theorem 2.11(b),
pry1 € Ann(s|L 4+ 1). If L = 1, then X € Min(s|1),A = s_1, p2 = soX — s_1 € Min(s|2) and
k(s|2) = k(s|1) =1 = L+1—k(s|1). If L > 2, Theorem 3.7 implies that x(s|L+1) > L+1—dur =
L =6ury1 > k(s|L+1). Thus pr41 € Min(s|L + 1) and k(s|L+1) =L =L+ 1—-«k(s|L) =
max{dpr,L+1—0dpr}. O

ExXAMPLE 3.9 (53) =1,1,2 has py = X,po = X — L,us = X(X —1)—1=X%2—- X — 1. Here,
only three terms suffice to find a minimal polynomial; Algorithm MINPOL of Fitzpatrick € Norton
(1995) required an upper bound & (viz. 2) on the degree of some characteristic polynomial, and 26

terms.

10

We now know how to construct minimal polynomials when either (a) A = 0 or (b) A # 0 and
k(s|1) = k(s|L). The following definition (suggested by Lemma 6, p217 of Sakata (1990)) is very

”

useful for simplifying the remaining case (c): “A # 0 and &(s|1) < k(s|L)

DEFINITION 3.10 Suppose that L > 2, 1 < M < L—-1, f € Ann(s|M) \ Ann(s|M + 1) and
g € Ann(s|L) \ Ann(s|L + 1). Let Ay = A(s|M + 1)(f) and Ay = A(s|L +1)(g) be the respective
(non—zero) discrepancies, and set 6 = max{dg,L — M +4df}. We define

[0, f] = Ay X075 — A, XO-LAMTf

It is easy to see that [g, f] is a well-defined polynomial with d[g, f] = 6 < L; [,] was suggested by
the commutator [Ay, A¢] = AgAy — AyA, which appears naturally in the proof of:

PROPOSITION 3.11 Let L > 2. If 1< M < L -1, f € Ann(s|M), g € Ann(s|L) and [g, f] is
defined, then [g, f] € Ann(s|L + 1).

PROOF. Put h =g, f], d =dhand e=L— M +§f. For a <0,

(h o S)a = Af (g o S)a—6+6g - Ag(f o 5)a—6+e

If -(L-—1-9)<a<0,then (hos), =0since —(L—1—-6g) <a—0d+0dg9g < —-d+dg9g <0and
—(M-1-6f)<a—0+e< -04+€e<0. Ifa=—(L—94), then a—d+dg = —(L — dg) and
a—6+e=—(M~—0df),sothat (hos)_(p_s5 = —[Ay,Af] =0 and so h € Ann(s|L + 1). O

In case (c), we are interested in constructing a [g, f] € Min(s|L + 1). For given g, it is natural to

try to find an M < L and an f € Ann(s|M) with —M + § f minimal.

DEFINITION 3.12 Let L > 2. If k(s|1) < k(s|L), we define a(s|L), the antecedent of k(s|L), by
a(s|L) =max{i: 1 <i<L-1& k(s|i) < &(s|L)}

and if po € Min(s|a(s|L)), we set Ay = A(s|a(L) + 1)(1q)-

Thus a(s|L) is the last “position” where k(s|a) < k(s|L);a(s|L) is not defined if k(s|1) = ... =

k(s|L). The next result shows how to construct a minimal polynomial in our remaining case (c):

THEOREM 3.13 Let L > 2, k(s|L) > k(s|]1) and a = a(s|L). If pa € Min(s|a) \ Ann(s|a + 1)
and pr € Min(s|L) \ Ann(s|L + 1), then dup, = a + 1 — Spa, [pL,pa] € Min(s|L + 1) and
OlpL, pa] = max{dpy, L+1—bpL}.

ProoF. We already know that [ur,pa] € Ann(s|L + 1) from Proposition 3.11. We prove the
theorem by induction on L, along with the additional hypothesis that for 1 <i < L — 1, &(s|i) <

11

K(sli+1) = k(sli +1) =i+ 1—k(sli). (If L =2,5=1 and k(s|2) is always equal to 2 — k(s|1)
by Theorem 3.8.) Suppose then that L > 2 and inductively that for 1 < i < L — 1,k(si) <
k(sli+1) = k(s|i+1) =i+ 1 — k(sli).

Put k = k(s|L), f = pa, 9 = pr and h = [g, f]. Since 1 < a < L—1,0ur =k = k(sla+1) =
a+1—406p, and so —a+d5f =1— k. So dh = max{k,L + 1 — k}. Since dg = k > k(s|a) > 0 and
g € Ann(s|L)\ Ann(s|L+1), Theorem 3.7 implies that 0h > k(s|L+1) > L+1-6g=L+1—k. If
k>L+1—k,thenk =06h>k(s|[L+1)>k. f s <L+1—k,then L+1—x=0h>k(s|L+1)>
L +1— k by Theorem 3.7. In either case, dh = k(s|L + 1) i.e. h € Min(s|L + 1).

To complete the inductive step, we need to show that x(s|L) < k(s|L + 1) = &(s|L +1) =
L+1—«(s|L). But if dpr, = k(s|L) < k(s|L + 1), then 6h =L +1— k. O

COROLLARY 3.14 For L > 2, k(s|L+ 1) = max{x(s|L),L+1— &(s|L)}.

Proor. This is immediate from Theorems 3.8, 3.13. O

REMARK 3.15 Analogues of Example 3.4 (which is implied by Theorem 3.8) and of Proposition 3.5
form part of the long, complex inductive proof of the “Massey—Berlekamp” algorithm in Section
3.6 of Ferrand (1988). Theorems 2.11, 3.8 and 3.13 were first distilled from this long proof (which
begins with L = 0) and then generalized to R. Our proof of Theorem 3.13 is however closer to
Massey’s in spirit and does not use continued fractions (as in Ferrand (1988)) to prove that either

k(s|L+1) = k(s|L) or (s|L+1) =L+1— &(s|L).

Our next goal is to show how Theorems 3.8 and 3.13 may be combined to yield an (iterative)
algorithm to compute a minimal polynomial for (s|L). We first show how the minimal polynomials

of Theorem 3.8 may also be written as pur+1 = [pr, ta] using appropriate choices for @ and pq.

DEFINITION 3.16 If k(s|L) = k(s|1), we define the antecedent a = a(s|L) of k(s|L), e and Ay

as in the following table:

a | po | A
S0 = 0 -1 0 1
s0#£0| 0|1 | so

If g € Ann(s|L) \ Ann(s|L + 1), we define [g,0] = XL+1-%9¢,

ExXAMPLE 3.17 In Example 3.4, o = 0,ur = X —r,uq = 1 and the cited minimal polynomial is

[:u'La ,U,a].

12

PROPOSITION 3.18 Let k(s|L) = k(s|1),a = a(s|L). Then
(i) a =max{i| —1<i<L—-1& k(sli) < k(s|L)} and if po # 0 then dpr, = a+ 1 — duq.

(it) pr+1 = [pL, pa] € Min(s|L + 1) and k(s|L + 1) = max{dpr, L+ 1—dpL}.

PROOF.

(i) Let o/ =max{i| -1 <i<L—1& k(s|i) < k(s|L)}. We have k(s|]1) =0 <= sp =0<= a =
—1,and k(s|L) =0 = o = —1. If k(s|L) = 1, then « = 0 = a'. If §u, # 0, then so # 0 and
a+1—0p,=1=46u; =dur.

(i) fa = —1,then sg =0, pr, =1, k(s|L) =0, and pr11 = XL = [ur, o). T a =0, po =1
and pr41 = so XL ur — A(s|L +1)(ur) = [pr,1]. Thus part (ii) follows from Theorem 3.8. O

We have now justified the following:

ALGORITHM 3.19 (MP — Minimal polynomial)
Input: A domain R, L > 1, so,...,5_r+1 € R.

Output: p € Min(s|L).

a:=—=1; py :=0; Ay =1L :=1;

for j:=1 to L do begin
Aj = A(s|g) (pj-1);
if Aj =0 then pj = pj_1
else begin pj := [pj—1, Pal;
a = afslj); end;

end;

return [y, .

EXAMPLE 3.20 Consider the truncated Fibonacci sequence (s|5) = 0,1,1,2,3. We give the table
which corresponds to applying Algorithm MP:

J|la|lAa|pa |Alp
1|-111 |0 |0 |1
20-111 |0 |1 |X2

g 11 |1 |1 |X2=-X

41 111 |1 |1]|X2-X-1
50 111 |1 |0 |Xx2-Xx-1

13

EXAMPLE 3.21 Algorithm MP showed that the complezity of the first L prime numbers is equal to
[L/2], if L <25,L #7,8. (We obtained pg = pr = X3 —2X2 —3X +6 and pg = X° —2X* —
3X3+12X%2+6X —24.)

The following therefore seems reasonable:

CONJECTURE 3.22 The complexity of the first L prime numbers is [L/2] for L suitably large.
We now give an upper bound for the complexity of Algorithm MP.

PROPOSITION 3.23 Algorithm MP requires at most L(3L + 1)/2 R—multiplications.

PRrOOF. The discrepancy A(s|j)(p;) requires at most dp;—1 +1 multiplications and (when pq # 0),
computing [¢j_1, fto] requires at most (dpj—1 + 1) + (dpq + 1) multiplications. Now dp;—1 <j—1
and dus < a by Proposition 3.5 and Definition 3.16, and a < j — 2 by definition. Thus the
jth iteration requires at most 3j — 1 multiplications and summing over j yields the stated upper
bound. O

3.2 Uniqueness

We show that Min(s|L) is essentially a singleton if 1 < k(s|L) < L/2. Ttems 3.24, 3.25, 3.27
are based on corresponding results for sequences over fields in Ferrand (1988), but simplified and

proved afresh using the basic identity (Proposition 2.2) in R((X~1)).

The analogue of the following result for lrs was proved in Lemma 4.2 of Norton (1994).
COROLLARY 3.24 Let R be factorial. If f € Min(s|L) is primitive, ged(f, B(f,s)/X) = 1.

ProoOF. Without loss of generality, we can assume that s is non—zero and 6f > 1. Let d =
ged(f, B(f,s)/X). We have fT'(s|L)—XB(f,s)/X = pX L+ for some p € R[[X~!]] and d divides
the left—hand side. Now &(pX ~L*+%f/d) < —L + 6(f/d), so by Proposition 2.8, f/d € Ann(s|L).
Finally, §(f/d) < 6f, so that éd = 0 (otherwise f is not minimal) and since f is primitive, d = 1.

O

COROLLARY 3.25 Let f,g € Ann(s|L) where 6f > 1, 6g > 1. Ifdf + dg < L, then fB(g,s) =
98(fs).

PrOOF. We have g(fT(s|L) — B(f,s)) = gpX "/ and f(gT'(s|L) — B(g,5)) = fqX "+ for
some p,q € R[[X']]. Thus

9B(f,s) — [B(g,s) = —gpX ~FH 4 fqx —IH0F

14

where the right-hand side has degree at most —L 4+ 6 f + dg < 0 and the left-hand side is divisible
by X. Thus the left—-hand side is zero, as required. a

The next result generalizes Proposition 2.3(f) to finite sequences:
LEMMA 3.26 If (s|L) #0, f € Ann(s|L) and 1 <d0f < L —1, then 5(f,s) #0.

PROOF. If f € Ann(s|L),6f > 1 and B(f,s) = 0, then by Proposition 2.8, fT'(s|L) = pX ~L+of
for some p € R[[X~1]]. Hence 0 f + 6T'(s|L) < =L +6f, i.e. 6T(s|L) < —L and so (s|L) =0. O

We now turn to the determination of Min(s|L) when 1 < k(s|L) < L — 1. When R is a field, the

following uniqueness result also follows from Theorem 1, p42 of Niederreiter (1988).

COROLLARY 3.27 Let R be factorial. If 1 < k(s|L) < L/2 and f € Min(s|L) is primitive, then f
is unique (up to a unit of R).

Proor. Let f,g € Min(s|L). Then 1 < dg = 6f and §f + dg < L, so by Corollary 3.25,
fB(g,8)/X = g9B(f,s)/X, where B(f,s) (and hence 5(g,s)) is non-zero by Lemma 3.26. Since
ged(f, B(f,8)/X) =1 by Corollary 3.24, f|g. Similarly, g|f. O

3.3 Some applications to Irs

Recall that if R is factorial and s is an lrs, then 7(s) denotes a primitive generator of Ann(s). By
Corollary 3.27, if s is a non—zero lrs over a factorial R, then 1 < k(s|d7(s)) < k(5|267(s)) < d7(s)

and so Min(s|26v(s)) consists of the associates of some polynomial.
COROLLARY 3.28 Let R be factorial and let s be a non—zero lrs over R. Then y(s) € Min(s|26v(s)).

PrROOF. Let v = 7(s), let L = 2§y > 2 and let p € Min(s|L) be primitive. Since s is non-
zero, 0p > 1. Clearly v € Ann(s|L), so that ou < év and dp + oy < 2§y. By Corollary 3.25,
vB(u,8) = pp(vy,s) where B(v,s) (and hence B(u,s)) is non—zero by Proposition 2.3(f). Now ~
is relatively prime to S(7,s)/X by Lemma 4.2 of Norton (1994) and so v|u. Similarly, p|y by
Corollary 3.24, which yields the result. O

It follows that Algorithm MP can also be used to compute the minimal polynomial of an Irs

(without using polynomial remainder sequence constants as in Fitzpatrick & Norton (1995)).

The following result is implicit in Wiedemann (1986) for lrs over any field. We give a proof for

factorial domains.
PROPOSITION 3.29 If R is factorial, lem(f,v(s)) = fy(f o s), up to a unit of R.

15

ProOF. Let g = v(s) and d = ged(f, g). Since go (fos) =(gf)os= fo(gos)=0,fosisan
Irs and h = (f o s) is also well-defined. Now (fh) os = (hf)os=ho(fos) =0, so g|(fh) and
hence lem(f, g)|(fh). Also, (g/d) o (fos)=(g9f/d)os= f/do(gos)=0. Therefore h|(g/d) and
(Fh)[lem(f, g)- O

Corollary 3.28 and Proposition 3.29 now justify the following algorithm, which generalizes Algo-
rithm 2, p25 of Wiedemann (1986) to factorial domains:

ALGORITHEM 3.30 (lcm of Irs generators)

Input: Factorial domain R, L > 1,N > 2, s(()k), .. .,s‘fgLH € R, with 6y(s®) < L for1 <k < N.
Output: lem(y(sM),...,v(s™)), up to a unit of R.

g:=1

fork:=0to N—1 do gri1 = gry(gr 0 s*HD); /% use Algorithm MP */

return gn .

As in Wiedemann (1986), we may exit from the above loop if dg; = L for some j since by

Proposition 3.29, gi|gr+1 and dgr < Lfor 1 <k <N —1.

DEFINITION 3.31 Let M be an (N X N)-matriz over R and let b be a non—zero N -vector of R
elements. For 1 < k < N, let w® = w(M,b)®) € SY(R)~ be defined by w¥ = (M~ib)y, for
1 <0.

Thus if d = 6f, (f o w®)g = L, frw'™) = S0 fi(Mib)y.

PROPOSITION 3.32 For 1 < k < N, w(M,b)*) has a characteristic polynomial of degree at most
N.

ProoF. The Cayley—Hamilton Theorem is valid over R (see Theorem 3.1, p561 of Lang (1993))
and so the minimal polynomial, f say, of M has degree at most N. A simple check shows that
f € Ann(w®) for 1 <k < N. O

PROPOSITION 3.33 Let v = Z?:o Xt € ﬂkN:1 Ann(w™®). Ifa = — Z?Zl 7M™ 1b, then Ma =
Yob. In particular, if vo is a unit of R, M'yo_la =b.

PROOF. For 1 < k < N, (Ma—v b)r, = — X0, %i(Mib)g—obx = — 3% 7i(Mb) . — (yo(w®))g =

0 and Ma = b. O

The prime candidate for v in Proposition 3.33 is of course v = lem(y(s™),...,v(s®))) which
generates ﬂkN:1 Ann(w'®)), and which we may compute using the (w¥)|2N) by Algorithm 3.30
and Proposition 3.32.

16

ALGORITHM 3.34 Input: Factorial R, (N x N)-matriz M and N-vector b over R.
Output: v € R and a such that Ma = ~b.

1. Compute (w®|2N).

2. Compute v = lem(y(sM), ..., v(s'™))) via Algorithm 3.30.

3. Return — Zle i M+ 1.

Wiedemann’s method of solving Mz = b is an application of Algorithm 3.34 (using the BM
algorithm instead of Algorithm MP in Algorithm 3.30) to a non—singular matrix with entries from a
field F. (In this case, 7o # 0 since b # 0 and so 7y has an inverse in F.) The “Fundamental Iterative
Algorithm” of Feng & Tzeng (1991) may also be used instead of Algorithm 2 of Wiedemann (1986).

A useful special case of Algorithm 3.34 is the case R = A[z] where A is a factorial domain and M
is non-singular. In this case we obtain the solution to Mz = b as a vector of rational functions
a/vo (¢f. Guiver (1985), Lotti (1992)).

Algorithm 3.30 may also be used to find the minimal polynomial of matrix.

PROPOSITION 3.35 Let M be an (N x N)-matriz over R and for 1 < k < N?, let (s®)|2N)
be defined by s(fz) = M} for 0 < i < 2N — 1. Then the minimal polynomial p of M is v =
lem(y(s™M), ... ,fy(s(Nz))), up to a unit of R.

PROOF. It is clear that g € Ann(s(®)|2N) for 1 < k < N? and so y|u. On the other hand,
yo (s®|2N) =0for 1 <k < N? and so y(M) = 0. O

Since it seems likely that there is an O(Llog L) version of Algorithm MP (as in Blahut (1983)) we
will not consider fast methods of matrix multiplication to reduce the complexity of Algorithm 3.30

here.

4 Minimal realization

4.1 An iterative algorithm

It is clear that we obtain a minimal realization algorithm by simply returning 3(ur, s) in Algorithm
MP. Now it is easy to check (using Proposition 2.3(d) and the linearity of 3(, s)) that computation
of B(f,s) requires at most df(4f 4+ 1)/2 R—multiplications. Since dur < L, computing a minimal

realization in this way incurs at most L(L + 1)/2 additional R—multiplications.

In this section we show how to extend Algorithm MP to compute B(ur,s) iteratively. This is
done by first expanding [,] and then expressing B([,],s) in terms of the border polynomials

of each argument. We will see that computing 8(ur,s) in this way requires at most L? more

17

R-multiplications than Algorithm MP, so that this iterative method of computing B(ur,s) is
potentially slightly less efficient. However, the iterative version brings out the underlying similarity
of computing ur, and B(ur,s) (¢f. Dornstetter (1987), Appendix), which could be exploited in a
hardware implementation. Further, the form of Algorithm MR shows that ur and B(ur,s) could

even be computed simultaneously.

PROPOSITION 4.1 If m = m(L) = 26ur, — L —1 and A = A(s|L +1)(ur), then

[Br,pa]l =Aapr —AX™Mpg
a(s|L+1) =a(s|L)

m(L+1) =m(L)-1 ifm>0
[Br,pa) = AaX "L — Apg
a(s|L+1) =L

m(L+1) =-m(L)-1 otherwise.

Proor. Put a = a(s|L). If « = -1, then pq = 0, = pp1 = 1 and m = —L — 1 < 0. Thus
[pL, pa] = XLt and a(s|L +1) = L, as stated. For a > 0, §[pr, pa] = max{dur,L+1—38ur} by
Theorem 3.13 and Proposition 3.18, and L+ 1—0ur, = L —a+dp,, so § —dpr, = max{0, —m} and
0—L+a—06p, = max{0,m}. Now dprq1 = 0ur, < dpr > L+1—6pr <= m(L) > 0, and so the
form of [ur, pta] follows from Definitions 3.10 and 3.16. Also, a(s|L + 1) = a(s|L) <= m(L) > 0
and if m(L) < 0, a(s|L+1) = L by definition of a(s|L+1). We omit the verification of m(L+1).00

It follows that s, Ay are to be updated (to pr, A respectively) only when m(L) < 0. Suppressing
indices (but retaining the po, A, notation) and factoring out the update of p usings swaps yields
the following algorithm (where for j = 1 and A = s¢ # 0, we force p to change from 1 to X by

initializing m to —1).

ALGORITHM 4.2 (MP— Minimal polynomial — expanded version).
Input: A domain R, L > 1, sg,...,5_r+1 € R.

Output: p € Min(s|L).

Po =05 p:=1;
Ay =1 m:= -1,

for j:=1 to L do begin

A= A(s|g) ()
if A #0 then begin if m < 0 then begin m := —m;

18

Swap {p, —pa}t;
Swap {A, A, };end;
pi=A02q p—A X™ poiend;

m :=m — l;end;

return (.

We may of course dispense with the negation. It is easy to see that if R is a field then adding

”

the statement “p:= p/A,;” makes each p monic. The interested reader may readily reformulate
Proposition 4.1 in terms of loop invariants for Algorithm 4.2 using the j** iterates u;, a; etc. We

note that in Ferrand (1988), the analogue of u, is initialised to 1 and j ranges from 0 to L — 1.

EXAMPLE 4.3 Algorithm 4.2 applied to (s|5) = 1,0,1,0,0 in GF(2) (Massey (1969), Ezample
p125) is:

J|Aa | o | A|m | p
1|1 0 |1 | 0|X
211 1 |0 |-1|X
3|1 1 |1] 0]X%2+1
4|1 X |0 |-1|X%2+1
511 | X |1]| 0]X3

Observe that Massey obtains 1 as the “connection polynomial”, which is the reciprocal of X3. We
remark that Algorithm 4.2 computes the minimal polynomial of the example on p441 of Lidl &
Niederreiter (1983) using only 5 terms.

Our iterative minimal realization algorithm rests on the next two results which show that 8 behaves

very neatly with regard to the [,] construction:

PROPOSITION 4.4 If 1 < M < L—1, f € Ann(s|M), g € Ann(s|L) and [g, f] is defined (as in
Definition 3.10), then

B(lg, f1,8) = Ap X% B(g,5) — A X LM g(f)

where § = max{dg,L — M +6f}.

PROOF. Put e =L — M +6f.

(i) If 6 = 69, then 6 — e > 0 and
B([guf];s) = ﬂ(Af g_Ag)(é_E f,S)ZAf ﬂ(g78)—Agﬂ(X6_€ fas)

19

(since S is linear)

= Af B(g,s) — Ag(XB(f,8) + B(X°~¢, fos))

by Proposition 2.3(e).

We show that 3(X%~¢ fos)=0.If§ —e =0, then 8(1,5) =0. If § —e > 1, then

d—e—1

BX°,fos)= Y (fos) aX? <"

a=0
Ford=0g<L-1, -(M-1-6f)<—(0—€e—1)andso (fos)_q=0for0<a<d—e—1.
Thus B(X%~¢, fos) =0 for all § > ¢, and B([g, f], s) is as required.

(i) If § = ¢, then § — 8g > 0 and
B(lg: fl,8) = B(AFX27%9g — Ay f,5) = ApB(X°%9g,5) — AgB(f, 5)-
From Proposition 2.3(e),
B(X°7% g,5) = X°7%9(g,5) + B(X°7%, gos).

Now B(X%799 gos) =322 (gos)_, X% Since § < L implies —(L —1—dg) < —(6—1—

a=0

09),(gos)_o=0for0<a<d§—3dg—1and B([g, f],s) is as stated. O

The initialization “B(u—1,s) = —X” in Algorithm MR below is required by the following result,
which will complete our justification of the iterative minimal realization algorithm. (Addition and

polynomial multiplication of minimal realizations will be by component.)

THEOREM 4.5 Define B(p—1,8) = =X and m = 26ur, — L — 1. Then

B([1L, tal,8) = Aaf(pr,s) — AX™B(pa,s) if m >0

and

B([uL, pal,8) = Aa X" B(pr, 8) — AB(fta, s) if m < 0.

ProOOF. For a > 1, the result follows from Propositions 4.1 and 4.4.

Ifa=-1,then o =0, Ay =1land pur, =p1 =1,s0that m=—-L—-1< 0 and
B([ML,MG],S) = IB(XL+1)$) = XS*L = _A/B(/Jflas)'
If a =0 then py =1,8(a,s) =0, Ay =80 #0and ur, = pu; = X. Thusm = —L+ 1 and

B(uL, pal, 8) = B(so XP 7 up — A, s) = 50 X' B(ug, s)

by Proposition 2.3. O

20

ALGORITHM 4.6 (MR — Iterative minimal realization).
Input: A domain R, L > 1, sg,...,5_1+1 € R.
Output: A minimal realization (ur, B(ur,s)) for (s|L).

(p’aaﬁa) = (Oa _X); (/“LJB) = (170);
Ay =1 m:= -1,

for j:=1 to L do begin

A= As]g) (w);
if A #0 then begin if m < 0 then begin m := —m;

Swap{ (1, 8), —(pba> Ba)};
Swap{A, Ay };end;

(/“LJﬂ) = AD((/"LJB) -A Xm(,ua,ﬂa);end;

m :=m — 1;end;

return (u,).

EXAMPLE 4.7 If we apply Algorithm MR to Exzample 4.3, we obtain f1 = X = B, B3 = X? =
B, Bs = X(X* +1).

It is easy to check that the computation of the border polynomials requires at most L2 more

R-multiplications than in Proposition 3.23:

PROPOSITION 4.8 Algorithm MR requires at most L(5L + 1)/2 R—multiplications.

4.2 Some applications

We begin with Kalman’s parametrized partial realization example:

EXAMPLE 4.9 Algorithm MR with R = Z[£,n] and (s|6) = 1,1,1,2,&, n yields the minimal realiza-
tion (z —) {2 +3z+7+[— (z+)E—n|} —La(@®+ 3z +7+[¢2— (x +4)E —n)])). This agrees
with formula 3.2 of Kalman (1979), obtained from Algorithm 2.7, loc. cit. and the R[x]-continued

fraction formula p19, loc. cit. for all minimal realizations of 1,1,1,2 over the reals R.

In the next example, we no longer need to know that the sequence has a characteristic polynomial

of degree 2:

EXAMPLE 4.10 If we apply Algorithm MR to R = Fs[y] and (s|4) = y,1,y + 1,4% + 1, we obtain
wX)=X(X+y+1),8X) = X@yX+y*+y+1) (cf. Ezample 5.3 of Fitzpatrick & Norton
(1995)).

21

It follows from Corollary 3.28 that Algorithm MR also computes the minimal realization of an Irs,
provided enough terms are known. Algorithm MR may be used to find path enumerators/transfer

functions:

EXAMPLE 4.11 For the standard (2,1,2) convolutional code (Example CC1, p200 of McEliece
(1977)), we obtain T = Y3Z/X4(X —YZ(Y + 1)) as the complete path enumerator using R =
ZY, Z] (cf. p287, loc. cit.). For the 2—state trellis code of Chan & Norton (1995) with a,b,c,d # 0,
the transfer function obtained is (aX — (ad — be)) /(X — d), using R = Z]a, b, ¢, d].

REMARK 4.12 As expected, there are applications of Algorithms 4.2 and MR to Coding Theory
(Norton (1995)). In fact, the key equation is more natural in F,[[X ~']] and so can be solved using
Algorithm MR, giving new algorithms for decoding BCH and Reed-Solomon codes. This approach
also extends to decoding classical Goppa codes. There is an extension of Algorithm 4.2 to finding
a (simultaneous) minimal polynomial of several F—sequences, which simplifies the “Fundamental
Iterative Algorithm” of Feng & Tzeng (1991) and an extension of Algorithm MR to R = Z [p°Z
which simplifies Sections 4,5 of Reeds & Sloane (1985).

It seems likely that Algorithm MR will also apply to computing growth functions of groups (see
Brazil (1993)), to the analysis of linear systems (see Chen (1983)) and to solving discrete—time
Wiener—Hopf equations (see Sugiyama (1986)).

4.3 The set of minimal realizations

We characterize the minimal realizations of a finite sequence. This section was partly suggested
by Lemma 3 and Theorem 1 of Niederreiter (1988), which use continued fractions in F((X 1)) to
study the linear complexity of an infinite sequence and to characterize its minimal polynomials.
See also Theorem 3, p124 of Massey (1969) and Proposition 3.4.7 of Ferrand (1988).

We begin with an easy result showing how to generate additional minimal realizations of (s|L)

from (ur,,Br). Addition and polynomial multiplication of realizations will be by component.

PROPOSITION 4.13 Let (pr,8L), (fa,Ba) be computed as in Algorithm MR, where o = a(s|L).
Then for any r € R\ {0} and ¢ € R[X], dc < 20pr, — L — 1, 7(pr,Br) + c(fta, Ba) is a minimal

realization of (s|L).

ProoF. Without loss of generality, we can assume that g, # 0. Let g = rur, +cpi. Since a < L—1
and dur = a+ 1 — dp, by Theorem 3.13 and Proposition 3.18,

dc+0pe < (20u, —L—-1)+ (a+1—0pr) =0pur — L+a<dur—1
and so 6 = dur. Also, B(u, s) = rBr + ¢f4 by Proposition 2.3. A simple calculation now yields

6(ul'(s|L) — B(w,s)) < max{—L+dp, bc—a+dpa} < —L+dp

22

since d¢ < 26pr — L — 1. Thus (u, B(u, s)) is a minimal realization of (s|L). O

Our proof of the converse requires two lemmas:

LEMMA 4.14 Let (s|L) be o sequence over R and either (i) f = 1 or (i) 1 < i < L—1 and
f € Ann(s|i). Put B8 = B(f,s) and 6 = 6(fT'(s|L) — B). Then either (i) 6 < f or (i) § < —i+4df.
If in addition (i) L > 2 and f & Ann(s|1) or (i) i < L —2 and f & Ann(s|i + 1), then either (i)
d=06f or (i) 6 =—i+4f.

PRrOOF. The case f =1 is easy to check. Expanding I'(s|L) yields § < —i + §f. Writing
fT(IL) =B = fT(s|li+1) =B+ f (s i1z "' +...+s iz =)

shows we must have § > —i + df, for otherwise f € Ann(s|i + 1). O

LEMMA 4.15 Let F be a field, let (s|L) be a sequence over F, with uo =1 and p; € Min(s|i) for
1<i< L. Then any f € F[X] with 6f > dur, may be written as

L
F=> cip
=0

where 6¢; < Opip1 —Op; for 0 <i < L—1 and dcg, = 0f — dpr. If in addition, (f,g) realizes (s|L)
and 6f < L, then g = B(f,s) and (f,9) = Si’q cilui, Bi).

PrOOF. The first statement is an easy induction on 6f > 0 and the form of g follows from

Proposition 2.3(e) and Proposition 2.6. O

THEOREM 4.16 Let (s|L) be a sequence over a field F' and let (ur,BL), (ta,>Ba) be computed as
in Algorithm MR, where o = a(s|L). Then any minimal realization (f,g) of (s|L) satisfies

(fa g) = CL(/“LLJﬁL) + Ca(ﬂa;ﬁa)

for some cp, € F\ {0}, ¢, € F[X] where either ¢, = 0 or dcq < 26pr, — L — 1. In particular, if
20pr, < L, then (f,9) = cr(pr,Br) for some cr, € F \ {0}.

Proor. We first dispense with the case @ = —1; here s9 = 0 and pup = po = 1. If f €
Min(s|L), f = cr, for some ¢, € F \ {0} and f = cLpur. Now suppose that @ > 0. By Lemma 4.15
we have f = ZiLzo cipi where 6c; < Sppipr — Op; for 0 < 4 < L —1 and ¢ € F \ {0} since
O0f =0pr, >0.Let j =min{i: 0<i <L & ¢; # 0}. If j = L, we are done.

We now show that if 0 < j < L—1 then j = a. Note first that by Theorem 3.13 and Proposition 3.18,
a+1<i<L-—1implies that du; = dur. Soc; =0fora+1<i< L-1andj < a. Let us
suppose that j < a.

23

It follows easily from Proposition 2.3 that

L

STGIL) = B(f,8) = D ealwT(sIL) = Bluis 5)),

i=j
which we use to prove that dc; — j 4+ 0u; < —L 4+ 0f.
Since ¢; #0, 0p; < Opj+1 and dpjp1 = j + 1 — dp;. This implies that dc; — j + dp; > 1 — Spjya.
Lemma 4.14 yields 6(u;I'(s|L) — B(p4,5)) = —j+0p; and so 6(c;(u;T'(s|L) — B(pj,8))) > 1—0p;41.
If now j <i < a and ¢; # 0, then

0c; — i+ 0p; < Opipr —i=1—10p; < 1—5/,Lj+1.
Lemma 4.14 implies that d(u;I'(s|L) — B(pi, s)) < —i + dp; and so 6(c; (u;L'(s|L) — B(pi,s))) <
1 —0pj41. Since f € Ann(s|L), we conclude that dc; — j + dp; < —L + dpr.

Hence if j < a, then

1= 0pa <1 —06pjp1 =—j+6p; <dcj —j+6p; < —L+dpr
sol—0pg < —L+6pur =—L+a+1—4du,, which contradicts & < L — 1. Thus the only possible
non—zero ¢; is ¢q- Also, dcq, — a + dpiq < —L + dur, implies that dc, < 26up — L — 1.

Finally, f = dur, < L, so that Lemma 4.15 and the first part imply that either g = B(cr,s) =

0 = ¢1.Br, (corresponding to the case @« = —1) or g = cLurL + Calta- O

THEOREM 4.17 Let (s|L) be a sequence over R and let (ur,fr), (Pa,Ba) be computed as in
Algorithm MR, where a = a(s|L). Then (f,g) is a minimal realization of (s|L) iff

T(fa g) = CL(NL;ﬂL) + Ca(uaaﬂa)

for some r, ¢, € R\ {0}, co € R[X] where either c, =0 or dcq < 20ur, — L — 1. If in addition,

R is factorial and py is primitive, we may take r = Aur and cp, = Af.

PROOF. <«: By Proposition 4.13, r(f, g) is a minimal realization of (s|L). It is easy to see that
since R is a domain, (f, g) is also a minimal realization of (s|L).
=: Let R' be the fraction field of R and let (s'|L) be (s|L) considered as a sequence over R'. Now

as in Proposition 3.2, (f,g) and (ur, 1) are minimal realizations of (s'|L) and so by the previous

theorem,
(f,9) = cp(uL, Br) + ¢ (pa, Ba)

for some ¢} € R'\ {0}, ¢}, € R'[X] where either ¢, = 0 or dc, < 20pur, — L — 1. If we now let
r € R\ {0} clear denominators in ¢} and c,,, ¢z, = rcf and ¢, = rc,, then r(f, g) has the stated

form.

24

Finally, if R is factorial and p, is primitive, we have r(f, 9) = cr(ur,BL) + ¢a(fa, Ba) by the first

part. Comparing leading terms of f and ur gives rAf = cpAur and so

rApr f=rAf pr + AL cafra-

Since pq is primitive, r|(Aur cq) , which yields the result. O

REMARK 4.18 It is easy to check that the previous theorem also yields Corollary 3.27 since 26uy, <
L implies cq = 0. In particular Conjecture 3.22 would imply that for large enough L, the sequence of
the first L prime numbers has a unique (up to sign) minimal realization if L is even. On the other
hand if L is odd, Proposition 4.13 would yield infinitely many minimal realizations (ur,Br) +
n(pur—1,B8r-1) where (ur,Br), (Wr—1,BL-1) are computed using Algorithm MR, and n is any

integer.

Acknowledgements. The author gratefully acknowledges financial support from the UK Science and
Engineering Research Council under grant GR/H15141, and is pleased to thank the anonymous
referees for useful comments, suggestions and Niederreiter (1988), which improved this paper.

Some of the algorithms of this paper were implemented in MAPLE by A.Au.

Notes added in proof: (i) An analogue of the Berlekamp—Massey algorithm for partial realization
over a field appeared in J. Conan (1985): A recursive procedure for the solution of the minimal
partial realization problem for scalar rational sequences, Rev. Roumaine Math. Pures Appl. 30,
625-645. (ii) The author regrets this late publication of his research: an earlier version of this work
was submitted to another journal in May 1992. It was withdrawn from that journal in September

1993 as no referees reports had yet been received by the editors.

References

Berlekamp, E. (1968). Algebraic Coding Theory. Mc—Graw Hill, New York.
Blahut, R. (1983). Theory and Practice of Error Control Codes. Addison—Wesley, Reading MA.

Brazil, M. (1993). Growth functions for some one-relator monoids. Communications in Algebra
21, 3135-3146.

Camion, P. (1989). An iterative Euclidean algorithm. Proceedings AAECC-5 (L.Huguet, A.Poli,
eds.), Lecture Notes in Computer Science, 356, 88-128. Springer.

Chan, K.Y., Norton, G.H. (1995). A new algebraic algorithm for generating the transfer function

of a trellis encoder. IEEE Transactions on Communications 43, 1866—1867.
Chen, W.-K. (1983). Linear Networks and Systems. Wadsworth, Belmont California.

Dai, Z.D., Wan, Z.X. (1988). A relationship between the Berlekamp—Massey and the Euclidean
algorithms for linear feedback shift register synthesis. Acta. Math. Sinica (N.S.) 4, 55-63.

25

Dickinson, B.W., Morf, M., Kailath, T. (1974). A minimal realization algorithm for matrix se-
quences. IEEE Transactions Automatic Control 19, 31-38.

Dornstetter, J.L. (1987). On the equivalence between Berlekamp’s and Euclid’s algorithms. IEEE
Trans. Information Theory 33, 428—431.

Feng, G.L. and Tzeng, K.K. (1991). A generalization of the Berlekamp—Massey algorithm for
multisequence shift register sequence synthesis with applications to decoding cyclic codes. IEEFE
Trans. Information Theory 37, 1274 — 1287.

Ferrand, D. (1988). Suites Récurrentes. IRMAR, Université de Rennes.

Fitzpatrick, P. and Norton, G.H. (1991). Linear recurring sequences and the path weight enumer-

ator of a convolutional code. Electronic Letters 27:1, 98-99.

Fitzpatrick, P. and Norton, G.H. (1995). The Berlekamp—Massey algorithm and linear recurring
sequences over a factorial domain. Applicable Algebra in Engineering, Communication and Com-
puting 6, 309-323.

Guiver, J.P. (1985). The equation Az = b over the ring Clz,w]. In Multidimensional System
Theory, (Ed. N.K. Bose), 233 — 244. D.Reidel Publishing Co.

Imamura, K. , Yoshida, W. (1987). A simple derivation of the Berlekamp—Massey algorithm and
some applications. IEEE Trans. Information Theory 33, 146-150.

Jonckheere, E., Ma, C. (1989). A simple Hankel interpretation of the Berlekamp—Massey algorithm.
(1989). Linear Algebra and its Applications 125, 65-76.

Kalman, R.E. (1979). On partial realizations, transfer functions and canonical forms. Acta Poly-
tech. Scand. Math. Comput. Sci. 31, 9-32.

Kalman, R.E., Farb, P.L., and Arbib, M.A. (1969). Topics in Mathematical Systems Theory.
McGraw—Hill.

Lang, S. (1993) Algebra (Third Edition, reprinted). Addison—Wesley.

Lidl, R., Niederreiter, H. (1983). Finite Fields, Encyclopedia of Mathematics and its Applications
20. Addison—Wesley.

Lotti, G. (1992). Fast solution of linear systems with polynomial coefficients over the ring of

integers. J. Algorithms 13, 564-576.

Massey, J.L. (1969). Shift register synthesis and BCH decoding. IEEE Trans. Information Theory
15, 122-127.

McEliece, R. (1977). The Theory of Information and Coding, Encyclopedia of Mathematics and
its Applications 3. Addison—Wesley, Reading, Mass.

Mills, W.H. (1975). Continued fractions and linear recurrences. Mathematics of Computation 29,
173-180.

26

Niederreiter, H. (1988). Sequences with almost perfect linear complexity profile. In Advances in
Cyptology — EUROCRYPT ’87. Lecture Notes in Computer Science 304, 37 — 51. Springer.

Norton, G.H. (1994). On n—dimensional sequences.I. J. Symbolic Computation. To appear.

Norton, G.H. (1995). Some decoding applications of minimal realization. Proc. V" IL.M.A.

Conference on Cryptography and Coding, Springer Lecture Notes in Computer Science. To appear.

Reeds, J.A., Sloane, N.J.A. (1985). Shift-register synthesis (modulo m). S.LLA.M. J. Computing
14, 505-513.

Rouchaleau, Y., Sontag, E.D. (1979). On the existence of minimal partial realizations of linear
dynamical systems over Noetherian integral domains. Journal of Computer and System Sciences
18, 65 — 75.

Sain, M.K. (1975). Minimal torsion spaces and the partial input/output problem. Information
and Control 29, 103 — 124.

Sakata, S. (1990). Extension of the Berlekamp-Massey algorithm to n—dimensions. Information
and Computation 84, 207-239.

Sheppard, N. (1994). Symbolic Computation of Padé approximants. Third Year Project, Dept. of

Electrical Engineering, University of Bristol.

Sugiyama, Y. (1986). An algorithm for solving discrete-time Wiener—Hopf equations based on
Euclid’s algorithm. IEEE Trans. Information Theory 32, 394 — 409.

Trench, W.F. (1964). An algorithm for the inversion of finite Toeplitz matrices. J. S.L.A.M. 12,
515-522.

Welch, L.R. and Scholtz, R.A. (1979). Continued Fractions and Berlekamp’s algorithm. IEEE
Trans. Information Theory 25, 19-27.

Wiedemann, D.G. (1986). Solving sparse linear equations over finite fields. IEEE Trans. Infor-
mation Theory 32, 54-62.

Zierler, N. (1968). Linear recurring sequences and error—correcting codes. In (H.B.Mann Ed.)
Error Correcting Codes, 47-59. J. Wiley (New York).

27

