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Abstract

This is an expository account of a constructive theorem on shortest linear recurrences over
an arbitrary integral domain R. A generalisation of rational approximation, which we call
'realization’, plays a key role throughout the paper. We also give the associated ’minimal
realization’ algorithm, which has a simple control structure and is division-free. It is easy to
show that the number of R-multiplications required is O(n?), where n is the length of the
input sequence.

Our approach is algebraic and independent of any particular application. We view a linear
recurring sequence as a torsion element in a natural R[X]-module. The standard R[X]-module
of Laurent polynomials over R underlies our approach to finite sequences. The prerequisites

are nominal and we use short Fibonacci sequences as running examples.
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1 Introduction.

The problem of finding a shortest linear recurrence satisfied by a given finite sequence is important
in view of its manifold applications. Before citing some of these, we formulate the problem in the

notation of Massey (1969).

Let K be a field and let n be a strictly positive integer. Suppose we are given a sequence

S0,.--,8n_1 over K (i.e. S; € K for 0 <i<n—1)and!l >0, we say that ¢ = (c,...,¢q) € K*!

defines a linear recurrence of length l for Sy,...,Sn—1 if ¢ =1 and

coSi+- - +¢S;;=0forl<i<n-—1. 1)
For example, 1 defines a linear recurrence of length 0 for Sy, ...,S,_1 if, and only if S; = 0 for
0<i<n-—1. If ¢,...,¢ defines a linear recurrence of length [ for Sy,...,S,_1, we say that it



is a shortest linear recurrence for Sy, ..., S,_1 if whenever by, ...,b; defines a linear recurrence of

length k for Sg,...,S,_1, we have | < k.

Any 1,¢1,...,c, defines a linear recurrence of length n for Sy, ..., S,—1 since Equation (1) is then

vacuously satisfied. Thus the following problem always has a solution:

PROBLEM 1.1 Find a shortest linear recurrence for So,...,Sn—1 over K.

We can rewrite Equation (1) as S; = —2321 ¢;jSi—j for I < i < n — 1, where by the usual
convention, a sum over the empty set is zero. Then Sp,...,S, 1 is said to be ’generated by a
linear feedback shift-register (LFSR) of length | > 0 with feedback coefficients ¢y, ..., ¢;’, Massey,

loc. cit.

The LFSR Synthesis Algorithm, loc. cit. solves Problem 1.1. In fact, Massey simplified Berlekamp’s
method for decoding BCH codes (see Section 7.3 of Berlekamp (1968), "Heuristic solution of the
key equation’). See also Trench (1964). The LFSR Synthesis Algorithm is commonly known as
the Berlekamp-Massey Algorithm; see Blahut (1983) for an exposition of it in terms of LFSR’s.

The uniquely defined length of a shortest linear recurrence for Sy,...,S,_1 is called the linear
complexity of Sg,...,Sp—1. We remark that Massey’s LFSR Synthesis Algorithm applies to an
arbitrary finite sequence, whereas in Berlekamp’s original decoding algorithm, the sequence of
length 2¢ is known to have linear complexity at most ¢, where t > 1. For some applications of
linear complexity to Algebraic Coding Theory, see Matt & Massey (1980), Massey & Schaub (1988)
and Diir (1992), Chan & Norton (1995).

The linear complexity of a finite (binary) sequence is widely used in Cryptography, van Tilborg
(1988). It is related to continued fractions, Welch & Scholz (1979), Mills (1975) and Padé approx-
imation Brent et. al. (1980). It can be used for data compression, Massey (1969), for computing
growth functions, Brazil (1993), for solving sparse linear equations, Wiedemann (1986), for sparse
interpolation, Diir & Grabmeier (1993), for computing canonical binary forms, Diir (1989) and as
a method (attributed to D.H. Lehmer) for computing composed products of polynomials, Brawley
et al. (1999). LFSR’s are known as filters in Digital Signal Processing, and the Berlekamp-Massey
Algorithm is used to design them, Blahut (1985). The Berlekamp-Massey Algorithm also solves
the partial realization problem of Control (Mathematical Systems) Theory, Kalman et al., (1969).

If So,...,Sn_1 is a sequence over an integral domain R, we say that co,...,c; € R defines a linear
recurrence of length I > 0 for So,...,Sn—1 if g # 0 and Equation (1) is satisfied. As above, the

following problem always has a solution:
PROBLEM 1.2 Find a shortest linear recurrence for Sp,...,S,—1 over R.

A division-free solution to Problem 1.2 was given in Norton (1995a), which also contains appli-

cations to Linear Algebra, to computing symbolic enumerators (¢f. Mason’s rule for signal-flow



graphs, Mason & Zimmermann (1960)) and to solving the parametrized partial realization problem
of Control Theory. An application to Yule-Walker and Wiener-Hopf equations appears in Gueret
(1996). This theory also applies to a sequence over R with missing or unknown terms {S; : i € I'};
we may regard them as indeterminates and the original sequence as being over the integral domain
RI[S; : i € I]. The division-free algorithm can also be used to conduct experiments on the shortest

linear recurrences of a finite sequence over R; see e.g. Conjecture 3.22 of Norton (1995a).

Here, we have also simplified the theory developed in Norton (1995a). Our concepts and proofs
are not difficult, but we have motivated them and given complete details for expository reasons.
The set of sequences over R is an R[X]-module in a natural way and we view the subset of linear
recurring sequences as its torsion submodule. For finite sequences, the standard R[X]-module of
Laurent polynomials over R underlies our approach. In other words, for finite sequences, we exploit
R[X !, X] with the subring R[X] acting by multiplication in R[X !, X]. Another R[X]-module,
R[X]?, also enters naturally, see Section 7. Thus our approach to Problem 1.1 is algebraic rather
than application-oriented. This paper can be read independently of Berlekamp (1968) and Massey
(1969).

Our iterative algorithm has a simpler control structure than the algorithms on page 184, Berlekamp
(1968) and Massey (1969), and it is easy to implement and to analyse. Thus we also address the
conceptual v. practical conflict (sic) of p. vii, Berlekamp (1968).

Our algebraic approach extends to the study of multiple sequences, Section 8 of Norton (1995b).
It generalizes to shortest linear recurrences of a finite sequence over a finite chain ring 4, e.g. a
Galois ring. Our algorithm can be modified to find a minimal-degree solution of a congruence in
A[X] usually solved by the extended Euclidean algorithm when A is a field. See Norton (1999) for

details.

This paper is an expanded version of a short note submitted to this Journal. The author would
like to thank Tim Blackmore, the referees and the Editor-in-Chief for their useful comments and

suggestions.

2 A reformulation of the shortest linear recurrence prob-

lem.

2.1 Minimal polynomials of a finite sequence.

Suppose ¢, ..., defines a linear recurrence of length [ for Syp,...,S, 1 over a field K as in
Section 1. In Section IIT of Massey (1969), the ’connection polynomial’ of this recurrence, viz.
c(X)=14+¢;X 4 ---+ ¢ X! is defined, where the connection polynomial of ‘the LFSR of length
0’ is taken to be ¢(X) = 1. Thus ¢g = 1 and deg ¢ < [.



We will see that the polynomial f(X) = Eé:o fiX?, where f; = ¢_; for 0 < 4 < [ is more
convenient. (Recall that the reciprocal of ¢ is X948 ¢c(X~1). We easily have f(X) = X!~de8 cc*(X)
and ¢ = f*. However, we prefer not to use reciprocals as we are dealing with a linear problem and
it is easy to find polynomials g, h with (g + h)* # g* + h*.)

Now f is monic and deg f = [. (By a monic polynomial, we always mean a non-zere polynomial

with leading coefficient 1.) If we relabel the given sequence as
To = S0, T-1=51,---,T1—n = Sp1,

put m =1 —n <0 and reverse the order of summation in Equation (1), we see that Equation (1)
is equivalent to

foli i+ AT i1+ + fiTi=0for I+m <1 -4 <0. (2)

Set T =T(X™ ') =Ty+ -+ T, X™. Then the left-hand side of Equation (2) is (f - T');_; the

(I — i)t coefficient of the product f - T. Thus we can rewrite Equation (1) as
(f-T); = (F(X) - T(X™)); = 0 for m +deg f <j <O0. 3)

Again, the polynomial 1 satisfies Equation (3) if and only if 7; = 0 for m < < 0.

Notice that the sequence Tp,...,T;, has 1 —m > 1 terms and that any polynomial f of degree
1—-m,eg f(X)= X'"™ satisfies Equation (3) since m + deg f < i < 0 is vacuously satisfied;
¢f. '1,¢1,...,cy, defines a linear recurrence of length n for Sp,...,Sp—1’. Thus there is always a

monic polynomial which satisfies Equation (3).

Let —oo denote a symbol satisfying —oo < d, —oo+d = —oo for any integer d and put deg 0 = —oo.
Then 0 satisfies Equation (3), but we are interested in non-zero solutions in R[X|* = R[X]\ {0},

where R is an integral domain.

DEFINITION 2.1 We will call o solution f € R[X]* of Equation (3) a minimal polynomial for
Toy---, T, written f € Min(Ty,...,Tn), if for any g € R[X]* which satisfies Equation (3),
deg f < deg g.

Notice that in the previous definition, we do not insist that a solution of Equation (3) be monic. If
Risafield and f € Min(Ty, ..., Ty,), then 1, f; 1 fl’l, . Jo ff1 defines a shortest linear recurrence
for Ty, ..., T_,, and deg f is the linear complexity of Ty, . ..,T_,,. We are now ready to reformulate
Problem 1.2:

PROBLEM 2.2 Givenm < 0 and a finite sequence Ty, ..., Ty, over R, find an f € Min(Tq, ..., Tp)-

EXAMPLE 2.3 We show that ¢(X) = X2 — X — 1 is a minimal polynomial for the first three terms

1,1,2 of the Fibonacci sequence. In the notation of the previous section, we have S2 = S1 + Sy i.e.



l=2=n-1, ¢cg =1 and ¢; = ¢z = —1 for Equation (1). So the trial solution is X? — X —1 = ¢.
Nowm = —2, m + deg ¢ = 0 and the 0" coefficient of

p-1+X 142X =-2X2+ X1 4 X2

vanishes. Thus ¢ satisfies Equation (8). It is clear that 1,1,2 does not have linear complexity 0.

To see that it cannot have linear complexity 1, consider
(@X +b)-(1+ X" 4+2X7?)=20X "2+ (2a+b) X' + (a +b) + aX,

where a # 0. If aX + b satisfies Equation (3), we must have 2a+ b = a + b = 0, which contradicts
a #0. Thus ¢ € Min(1,1,2).

The reader may wish to show that for any integer k, ¢(X) + k(X — 1) € Min(1,1,2) and that
¢ € Min(0,1,1,2).

2.2 Minimal realizations of a finite sequence.

Let m < 0 and T, ..., T, be a finite sequence over R as above and put T =T(X ) =T +---+
T, X™. For f € R[X]*, it is worthwhile looking at the product f-T occurring in Equation (3) in

more detail. The product is

m—1+deg f 0 deg f )
f-T= ( oo+ D>+ Z) (f-T)iX' € R(X™)) (4)
i=m i=m-+deg f i=1

i.e. f-T is a Laurent series in X ! over R. As in Norton (1995a), the third summand will appear
often and we will use the notation B(f,T) for this polynomial product:

deg f

B(f,T)= Y (f-T)X' € XR[X].

i=1

Thus if f satisfies Equation (3) then f-T — B(f,T) = S +des f(r. 1), X1,

i=m
At this stage, it is convenient to introduce a common generalization of the order function R[[X~1]] —

{~o00}U{...,~1,0} and deg : R[X] - {—00}U{0,1,...}.

DEFINITION 2.4 We define § : R((X~!)) = {—o0}U{...,-1,0,1,...} by 6(0) = —cc and

5(F) =max{i: F;#0} if F € R(X )\ {0}.

Thus §(X~! + 1) = 0 and for any integer d, §(F) < d < F; = 0 for i > d+ 1. As for the order
function and deg , §(F-G) = §(F)+6(G) and §(F+G) < max{5§(F),8(G)} for all F,G € R((X1)).

PROPOSITION 2.5 Suppose thatm <0, Ty, ..., Ty, is a finite sequence over R, T = To+- - -+Tp, X™
and f € R[X]*. If f satisfies Equation (3), then §(f-T — B(f,T)) < m—1+deg f. Conversely, if
0(f-T—g) <m—1+deg f for some g € XR[X], then f satisfies Equation (3) and g = B(f,T).



PROOF. For the converse, let F = (f-T —g) — Y7 1148 /(£.T),Xi. The hypothesis implies that

§(F) <m—1+deg fie. F;=0fori>m+deg f. Onthe other hand, F =Y, .. (f-T)iX'+
B(f,T)—g. Thus F =0 and 30, 4 ;(f - T)iX? = g — B(f,T) € R[X Y] n XR[X] = {0}.
Hence f satisfies Equation (3) and g = 8(f,T). O

The previous proposition allows us to simplify Definition 2.5 of Norton (1995a) slightly:

DEFINITION 2.6 Let m < 0, Ty,..., T, be a finite sequence over R and T =Ty + --- + T, X™.
We call (f,8(f,T)) € R[X]* x XR[X] a realization of Tp,...,Ty, or say that (f,5(f,T)) realizes
To,-- s T if 6(f - T — B(f,T)) <m—1+deg f. If further deg f is minimal, we call (f,5(f,T))

a minimal realization (MR) of Ty, ..., Tn,.

For example, if Ty, . .., T}, is the sequence 0, ...,0,1 (where there are —m zeroes) then (X'~™, X)
realizes Ty, ..., Ty, and (X? — X —1,X?) is an MR of 1,1,2. We will see in Proposition 5.3 that
(X1=m™ X) is actually an MR of 0,...,0,1.

It follows from Proposition 2.5 that f is a minimal polynomial of Ty,...,T,, if, and only if
(f,8(f,T)) is an MR of Tp,..., . Thus to obtain an MR of Ty,..., T, it suffices to find a
minimal polynomial f and to compute the polynomial product 3(f,T). It turns out that our
iterative solution of Problem 2.2 extends naturally to computing 8(f,T) as well, so that we will

also obtain an MR of Ty, ..., T, iteratively.

2.3 Rational approximation.

We will see that Equation (3) is intimately related to rational approximation in R[[X ~!]], where
R as usual denotes an integral domain. First we establish when a rational function g/f belongs to
R[[X1]):

LEMMA 2.7 If f € R[X] is monic, then f is a unit in R[[X~']] and if g € R[X] satisfies deg g <
deg f, then g/ f € R[[X~']]. In fact, 6(g/f) = deg g — deg f.

PRrROOF. Let d = deg f,e = deg g. Firstly, if f is monic, then 1/f € X 4R[[X!]]. For f =
X1+ faa X 1+ 4+ foX 4 =X%1—-h)say,andso 1/f =X "1 —-h) ' =X"432 hie
XAR[[X~']]. Thusif e < d, g/f € X° 4R[[X~!]] C R[[X~!]]. Finally, d + §(g/f) = e since
f-(g/f) =g, which yields §(g/f) since d # —c0. O

DEFINITION 2.8 Let f be monic and deg g < deg f. We say that the rational function g/f is a
rational approximation of T =Ty + - - + T X™ if T; = (g/f): for m <i <0.

PROPOSITION 2.9 Let f be monic and T = To + --- + T,n X™. Then B(f,T)/f is a rational
approzimation of T if, and only if (f,B(f,T)) realizes T, ..., Tn,.



PRrOOF. From Lemma 2.7, we have T; = (9/f)i form <i<0& (T —g/f)i=0form<i<0&
8(T-g/f) <m—-1& §(fT—g) < m—1+deg f since for F,G € R((X1!)), §(F-G) = 6(F)+4(G).

g
Combining the results so far, we deduce:
PROPOSITION 2.10 Suppose thatm < 0, Ty, . .., Ty, is a finite sequence over R and T = T(X ') =
To+ -+ T X™. If f is a monic solution of Equation (8), then in R[[X~1]],
T=4(fT)/f (mod X™1). (5)

ProoOF. We know that (f,3(f,T)) is a realization of Ty, ..., T}, and that B(f,T)/f € R[[X !]]
by Lemma 2.7. Hence by Proposition 2.9, §(T — 8(f,T)/f) <m—-1<-1ie. T—6(f,T)/f=F
for some F € X™ 1 R[[X~]]. O

Thus Equation (3) and rational approximation are intimately related. Over a field, an algorithm
which computes a minimal realization (f, 3(f,T)) of a finite sequence can be used to compute a

(’minimal’) rational approximation since f can be made monic.

3 Sequences and annihilating polynomials.

We give some basic definitions and examples for linear recurring and finite sequences.

3.1 Linear recurring sequences.

We continue the conventions of Sections 1 and 2: ), = 0, R is a commutative integral domain
with 1 # 0 and we let f, g, h € R[X] denote polynomials with coefficients from R. For a set
E, E* denotes E \ {0}.

It will be convenient to work with the ring R((X ~!)) of Laurent series in X ! with coefficients
from R. For —oco < i < 0o, Fj denotes the i® coefficient of F € R((X')) and a typical element
of R(X 1) is F=3,4 F; X for some integer d < co. Both R[X] and R[[X ~!]] are subrings of
R((X™')) and R[X] acts on R((X ™)) in the standard way (by multiplication in R((X')); we let

- denote this multiplication).

Let Seq(R) denote the (additive) abelian group of (negatively-indexed) infinite sequences over R
i.e. functions {...,—1,0} — R. The value of S € Seq(R) at ¢ < 0 is written as S;. Thus for
S, T € Seq(R), S;, T; € Rand (S+T); = S; + T; for all i < 0. The generating function of
S € Seq(R) is T'(S) = 3,0 S; X% e R[X~1Y.



We define o : R[X] x Seq(R) — Seq(R) by

deg f
(f o S)z = (f . F(S))z = Z ij,-_j for ¢ S 0.

J=0

We always have f-T'(S) € R((X~1)) and f-T'(S) —T'(f o S) € XR[X].
PROPOSITION 3.1 The mapping o makes Seq(R) into a unitary R[X]-module.

PrOOF. We verify that for S € Seq(R), (f-g)oS = fo(goS), the other axioms being trivially
satisfied. By linearity, we can assume that f(X) = X% and g(X) = X°. If i <0, then ((X9+¢)o
S)i =Si—d—e = (X®08);_g = (X%0(X¢08));, as required. O

The annihilator ideal of S € Seq(R) is by definition Ann(S) = {f : foS = 0}. A sequence S
will be called linear recurring if it is a torsion element of Seq(R) i.e. if Ann(S) # (0). Clearly
f € Ann(S) if, and only if I'(f 0 .S) = 0 if, and only if f-I'(S) € XR[X]. Thus if f € Ann(S) is
monic, then T'(S) is the rational function (f -T'(S))/f € R[[X~!]] by Lemma 2.7.

Let S be a linear recurring sequence. We say that f is a minimal polynomial of S, written
f € Min(S), if f € Ann(S)* and for any g € Ann(S)*, deg f < deg g. We will call the degree
of an element of Min(S) the linear complexity of S. Since R is an integral domain, S has linear
complexity 0 if, and only if S = 0 if, and only if Ann(S) = R[X].

EXAMPLE 3.2 Let F = 1,1,2,3,... be the Fibonacci sequence, where each term is the sum of the
previous two:

Fio=Fi1+F; fori <O0.

We show that ¢ = X2 — X — 1 € Min(F). We have

$-T(F) = Y (FX™ - FXT - FXY)
i<0
= Y (Fjo—Fj1 —F)XI + FaX + FoX? - FoX = X2
Jj<o0

Thus ¢ € Ann(F), as expected.

We now show that ¢ € Min(F). It is clear that the linear complexity of F is at least 1. If for
some a, b with a # 0, aF;—1 = bF; for all i <0, then (aX —b) - T'(F) = aX as before, so that
(aX —b)X? = (aX —b)¢p-T(F) =aX¢ and aX = 0, which is impossible.

Similarly, if F' denotes the Fibonacci sequence 0,1,1,2,... , then ¢-T'(F') = X, ¢ € Ann(F') and
¢ € Min(F').

Moreover X?/¢ is a rational approzimation of 1 + X + ---+ F, X™ for all m < 0:

SA+X 4+ FuX™=X2/p) <m—1 for allm <0 (6)



and likewise
X+ X4+ FL.X™ = X/¢p) <m—1 for all m < 0. (7)

As noted above, f € Ann(S) implies that f-I'(S) € XR[X]. We give a simple application of
this fact to impulse response sequences. Recall that if f is monic and d = deg f > 1, the linear
recurring sequence S¢/) with S§f> =0for2-d<i<0, Sf’?d =1 and f € Ann(9) is called an
impulse response sequence; see p.402, Lidl & Niederreiter (1983). Clearly §(T'(S("?)) =1 —d. For
example, F' = §{?),

PROPOSITION 3.3 We have Ann(S{f)) = fR[X] and f € Min(S{/).

PrOOF. Clearly fR[X] C Ann(S¢/)). Conversely, let g € Ann(S{"?) and put T = I'(S¢/?). Then
g-T'= Xh for some h € R[X],and f-T = X from the definition of $¢/). Thus g = (X~'f-T)-g =
f-(X"1g-T) = fh. The second assertion follows from the first. O

Again, ¢ € Min(F'). Since f is monic and f -T[(S) = X, 1/f = X 'T(S), so 1/f €
X—4R[[X~']] and 6(1/f) = =1 + §(T(S")) = —d, as already seen.

3.2 The set of annihilating polynomials of a finite sequence.

For finite sequences, we will work with the ring R[X ~!, X] of Laurent polynomials with coefficients
from R, using F, G, H to denote typical elements; thus F' = Z?:e F; X! for some integers —oo <
e,d < 0o. The product of f € R[X] and F € R[X !, X] will be written as f - F.

From now on, the letters m, n always denote m, n < 0 and S|m denotes a typical finite sequence
S|m : {m,...,0} - R, with 1—m > 0 terms S; € R for m < i < 0 and last term S,,,. For example,
S|m could be S|{m,...,0}, the restriction of S € Seq(R) to {m,...,0}. We write

L(Sm) =S80+ -+ SmX™ € R[X ]

for the ‘generating polynomial’ of S|m. We define
deg f
(foSm)i = (f-T(Sim))s = Y f;Si—j if m+deg f <i<0.
j=0

When m is understood and m + deg f < 0, we will write (f o S); for (f o S|m);.

What we have seen so far suggests

DEFINITION 3.4 The set of annihilating polynomials of S|m is defined to be

Ann(Sim) ={f : (foS|m); =0 for m +deg f <i < 0}.

10



For the Fibonacci sequence F, ¢ € Ann(F|m) for all m < 0. Two trivial cases are (i) S|m is the
all-zero sequence if, and only if 1 € Ann(S|m) and (ii) if deg f > 1 — m, then f € Ann(S|m)
since we are summing over an empty index set. It is clear that for any m and S € Seq(R),
Ann(S) C Ann(S|{m,...,0}). The reader can easily check:

PROPOSITION 3.5 Ann(S|m — 1) C Ann(S|m).

It is straightforward to see that Ann(S|m) is not an ideal in general. Consider for example the
sequence with Sg = 0, S_y = 1 and m = —1: X%, X? — X € Ann(S|m) (trivially), but their
difference X ¢ Ann(S|m) since (X o S|m)o = So_1 # 0. The following however, will be sufficient

for our purposes:

PROPOSITION 3.6 (i) ((f+9)0S)i=(foS)i+ (g9085); for m + max{deg f,deg g} <i <0 and
(ii) ((r-X7f)oS)i=r-(foS)i—j forr €R, j >0, m+j+deg f <i<O.

PRrROOF. Straightforward verification. O

Problem 2.2 is now: find an f € Min(S|m). It is immediate that if

1 ifSy=0

Ko = .
X otherwise,

then po € Min(S|0) since zero is the only zero-divisor in R.

EXAMPLE 3.7 Let m < 0, S; =0 form+1<i<0 and Sy, # 0. Then certainly 1 ¢ Ann(S|m),
1 € Min(S|m + 1) and X'=™ € Ann(S|m).

4 Two constructions of annihilating polynomials.

We use g (defined in Section 3.2) as the inductive basis for constructing polynomials in Ann(S|m).
This induction splits naturally into two subcases, depending the non-existence (Section 4.1) or the

existence (Section 4.2) of previous annihilating polynomials.

Suppose that m < 0, f € Ann(S|m + 1)* and deg f < —m. More often than not, f ¢ Ann(S|m);
This is the case precisely when (f o S)pm4deg 5 is non-zero. Thus we define the obstruction Of € R
by

(f o S)mtdeg s if deg f < —m

otherwise.

of =

(We conventionally put Of = 0 if deg f > —m since f € Ann(S|m) vacuously.) Now for m < 0
and f € Ann(S|m + 1)*, we have f € Ann(S|m) if, and only if the obstruction Of vanishes; O f
is called the discrepancy of f in the LFSR literature.
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We have already seen an instance of Of in Example 3.7: if S|m has precisely m + 1 leading zeroes,
then 1 € Ann(S|m) since O1 = S;40 # 0.

4.1 First steps.
We begin with the case Sy # 0,m < 0 and f € Ann(S|m + 1)* \ Ann(S|m):

EXAMPLE 4.1 Suppose that So #0, m+1 <0 and Of = (foS)mydeg f # 0, s0 that deg f < —m.

Since R is commutative,

0

So-Of =Of -So=80-0f —(Of 0S)o = (So- foS)mideg r — (Of ©8S)o
= ((So- X748 f—0OFf) 0 S)o.

We claim that
h=S8X ™4 ff_Of ¢ Ann(S|m).

Certainly h € R[X] and deg h = —m > 1 since R has no zero-divisors. Also, (ho S)g = 0 :
(hoS); =0 for m+deg h < i <0. Thus if we began with f € Ann(S|m + 1)* \ Ann(S|m), we
have produced an h € Ann(S|m)*.

Thus we have used Sy # 0 and the commutativity of R to construct an annihilating polynomial
for S|m.

EXAMPLE 4.2 Consider 1,1,2, the first three terms of the Fibonacci sequence F. Certainly X €
Ann(1), so we begin with m~+1 = 0 and compute OX = (XoF) 141 =F 1 =1i.e X & Ann(1,1).
We apply Example 4.1 with m+1 =0 and f = X, obtaining

h=F-X'7d8/f _Of=1-X'""'X -1
i.e. X —1¢€ Ann(1,1).

We continue withm+1=-1and X —1: O X =1)=(X =1 o F) a1 =F s—F 1=1 e
X —1¢ Ann(1,1,2). We apply Example 4.1 again with f = X — 1, obtaining

h=Fy- X8 f_0Of=1-X"1(X-1)-1=¢

i.e. » € Ann(1,1,2).
We now combine and summarise Examples 3.7 and 4.1.

PROPOSITION 4.3 Let m <0, f € Ann(S|m +1). For Of # 0 and

. xXt-m ifdeg f=deg fo=0
SoX—mdee [ f —Of if deg fo =1,

h € Ann(S|m)*.
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If m < 0, then Ann(S|m +1) C Ann(S|0). Thus if f € Ann(S|m + 1) and Sy # 0, then deg f > 1.
Theorem 2.11(a), (b) of Norton (1995a) is the special case f = X —r where r € R* is the ‘common
ratio of S|(m+1)’, So # 0, and f € Min(S|m+1) since deg f = 1. We will see that h of Proposition

4.3 is a minimal polynomial whenever deg f = 1.

4.2 Second steps.

Suppose now that m+1 < n < 0 forsomen, and Of = (foS)mideg t Z 0, Og = (90S)n—1+deg g #
0 (so that deg f < —m and deg g < 1 —n). In similar vein,

0 = O0g-Of —0f-0g=0g-(foS)mideg s —Of -Og
= ((Og-X%9€ 7 f)0S)mia—Of - Og

where d is any integer satisfying deg f < d < —m. If we also choose d > ¢(g) = —m+n—1+deg g,
then €(g) +m = n — 1 + deg g and (X9 g) 0 S)pia = (90 S)n—1+4deg ¢ = Og. Thus we can
rewrite the previous identity as
((Og- xt-desif—of . x¥=g)os) =
m—+d

Note that Og- X% e [f — Of - X% <(9)g #£ 0 since R is an integral domain, for otherwise d =
d—e(g)+deg g and —m+n—1 = 0, contradicting m+1 < n. Since we are ultimately interested in
minimality, we take the smallest such d i.e. d = max{deg f,e(g)} < —m. This discussion motivates

our second construction:

DEFINITION 4.4 Let m+1 <n <0, f € Ann(S|m + 1), g € Ann(S|n) and Of, Og # 0. We
define €(g) = —m +n — 1+ deg g and

[f,9] = Og- x max{0,e(g)—deg f}f —Of - x max{deg f*e(g),O}g € R[X].

We next show that deg [f, g] = max{deg f,e(9)}, [f, 9] € Ann(S|m + 1) and O[f, g] = [Og, Of], a

zero commutator. This justifies our use of the [, ] notation.

PROPOSITION 4.5 Let m+1 <n <0, f € Ann(S/m + 1), g € Ann(S|n) and Of,Og # 0. Then
deg [f, 9] = max{deg f,e(9)} < —m and [f,g] € Ann(S|m).

PrOOF. Put h = [f,g] and d = max{deg f,e(g)}. The degree of the first summand of h is d and
the degree of the second is d + m —n + 1 < d and by construction, d < —m. We have already
seen that (h o S);,1q4 = 0 and so we need only check that (ho S); =0form+1+d <i<0. Let
€(g) = —m +n — 1+ deg g as before. Then for i <0

(ho8)i=0g-(fo8)i—itdeg f — OF - (908)i_ate(y)-

13



Now m+1+4d < i <0 easily implies that m+ 1+ deg f <i—d+deg f <0and n+deg g =
m+1+e(g) <i—d+e€(g9) <0,s0that (hoS); =0form+d<i<0and|[f,g] € Ann(S|m). O

EXAMPLE 4.6 We can now produce ¢ € Ann(0,1,1,2) = Ann(F'| — 3). We begin with 1 €
Ann(0), m+1=0and O1 =F_, ;=1. So1¢ Ann(0,1), but X* € Ann(0,1) from Proposition
4.3. We continue with m + 1 = —1 and test whether X2 € Ann(0,1,1): OX2 = (X20 F') 549 =
F'y=14e X2¢&Ann(0,1,1).

So we apply the [ , | construction with (a) m+1= -1, f=X? Of =1and (b))n=0, g=1
and Og=1. We havee(g) =—m+n—1+degg=24+0—-14+0=1 and

[f, g] — Og . Xmax{O,e(g)—deg f}f _ Of X Xmax{deg f—e(g),O}g
1- Xmax{O,l—Q}X2 —1- Xma,x{Q—l,O}l — X2 - X.

Thus X?> — X € Ann(0,1,1). We continue with m + 1 = —2 and test whether X*> — X €
Ann(0,1,1,2): O(X?-X)=((X?2=X)oF') 342 =F 3—F' ,=1. So X? - X ¢ Ann(0,1,1,2).
We apply the [, | construction with (a) m+1=-2, f=X?>—-X, Of =1 and (b)) n=0, g=1
and Og=1. We havee(9) =-m+n—1+degg=3+0-1+0=2 and

[f, 9] Og - xmax{0,e(g) —deg f}f —Of - xmax{deg f*f(g),o}g

- 1. Xmax{0,272}(X2 _ X) —-1- Xmax{272,0}1 — (ZS

Thus we have constructed ¢ € Ann(0,1,1,2).

5 The minimality of certain annihilating polynomials.

We show how certain choices in the inductive constructions of Section 4 lead to minimal polyno-

mials.

We generically let p(S|m) (or ., for short) denote a minimal polynomial of S|m. We always have
deg pn < deg pr, <1 —mifn <m.
The linear complezity of S|m is k(S|m) = deg p(S|m), where u € Min(S|m). Then k(S|0) = 0 if
So = 0 and x(S|0) = 1 otherwise. Also, either x(S|m — 1) = k(S|m) or k(S|m — 1) > k(S|m) by
Proposition 3.5. We will often abbreviate k(S|m) to k., when S|m is an arbitrary finite sequence
with last term S,.
As in Section 2.2, B(f,S|m) € XR[X] is

deg f

B(f,8m) = Y (f-T(SIm)), X*

i=1
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where f; = 0 for j > deg f. For example, S(X'™™ S|m) = 1" Si_14mX’. We have
deg B(f,S|m) < deg f, B(r,S|m) =0if r € R and B( ,S|m) is R-linear i.e. S(uf +vg, S|m) =
uB(f, S|m) + vB(g,S|m) for any u, v € R.

We begin by restating Equation (4) using I'(S|m):

PROPOSITION 5.1 f-T(S|m)=F + Z?:m+deg s (f- (S|m)); X* + B(f,S|m) where 6(F) < m —
1+ deg f.

The proof of the following Minimality Lemma is similar in spirit to that of Corollary 3.25 of Norton

(1995a), and was partly suggested by Lemma 1 of Reeds & Sloane (1985):

LEMMA 5.2 (c¢f. Massey (1969), Proposition 3.5 and Theorem 3.7 of Norton (1995a).) If m < 0
and g € Ann(S|m + 1), Og # 0, then for all f € Ann(S|m)*, deg f > 1 —m — deg g.

Proor. We expand h = gfB(f,S|m) — fB(g,S|m) € XR[X] using Proposition 5.1. Since f €
Ann(S|m), f-T(Slm) = F + B(f, Slm) where 3(F) < m + deg f. Also, g € Ann(S|m + 1) and
Og = (9 © S)m+deg ¢ imply that

g9-T(S|m) = G + Og- X"+ 9 4+ 5(g, S|m)
where §(G) < m + deg g. This gives

h

g(f-T(S|m) — F) — f(g-T(S|m) — G — Og - X™+de8 9)
= Og-Xmtd89f 4 fG—gF.

Since 6(fG —gF) < m+deg f+deg g and R is an integral domain, Og- faeg ¢ # 0 is the non-zero
leading coefficient of h and m + deg f + deg g =deg h > 1. O

We first treat the case k,,+1 = ko by exhibiting polynomials which attain the lower bound of the

previous result, and which are therefore minimal.

PROPOSITION 5.3 Let m < 0 and piyp41 € Min(S|m +1). If deg pms1 = deg po, Opime1 # 0 and

XxXt-m if deg po =0
wsm={ * " _
SoX Bmt1 — Opmyr  if deg po = 1,

then deg p(S|m) = max{deg pmy1,1 —m —deg pimy1} and u(S|m) € Min(S|m).

PrROOF. We have already seen that p(S|m) € Ann(S|m)*, and deg pnm = 1 — m — deg pm4+1 =
max{deg pm+1,1 —m — deg pim+1} is trivial to verify. Hence by Lemma 5.2, p,,, € Min(S|m). O

We remark that the first case of Proposition 5.3 is valid for any polynomial of degree 1 — m; in

Section 7 we will see why X'~™ is a particularly good choice.
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It now follows from Proposition 5.3 that X € Min(1), X —1 € Min(1,1) and ¢ € Min(1,1,2).
(Also, since ¢ € Ann(1,1,2,3), ¢ € Min(1,1,2,3).)

We now show how to attain the lower bound when kg < k1. First an important definition (cf.
Massey (1969)):

DEFINITION 5.4 If kg < Ky, (S0 that m < 0), we define the antecedent a(S|m) of K, by

a(S|m) = mrilibn@{ n o Ky < Km}

Consider the sequence 0, 1: we have £(0) = 0 and #(0,1) = 2 by Proposition 5.3, so «(0,1) = 0. If
%(0,1,1) = 2, then «(0,1,1) =0, but if x(0,1,1) = 3, then «(0,1,1) = —1.

PROPOSITION 5.5 (cf. Norton (1995a).) Suppose that m+1 < 0, p, € Min(S|n) form+1<n <0
and Opmy1 # 0. If ko < Emt1, a=a(S|m+1) and pm = [tm+1, Ha], then

deg pim = max{deg pm+1,1—m — deg pmi1}

and pm, € Min(S|m).

ProOOF. We know from Proposition 4.5 that ., € Ann(S|m)*. Suppose inductively that the result
is true for S|n, where m+1 < n < 0. By choiceof a, m+1 < a < 0,deg o1 = deg pim1 > deg piq
and deg po—1 =1 — (a—1) — deg p, either by the inductive hypothesis (if deg p, > deg po) or by
Proposition 5.3 (if deg u, = deg o). We now have 2 — deg pm+1 = a + deg p, and so

€(pa) = —m+a—1+deg g =1—m — deg fim41.

If deg pm = deg pm+1, then p, € Min(S|m) and deg pm41 = deg pim > €(ie) = 1—m—deg pimy1
ie. deg pn = max{deg piyyy1,1 —m —deg pms1}-

If deg pm > deg pimy1, then deg py,, = €(ug) =1 —m —deg pimt1, pm € Min(S|m) by Lemma 5.2
and deg p, = max{deg pmt1,1 —m — deg pm41}- O

We can now show that ¢ € Min(0, 1, 1, 2) using the results of this section. We saw in Example 4.6
that 1 € Ann(0), X2 € Ann(0,1), X?—X =[X?2,1] € Ann(0,1,1) and X2 - X -1=[X2-X,1] €
Ann(0,1,1,2). We have just seen that «(0,1) = 0 i.e. if a = «(0,1), then p, = p(0) = 1. Also,
X? € Min(0,1) by Proposition 5.3. Hence by Proposition 5.5, X? — X = [X2,1] € Min(0,1,1).
This implies that «(0,1,1) = 0 and so ¢ = [X? — X, 1] € Min(0, 1, 1,2) by Proposition 5.5.

As noted in Example 2.3, it is easy to check that for any integer k, X2 — X — 1+ k(X —1) €
Min(1,1,2), so that minimal polynomials are not unique in general. On the other hand, one can
show that both X — 1 € Min(1,1) and ¢ € Min(1,1,2,3) are unique (up to a non-zero integer

multiplier).

We refer the reader to Lemma 8.1 below and to Section 4.3 of Norton (1995a) for some results on
Min(S|m).
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6 Polynomial products of annihilating and generating poly-

nomials.

The goal of this section is to express the polynomial product (g, S|m) recursively. Proposition

6.2 is also applied in Lemma 8.1 below.

It is clear that 8(r,S|m) =0if r € R and (X, S|m) = Sy - X, so that

0 if So=0
So - X  otherwise.

B(po,S|0) = {

For m < 0, p, is obtained using products of polynomials, so we first show how 3( , S|m) behaves

with respect to products.

6.1 A product formula.

LEMMA 6.1 (Product Formula) Let d = deg f, e =deg g and T =T'(S|m). Ifd+e <1 —m and
G(X7Y) =30, y(9 - T)iX", then

B(£g,8lm) = fB(g, Slm) +Y_(f - G)iX".

i=1

Proor. We have

(fo)T = f- (2 +Z> (9-T):iX'=f-Y (9-T):X* + fB(g,SIm)

i=m i=1 i=m
m—1+4e
= [ > (9:T)X'+f-G+ fB(g,Sm).

The result now follows since d(f - (X0 17(g-T);iX?)) <m—-1+d+e<0and 6(f-G) <d. O

PROPOSITION 6.2 Let deg f+deg g < 1—m. (i) If g € Ann(S|m), then 5(fg,S|m) = fB(g,S|m).
(i) If f, g € Ann(S|m), then fB(g, Sim) = gB(f,S|m).

PROOF. (i) The sum G of Lemma 6.1 is zero if either (a) m +deg g > 0 or (b) m + deg g < 0 and
(g0 S|m); = 0 for m + deg g < i < 0. (ii) By part (i), f8(g,S|m) = B(fg,S|m) = B(gf,SIm) =
9B(f,S|m). O

When deg g < —m, it will simplify the notation to define the sequence g o S|m: for deg g < —m,

we define the finite sequence g o S|m by

(g0 Sm); = (g T(Sm)), for m +deg g <i < 0.
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Thus for deg g < —m, goS|m has last term (g0.S)mtdeg ¢- (As in Proposition 3.1, if deg f+deg g <
—m, then (f - g) o S|m = f o (g o S|m), but we will not need this.)

We will apply the Product Formula as follows:
COROLLARY 6.3 If deg f + deg g < —m, then B(fg,S|m) = fB(g,S|m) + B(f,g o S|m).

PRrROOF. We have deg g < deg f +deg g < —m, so go S|m is well-defined. Now G(X ~!) of Lemma
6.1is T(go S|m) and so ¢, (f - G):X? = B(f,g o S|m). O

6.2 The inductive step.

The reader can easily verify that since deg p, <1 —mn, B(tn,S|n) = B(un, S|m) for any m < n.
We can therefore simplify the notation by writing By, for any B(un,S|m) with m < n.

We are now ready for the case k41 = Kot

PROPOSITION 6.4 Let m < 0 and p, (m < n < 0) be as in Proposition 5.3. For kg1 = ko and

O”’M-ﬁ-l ;é 0;
Sm - X Zf ko =0

IBm: 1 .
So - X" Bmy1 if ko =1

Proor. For the first case, S(X'=™,S|m) = 3,-7 Sg—14m - X* = S,n - X. For the second,
Bm = B(So - X ™ pmi1 — Opma1, S|m). Linearity and Corollary 6.3 give

Bm =S50 X "™ "Bmt1 + S0 BX ™", tim+1 0 Sm)

since Opmy1 € R and deg pimr1 < 1. The second summand is:

—-m—1

So-BX™™ pmyroSm) = So- Y (mt1 0 S)kpmrr - X*
k=1
0 .
= So Z (M1 © 8); - X771
j=m+2

Since (ftm+41 0 S); = 0 for m + 1 + deg pmy1 < j < 0 and deg pmy1 = Km1 = 1, the second

summand is zero and B,, = So - X "™ 18,41, as required. O

In Example 4.2, (1) = 8(1,1) = X, B(1,1,2) = X2. Now for the case ko < Kmy1:

PROPOSITION 6.5 Let m + 1 < 0, kg < Km+1, Un be as in Proposition 5.3 for m < n < 0 and
Opm+1 #0. If a = a(S|m+ 1), then

Bm = Opia . xmax{0,e(pa)—deg um+1}5m+1 = Ot . xmax{deg um+1—e(ua)10}5a

where €(pty) = —m +a — 1+ deg .
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Proor. We know that
pm = Oltg . xmax{0,e(pa)—deg “'"+1}um+1 — Ot .Xmax{éumﬂ—e(ua),o}ua,
so linearity gives 3, equal to
Oliq .5(Xmax{07e(ua)*deg um+1}um+17 Sim) — Opmsr .ﬁ(Xmax{deg um+1*6(ua),0}ua7 S|m).

We consider two cases: (i) deg pmy1 > €(pg) and (ii) deg prms1 < €(a)- Set d = deg pm+1—€(ftq)-
In case (i), m + 1 < a(S|m + 1) = a by definition, and this implies that d + deg p, < —m. So by
Corollary 6.3,

Bm = Oa-Bmyr — Opimgr - ,B(Xdﬂaa Slm)
Ot Bmt1 — Otmy1 - Xdﬂa - Opmya - ,B(Xdaﬂa o S|m)

The last term is

d 0
—Opimi1- Y (fa© Si—a- X¥ = =Opimy1 - Y (a0 8);- X7+,
k=1 j=1-d

Now 1 —d =1—deg gypmy1 —m+a—1+ deg pu, > a+ deg u, since —m > deg ppy+1 and
Lo € Ann(S|a) by hypothesis, so the last term is zero and S, is as stated.

In case (ii), deg pe < 1 — a, which implies that —d + deg piym+1 < —m. Then

O:U/a ) IB(X_de-l-l: S|m) - Op’m-i-l ) /Ba
= O,u'a : X_dﬂm-i-l + O,U'a : /B(X_dum-i-la S|m) - O,um-i-l ) /Ba

Bm

by Corollary 6.3. The middle summand is

—d 0
Opa - Y (pmt10S)k—a-X¥=Opa- D (my109); - X7H
k=1 j=1+d

Now 1 4+d = 1+ deg pm+1 — €(pe) = 1 + deg pimy1 + (m — a + 1 — deg p,) and as in the
proof of Proposition 5.5, —a + 1 — deg u, = deg piny1 — 1 = K1 — 1 > Ko > 0. Hence
1—d>m+1+deg pms1. Finally, g1 € Ann(S|m + 1) and so the middle summand is zero,
and 3, is as stated. O

For Example 4.6, we obtain 3(0) =0 and 3(0,1) = 5(0,1,1) = 5(0,1,1,2) = X.

7 The minimal realization theorem and algorithm.

Our goal in this section is to derive the main result (Theorem 7.3, which combines Propositions

5.3, 5.5, 6.4, and 6.5) and the associated algorithm.
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7.1 The main result.

We write 7z, for (m,8m) € R[X]? with addition and polynomial multiplication by component.
(Readers interested in linear recurrences only can ignore the second component.) Recall that T,
is a minimal realization (MR) of S|m. In this case, Proposition 5.1 yields §(pm, - T'(S|m) — Bm) <

m — 1+ deg p,,,, so that if u,, is monic, we have the rational approrimation
6(F(S|m) - ﬂm/ﬂm) <m-1
where deg p,, is minimal, cf. Sections 2.2, 2.3. Thus X/X, X/(X — 1), X?/(X?—- X —1) and

0/1, X/X?, X/(X?—-X), X/(X?— X — 1) are ‘minimal rational functions’.

PROPOSITION 7.1 Let m +1 < 0 and f,, be an MR for Sin, where m +1 < n < 0. If kg <
Emt1s Optmyr #0, a=a(SIm +1) and dyyy1 = 26m41 +m — 1, then

(i) B = Opig - Png1 — Opimy - X‘dmﬂ‘ﬁa

is an MR for S|m, where fi, 1, —H, and Opmy1, Op, have been interchanged if i1 <0, and

with this interchange

(%) Bo(sim) = Fa>» dm = |dm1] — 1.

ProoOF. From Propositions 5.5 and 6.5

Ty = Optg - x max{0,e(pa)—deg um+1}ﬁm+1 — Ottt . xmax{deg um+1—€(ua),0}ﬁm

where €(p,) = —m +a — 1+ deg p, and a + deg puo, = 2 — deg ptmy1. Put d = dpmy1. Then
e(po) — deg pimt1 = —m + 1 — 2641 = —d. Hence max{0,e(p,) — deg pm+1} = max{0, —d},
max{deg pm+1 — €(la),0} = max{d,0} and

Opa - Pmg1 — Opm1 - Xdﬁa ifd>0

Opra - X ppi1 — Opimgr - B, ifd <O0.
If d < 0 and we interchange i, ,; and —Ji,, Opmy1 and Op,, we obtain the right-hand side as
stated:
O/”Tﬂ-l-l ) X_d(_ﬁa) - Olu’a : (_ﬁm-l—l) = O/Ja : ﬁm—i—l - O,um+1 . Xﬁdﬁa'

For the updating, recall that deg p,, = max{deg tm+1,1 — m — deg pm+1} = deg pmy1 if, and
only if deg pm+1 > 1—m —deg pmy1 if, and only if d > 0. Thus either (i) d > 0, a(S|m) = a and
Ba(sim) = B or (il) d < 0, deg i, > deg pmi1 (so a(S|m) = m + 1) and we have interchanged

Fmy1 and fi,. Thus fi,(g)m) = e, as asserted. Finally,

2deg pimt1 +m—2=d -1 ifd>0
201 —m—deg pmy1) +m—2=—2kp1+m—-1)—-1=—-d—-1 ifd<0.
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O

When m < 0 and ki1 = ko, we require analogues of g (s/m41) and Opg(sim41) to rewrite

Proposition 5.3 in the form of Proposition 7.1:

DEFINITION 7.2 If m <0 and k,, = Ko, let

((0,=X), 1) ifko=0

(ﬁa S|im)>» O,U/a(S|m)) = .
e ((1,0), So)  ifro=1.

We can now state the main theorem of this paper:

THEOREM 7.3 (cf. Section 7.3, Berlekamp (1968), Massey (1969)) Let m < 0, f,, be an MR of
Sin form+1<n <0, Oppmyr #0 and dypy1 = 261 + m — 1. Put a = a(S|m +1). Then
(7’) O/“La ) ﬁm—}—l - Oum+1 ) de‘ﬁa

is an MR of S|m, where fi,, 1, —f, and Opmi1, Op, have been interchanged if dmy1 < 0, and
with this interchange

(“’) Ha(S|m) = Ma, dm = |dm+1| -1
PRrOOF. We can assume that k,,41 = ko. Put d = d,;, 1. Proposition 5.3 gives

d= m-—1 ifl‘&():(]
m+1 ifl‘&(]:]..

When d>0,d=0, m=—1, ko =1, and

O/J/a ’ ﬁm—‘,—l - O/J’m-‘rl : Xdﬁa = SO ’ ﬁm—‘rl - O/J’m-i-l(lﬂ 0)

(Sottm+1 — Opimet1, S0 Bm+1) = By
from Proposition 5.3. If d < 0 then after interchanging, Opq - X 1 — Opmi1 - B, 18
1.X1=m(1,0) — S, (0, - X) = (X*=™, S, X) if ko = 0 and
SoX 1 — Olmg1(1,0) = (So X "™ pg1 — Optmt1, S0 X ™ ™ Brng1)
if Ko = 1. In either case, we have precisely f,,, by Propositions 5.3, 6.4.

We now prove (ii). If d > 0, then m = —1,deg po = 1 and deg pu,, = —m = deg po = deg pm+1,
there is no interchanging and 7z (g|m) = f,- If d <0, then fz, and 7z, , have been interchanged.
We check that deg fim > deg pm+1 (Which will imply that Ty (g|m) = B,): if Ko = 0, then deg pim =

1—-m >0= kKo = Kmyt1, whereas if kg = 1, deg pir, = —m > 1 =Ko = kpy1 sinced =m+1 < 0.

If d > 0, then d,, = 2deg p;, + m — 2 =m = |d| — 1, whereas if d < 0,

20-m)+m-2=-m=1d -1 ifko=0

dy = 2deg pi, +m — 2 =
2(—m)+m—-2=-m-2=|d| -1 ifky=1.
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O

The proof of Theorem 7.3 now shows why X'~™ was a good choice in Proposition 5.3. We will see

in Proposition 7.5 below that Theorem 7.3 effectively makes Opu, and fi, of Definition 7.2 unique.

7.2 Algorithm MR.

Theorem 7.3 clearly suggests the following algorithm statements when m < 0:

O = 308 ) (1) - S(myeg pmsn)—i

if (O #0) {if (dms1 < 0) {dmi1 = ~dmi1; 5WaP(H 1, F); s0aP(O, 0); }
fip = 0" fiypq — O X171l
dm = dm+1 — 1;}

We have written i’ for 1z, and O' for Ou,, independently of m, since we need neither the actual
values a(S|m + 1), a(S|m), nor their provenance (¢f. Norton (1995a)). We have also suppressed
the negation in the swap, for if &, is an MR for S|m, so is —f,,,.

The case Opmy1 = 0 is easily incorporated into these algorithm statements: evidently we take
Prn = Bpy1- Then K, = Ko Or Ky > Ko depending on K41, ko. Also, dm = 26my1 +m—1=
dm+1 — 1 in this case, so we need only factor out the statement d,, := d;p4+1 — 1 from the preceding

statements.

At this stage, we could initialize at m = 0 with

_ (1,0) ifSo=0
M =
° (X,S50X) otherwise.

Remarkably, the algorithm statements yield a 7z, when Sy # 0 if we define ‘&r;’ by f; = (1,0).
For then di = 2deg 1 + m — 1 = =1, O = Sy, we swap (1,0) and (0,—X), So and 1, to get

To == —(X,S80X), and dy = 2deg po + m — 2 assumes its correct value since | — 1| — 1 = 0!
Finally, only the current values of i, ,; and d, 41 are used, so we can suppress their indices too,
giving

Algorithm MR (c¢f. p.184 of Berlekamp (1968), p.124 of Massey (1969))

Input: m <0, R an integral domain, So,...,Snm € R.

Output: @, an MR for S|m.

Bi=(1,0); 7= (0,-X); O":=1; d:=—1;

for n := 0 downto m do

{0:= E?ﬁ% ¥ i - S(ntdeg p)—is / * compute O x |
if (0 £0) { if (d < 0) {d = —d; swap(, &); swap(O, 0'); } | * update &, O » |
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a=0-m—0-X%;} / * update 11 * |
d:=d-1;} / * update dx* /

return .

For completeness, we give the values at the end of the iterations for 1,1,2 and 0,1,1,2:

n | Oun | o B, | dn

1 (1,0) | 1 (-X,-X) | ©
11 (1,0) | 1 (-X+1,-X) | -1
2| -1 1-X,-X)|-1 | (X2=X-1,X%)| 0
n | Opn | o I, | dn

0 0,-X) | 1 ( ,0) | -2
11 (1,0) | 1 (-X%,-X) | 1
2|1 (1,0) | 1 (— X2+X -X)| 0
3| -1 (1,0) |1 | (-X?+X+1,-X) | -1

The storage requirements of Algorithm MR are modest:

PROPOSITION 7.4 For m < 0 (i) deg Bm+1 < deg pimy1 < —m and |dpy1 + 1| < —m and (i) if
Km+1 > Ko, then deg pio(sim41) < —m — 1.

PrROOF. The first part of (i) is trivial, and since 0 < deg i1 <1—(m+1)=-m, m—-1<
26mp1+m—1=dp41 <2(—m)+m —1=—m — 1. Part (ii) follows from (i) and the fact that
deg fro(sim+1) < deg pm+1. O

A simple counting argument using Proposition 7.4 shows that Algorithm MR computes f,,, in at

most (1 —m)(6 — 5m)/2 R-multiplications, Proposition 4.8 of Norton (1995a).

Finally, we show that the initialization of Algorithm MR is effectively unique. Note first that if
m <0, a=a(S|m+1) and p, is as in Definition 7.2, then deg pu, < 1 —m — deg fm+1-

PROPOSITION 7.5 Let m < 0, Kmy1 = K0, Opmy1 # 0 and dmy1 = 2km41 + m — 1. Write
a = a(S|m + 1) and suppose that G,, O, are as in Definition 7.2 and [, is constructed as in

Theorem 7.3. For O' € R*, i’ € R[X] x R[X], put
=0 Ty = Oy - X sty

where [, 1, —1 and Opmy1, O' have been interchanged if dyy1 < 0. Ifdeg p' < 1—m—deg fmq1,
then iy, = Fyy, o, and only if (7', 0') = (Fy, Oa)-

PROOF. We know from Theorem 7.3 that

_m = Oa ’ ﬁm—i—l - Op’m+1 ’ X‘dm+1‘ﬁa
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where i, 1,1, and Opp1, O, have been interchanged if dy,41 < 0.

If ko = 0, we have fi,,, ,; = (1,0), dy1 =m —1< 0 and deg p' < 1—m. So @, = 7, if, and
only if O’ - X'~™(1,0) — Oppm1 - B = Of - X17™(1,0) — Optmy1 - 1, if, and only if O’ = O, and
B =T

If ko = 1, consider first the case dyq1 > 0. Here O Ty — Oppmg1 B = Og Ty 1 — Oltrmg1 - g
where deg ' < 1 = deg pmy1, so that O' = O, and so @' = ;,. If dyy1 < 0, the hypothesis

deg p' <1 —m —deg pmi1 = —dms1 + deg umy1 enables us to equate leading coefficients in
OIX_dm+1ﬁm+l - O,Um-i-l . ﬁl = OaX_dm+1ﬁm+1 - Ol”’m-l-l . ﬁa

so that O' = O,, whence &' =11,. O

8 A transform problem revisited.

We solve a transform problem over an arbitrary field K using Algorithm MR. This requires a result
on finite sequences over K (Lemma 8.1), which is of interest in its own right. When K = GF(q),
this is the decoding problem solved by Berlekamp’s algorithm, which we briefly compare with
Algorithm MR.

8.1 Solution of a transform problem.

From now on, R is a field K. The following lemma is of independent interest.

LEMMA 8.1 (Cf. Massey (1969), Corollary to Theorem 3.)
(i) Let f € Ann(S|m)*. If f € Min(S|m), then ged(f,B8(f,S|m)/X) € K*. Conversely, if
2deg f <1 —m and ged(f, B(f,S|m)/X) € K*, then f € Min(S|m).

(it) If 26(S|m) < 1 — m, then S|m has a unique monic MR.

PrOOF. (i) Suppose that deg g > 0 and g divides f, B(f,S|m)/X. Since f € Ann(S|m)*,
8(f/g-T(S|m) — B(f,S|m)/g) <m + deg f — deg g = m + deg (f/g)- Hence by Proposition 2.5,
f/g9 € Ann(S|m)* and deg f is not minimal.

Conversely, let g € Min(S|m). Then deg g + deg f < 2deg f < 1 —m and so by Proposition
6.2(ii), fB8(g,S|m) = gB(f,S|m). Now ged(f, 8(f,S|m)/X) € K*, so f divides g and therefore
deg f < deg g. Hence deg f = deg g and deg f is minimal.

(i) If f, g € Min(S|m) and deg f + deg g < 1 — m then by Proposition 6.2(ii), f8(g, S|m)/X =
9B(f,S|m)/X. The first paragraph implies that ged(f, 8(f,S|m)/X) € K* and again, f must
divide g. Similarly, g divides f and since f, g are monic, they are equal. Hence by Proposition
2.5, S|m has a unique MR. O
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We let ord a denote the order of a € K*, define the weight of e € K[X] to be wt e = |{i : e; # 0}]
and adopt the usual convention that [], = 1.

PROBLEM 8.2 Fiz b > 0 and oo € K*. Given S|m, find e € K[X] such that S|m is the sequence
e(a?),...,e(a®™) and wt e < min{ord «, (1 —m)/2}.

For fixed b > 0 and a € K*, we define S(® € Seq(K) by S](-e) = e(a’ ) for j < 0. If ord a < o0,
then S(¢) clearly has period ord a i.e. X°9 @ —1 € Ann(S(®).

PROPOSITION 8.3 We have (i) T'(S(®)) = Xw(X)/o(X) where

o(X) = H(X—ai) andw(X):Zeia’”' H (X — o),

ei#0 ei#0 e #0,j#i

(ii) o is monic, deg o = wt e and (iii) if wt e < 1 —m, then B(o, S |m) = Xw.

Proor. (i)
[‘(S(e)) — (Z ei(ab_j)i> XI = Z eiabi (Z(az/X)J>
J<0 \ei#0 ei#0 320
= Z (eid”/(1-a'/X)) = Z (Xeid” /(X — ) = Xw(X)/o(X).
e; #0 e; #0

(ii) This is trivial. (iii) Put F = T'(S(®)) — T'(S{®)|m) and d = deg o, so that 6(F) < m — 1 and
§(c-F)<m—1+d <0. Then (o, S |m) is

d d d
S (o T m)iX = 3 (- (0(S) = F))iXi = Xw— (0 F):X' = Xw.

i=1 i=1 i=1

O

In particular, o € Ann(S(®)) C Ann(S(®)|m) and S(°) is always a linear recurring sequence. For

the next result, we will need the formal derivative ¢’ of o, which is quickly seen to be ¢'(X) =
Ee,-;éo Hej;éo,j;éz'(X —ad).

THEOREM 8.4 If wt e < min{ord a, (1 —m)/2} then (i) (0, Xw) is an MR of S |m and (ii) S(®)

has a unique monic MR.

PROOF. (i) We know that ¢ € Ann(S(®)|m) and f(o,S®)|m) = Xw. from the previous result.
Thus to see that o € Min(S(®)|m), we show that gcd(o,w) = 1 and apply Lemma 8.1(i). Evaluation

of w at a root o of o gives

w(aF) = epak? H (* —a?) = epato’ (k).
e; 70,7k
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Since deg 0 = wt e < ord «, ¢ has distinct roots and ged(o,0') = 1. In particular, if o is a root
of o, then o'(a¥) # 0. Thus all the terms on the right-hand side of w(a*) are non-zero, w(a*) # 0
and ged(o,w) = 1.

(ii) Since o € Ann(S(®)|m)*, 2k(S(®)|m) < 2deg o = 2wt e < 1 —m. Thus by Lemma 8.1(ii),

S(¢)|m has a unique monic MR. O

Combining Theorem 8.4 and the results of Section 7 now gives:

COROLLARY 8.5 Let S|m = S(©)|m and wt e < min{ord a, (1 —m)/2} as in Problem 8.2. Then
(0, Xw) = 1(S|m) is the monic MR of S|m obtained from Algorithm MR.

ProOF. Since S(°)|m = S|m and S()|m has a unique monic MR, so does S|m i.e. 7(S®|m) =

(S|m). The result now follows from Theorem 8.4. O

The determination of e in Problem 8.2 is thus reduced to factorizing o and evaluating w in K[X].
(If S|m is the all-zero sequence, then (o, Xw) = (1,0) and so e = 0. Otherwise, if r is a root of
o and k = log, r, then e; # 0 and ex = w(r)/(r’c’(r)).) Finally, since w = f(o, S |m)/X is
required here, we may initialize @i’ to (0, —1) (rather than to (0, —X)) in Algorithm MR.

8.2 Algebraic decoding.

Problem 8.2 applies to Algebraic Coding Theory. Here K = GF(q) and ged(n,q) = 1, so that
K has an n** root of unity, a. We have integers b > 0, d > 3 and a cyclic code C C K" with
generator polynomial H‘:;g (X — abt?) of designed distance d = 2t + 1 to correct up to ¢ symbol

errors.

A transmitted codeword ¢ € C is received as ¢ + e for some e € K™ with wt(e) <t < n = ord «
and S|m is the sequence of 2t = 1 — m known syndromes — for background material and the
approach to Problem 8.2 using the Extended Euclidean Algorithm due to Sugiyama et. al.(1975),
see Chapter 12 of MacWilliams & Sloane (1977).

We remark that in this context, Equation (5) (with the additional requirement that deg f be

minimal) is an analogue of the ’key equation’ for BCH and Reed-Solomon codes.

Thus Algorithm MR can be used for decoding BCH, Reed-Solomon and other codes. For examples
and details, see Norton (1995b), Norton (1999).

8.3 The original application.

Given a t-error correcting BCH code and a codeword corrupted by up to t errors, Berlekamp’s

algorithm will correct (decode) these errors; see loc. cit., ‘Binary BCH codes for correcting multiple
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errors’, where minimal degree ensures maximum likelihood decoding. It also decodes Reed-Solomon
codes, errors and erasures, Lee-metric negacyclic codes, Berlekamp (1968), and classical Goppa
codes, Patterson (1975).

We remark that Algorithm MR — like Massey’s algorithm — does not require the variable B
(defined in Berlekamp (1968), Equation (7.320)) used to resolve an ambiguity (loc. cit. Equations
(7.306), (7.307)) which can occur in Berlekamp’s algorithm.

9 Guide to the notation.

In general, we use Roman letters for elements and Greek letters for functions. When S|m is an
arbitrary finite sequence with last term S,,, we abbreviate u(S|m), &(S|m) etc. to pm, km etc.
For any set E, E* = E \ {0}.

Symbol Meaning

a(S|m) See Definition 5.4 if k(S|m) > £(S]0) and Definition 7.2
otherwise.

Ann(S|m) See Definition 3.4.

B(f,Slm) it (- T(S|m))iX .

B(SIn) B(u(S|n), Slm) where m < n.

o(F) MaX_cocicooll : F; # 0} if FF #0; 6(0) = —o0.

d(S|m) 2k(S|m) +m — 2.

e(g) See Definition 4.4.

f,9,h Polynomials over R.

(foS)i=(foSm);  (f-T(S|m))i, where m + deg f <i <0.

[f, 9] See Definition 4.4.

F.G,H Laurent series or polynomials over R.
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F; ith coefficient of F, —oco < i < o0.

F,F Fibonacci sequences.
T(S|m) >y SiXi.
K(S|m) Linear complexity of S|m.
m, n Integers m, n < 0.
Min(S|m) Set of f in Ann(S|m) \ {0} of minimal degree.
u(S|m) Minimal polynomial of S|m.
a(S|m) (u(S|m), B(p(SIm), S|m)) € R[X]*.
of (f ©S)m+tdeg f if m +deg f <0, otherwise 0.
S|m Finite sequence {m,...,0} = R.
Seq(R) Sequences {...,—-1,0} = R.
Erratum

Lemma 4.14 of Norton (1995a), where L > 1 and s|L = sg,...,5_r+1, is incorrectly stated. It

should read as follows:

Lemma 4.14 Let s|L be a sequence over R and either (i) f = 1 or (ii)) 1 < i < L—1 and
f € Ann(s|i). Put 8= B(f,s|L —1) and § = 6(f - T'(s|L) — B). Then either (i) § < deg f or (ii)
0 < —i+deg f. If in addition either (i) f & Ann(s|0) or (i) i < L —2 and f & Ann(s|i + 1), then
either (i) 6 = deg f or (ii) 6 = —i + deg f.

The proof is unchanged.
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