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Hilbert space

believe how vastly, hugely, mind-bogglingly big it is.

(Hilbert) space is big. Really big. You just won't
Douglas Adams J

System of N particles

Ordinary material, N ~ Avogadro number, ~ O(10?®)

Number of basis states in the Hilbert space ~ O (101023) J




Number of basis states in the Hilbert space ~ O (10‘023) ’

Compare to...

Number of atoms in
the observable
universe ~ 0(10%)




Entanglement

@ A generic quantum state has a 4" dimensional Hilbert space
)= D gl i), =1..d
Jra2se N
@ Partition the state into two pieces (Schmidt decomposition)

[¥) = > Cilihali)s = 3 Aala)ala)s escciocos

@ Entanglment entropy is a measure for the amount of entanglement
S=-Y A\
Equivalent toS = —TrpA In PA with pPA = TI'B|’L/)> <’(/)|



Entanglement

@ Product state

¥) = % (IDa+10a) ([ D +11)s)

S=0

One non-zero Schmidt value
Not entangled.

@ Entangled state

) = (|T>|¢>B+|¢>|T>)

%\

S=1In2
Two non-zero Schmidt values



Entanglement

Area law

The entropy of a region of a ground state of a local Hamiltonian is proportional
to the area of the boundary (up to logarithmic corrections)

B Many-body
Hilbert space
A S ~ A
Area law
states — 2

\Product states



Compression of quantum states

@ Wavefunction

Y) = Z Cylidalids = Y Aala)ala)s

@ Matrix C;; as an image
078 --- 0.22

091 --- 0.66

@ Reconstruct the image (matrix) from a small number of Schmidt vectors

(Singular Value Decomposition):
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Worst case scenario: no compression (maximally entangled)




Tensor networks

Graphical representation for a state vector

Vector ¥ _0

Matrix A;; 0

Tensor Ty _d
Matrix-vector multiplication _0_0

Tr(ABC) (Scalar)



Tensor networks

W)= > gl i) - liv)

Jid2s-- N

Decompose into smaller tensors via Schmidt decomposition




Tensor networks

Continue this recursively ...

Choose a decomposition that matches
the geometric distribution of
entanglement

Satisfies area law: maximum entropy
of a partitionis proportional to the
number of cut bonds

Example: 3 bonds cut




Entanglement and tensor networks

Entanglement scaling is encoded in the shape of a tensor network

Partition cuts chain at single point
[F rlf ['lf ? [P CF ‘F — S(L) ~ const

I I I I
2D - Tensor Product State or
PEPS



Constructing MPS: Method 1: quantize a classical

state

Start from a classical (product) state

[9) = Is') |s%) Is%) Is*) -+
Each |s') is a classical vector, with real (or c-number) coefficients in some
basis
|5y = ailx) + ajly) + gflz)
Turn our (commuting) numeric coefficients into a matrix
|sT)ik = A lx) + AL ly) + Ajile)

We can recover an amplitude at the end by taking the trace, or arranging that
the boundary matrices are 1 x D and D x 1.

[9) = Te Y0 A A=A Js1) 1) [5°) 15 -



Method 2: quantum finite-state machines

What is a Matrix Product State?
@ Another way to visualizing them (from Greg Crosswhite)

Finite State Machine Example:
Soda Vending Machine

Coin Return
Pressed

System
contains
25¢

A finite-state machine
is a model of a system
that can transition
between a finite
number of states.

Pressed

Money
Returned

Coin Return
Pressed

Flavor
Button
Presseq




A classical finite-state machine is always in one discrete state.

In a quantum finite-state machine, we choose every possible transition with
some probability amplitude

r t, t
o—'—o—"—0o—"—o
(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))
1)
o ={ 1]
_J
=11

) = { |11
[+ 1+ 114)
) = [T+ L) + [ 1) + | 1)




Matrix Product States

This quantum finite-state machine has a transition matrix associated with it
@ W-state

|w>:7<|m¢ D AT ) A ) )

1) 0 )
A=
( RN
Practically all prototype wavefunctions studied in quantum information have a
low-dimensional MPS representation

@ GHZ state — long-range entangled, S = In2

1

) = S50+ 1)
AR
A( 0 |¢>)

A( VI/30) —mw)
V2Al-) —V17300)

@ AKLT state



Spin 1 Chains

The AKLT Model: A prototypical Resonating Valence Bond groundstate

o =" [55+5( 5
<ij>
@ [ = 0: usual Heisenberg spin chain
e Haldane: unlike half-integer spin chains, integer spin chains have a gap

n—1

e string order parameter: Sj explir » _S;,] S, — constant

m=1
o free Z, parameter at the boundary: effective spin-1/2 edge states
@ [ = 1/3: exactly solvable groundstate

Matrix product realization:

(VB0 AR
°A‘< 3 =) - usm>>
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