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Hilbert space

(Hilbert) space is big. Really big. You just won’t
believe how vastly, hugely, mind-bogglingly big it is.
Douglas Adams

System of N particles

Ordinary material, N ∼ Avogadro number, ∼ O(1023)

Number of basis states in the Hilbert space ∼ O
(

101023
)



Number of basis states in the Hilbert space ∼ O
(

101023
)

Compare to...

Number of atoms in
the observable
universe ∼ O(1080)



Entanglement

A generic quantum state has a dN dimensional Hilbert space

|ψ〉 =
∑

j1,j2,...,jN

ψj1,j2,...,jN |j1〉|j2〉|j3〉 . . . |jN〉 , jn = 1 . . . d

Partition the state into two pieces (Schmidt decomposition)
|ψ〉 =

∑
i,j

Cij|i〉A|j〉B =
∑
α

λα|α〉A|α〉B
A B

Entanglment entropy is a measure for the amount of entanglement
S = −

∑
α λ

2
α lnλ

2
α

Equivalent to S = −TrρA ln ρA with ρA = TrB|ψ〉〈ψ|



Entanglement

Product state

|ψ〉 = 1
2
(| ↑〉A + | ↓〉A) (| ↑〉B + | ↓〉B)

S = 0

One non-zero Schmidt value
Not entangled.

Entangled state

|ψ〉 = 1√
2
(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B)

S = ln 2

Two non-zero Schmidt values



Entanglement

Area law
The entropy of a region of a ground state of a local Hamiltonian is proportional
to the area of the boundary (up to logarithmic corrections)

Many-body
Hilbert space

Area law
states

Product states



Compression of quantum states

Wavefunction
|ψ〉 =

∑
i,j

Cij|i〉A|j〉B =
∑
α

λα|α〉A|α〉B

Matrix Cij as an image

 0.78 · · · 0.22
...

. . .
...

0.91 · · · 0.66

 =




Reconstruct the image (matrix) from a small number of Schmidt vectors
(Singular Value Decomposition):

~



D = 1



D = 2



D = 3



D = 4



D = 5



D = 6



D = 7



D = 8



D = 9



D = 10



D = 11



D = 12



D = 13



D = 14



D = 15



D = 16



D = 17



D = 18



D = 19



D = 20



D = 50



D = 100



D = 600 maximum



Worst case scenario: no compression (maximally entangled)



Tensor networks

Graphical representation for a state vector

Vector ~v

Matrix Aij

Tensor Tijk

Matrix-vector multiplication

Tr(ABC) (Scalar)



Tensor networks

|ψ〉 =
∑

j1,j2,...,jN

ψj1,j2,...,jN |j1〉|j2〉|j3〉 . . . |jN〉

Decompose into smaller tensors via Schmidt decomposition

=



Tensor networks

Continue this recursively ...

Choose a decomposition that matches
the geometric distribution of
entanglement

Satisfies area law: maximum entropy
of a partitionis proportional to the
number of cut bonds

Example: 3 bonds cut

↓



Entanglement and tensor networks

Entanglement scaling is encoded in the shape of a tensor network

Partition cuts chain at single point
→ S(L) ∼ const

2D - Tensor Product State or
PEPS



Constructing MPS: Method 1: quantize a classical
state

Start from a classical (product) state

|ψ〉 = |s1〉 |s2〉 |s3〉 |s4〉 · · ·

Each |si〉 is a classical vector, with real (or c-number) coefficients in some
basis

|si〉 = ax
i |x〉+ ay

i |y〉+ az
i |z〉

Turn our (commuting) numeric coefficients into a matrix

|si〉jk = Ax
jk|x〉+ Ay

jk|y〉+ Az
jk|z〉

We can recover an amplitude at the end by taking the trace, or arranging that
the boundary matrices are 1× D and D× 1.

|ψ〉 = Tr
∑

si

As1 As2 As3 As4 · · ·|s1〉 |s2〉 |s3〉 |s4〉 · · ·



Method 2: quantum finite-state machines

What is a Matrix Product State?

Another way to visualizing them (from Greg Crosswhite)

A finite-state machine
is a model of a system
that can transition
between a finite
number of states.



A classical finite-state machine is always in one discrete state.

In a quantum finite-state machine, we choose every possible transition with
some probability amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

|ψ〉 =
{
| ↑〉
| ↓〉

|ψ〉 =
{
| ↑↑〉
| ↓↑〉+ | ↑↓〉

|ψ〉 =
{
| ↑↑↑〉
| ↓↑↑〉+ | ↑↓↑〉+ | ↑↑↓〉

|ψ〉 = | ↓↑↑↑〉+ | ↑↓↑↑〉+ | ↑↑↓↑〉+ | ↑↑↑↓〉



Matrix Product States
This quantum finite-state machine has a transition matrix associated with it

W-state

|ψ〉 = 1√
N
(| ↓↑↑↑ . . .〉+ | ↑↓↑↑ . . .〉+ | ↑↑↓↑ . . .〉+ . . .)

A =

(
| ↑〉 0
| ↓〉 | ↑〉

)
Practically all prototype wavefunctions studied in quantum information have a
low-dimensional MPS representation

GHZ state – long-range entangled, S = ln 2

|ψ〉 = 1√
2
(| ↑↑↑ . . .〉+ | ↓↓↓ . . .〉)

A =

(
| ↑〉 0
0 | ↓〉

)
AKLT state

A =

( √
1/3|0〉 −

√
2/3|+〉√

2/3|−〉 −
√

1/3|0〉

)



Spin 1 Chains

The AKLT Model: A prototypical Resonating Valence Bond groundstate

H =
∑
<ij>

[
~Si ·~Sj + β(~Si ·~Sj)

2
]

β = 0: usual Heisenberg spin chain
Haldane: unlike half-integer spin chains, integer spin chains have a gap

string order parameter: Sz
0 exp[iπ

n−1∑
m=1

Sz
m] Sz

n → constant

free Z2 parameter at the boundary: effective spin-1/2 edge states

β = 1/3: exactly solvable groundstate

Matrix product realization:

A =

( √
1/3 |0〉 −

√
2/3 |+〉√

2/3 |−〉 −
√

1/3 |0〉

)
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