Matrix Product States

Ian McCulloch

University of Queensland
Centre for Engineered Quantum Systems

28 August 2017

Hilbert space

> (Hilbert) space is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. Douglas Adams

$$
\text { System of } N \text { particles }
$$

Ordinary material, $N \sim$ Avogadro number, $\sim O\left(10^{23}\right)$

Number of basis states in the Hilbert space $\sim O\left(10^{10^{23}}\right)$

Number of basis states in the Hilbert space $\sim O\left(10^{10^{23}}\right)$
Compare to...

Number of atoms in the observable universe $\sim O\left(10^{80}\right)$

Entanglement

- A generic quantum state has a d^{N} dimensional Hilbert space

$$
|\psi\rangle=\sum_{j_{1}, j_{2}, \ldots, j_{N}} \psi_{j_{1}, j_{2}, \ldots, j_{N}}\left|j_{1}\right\rangle\left|j_{2}\right\rangle\left|j_{3}\right\rangle \ldots\left|j_{N}\right\rangle \quad, \quad j_{n}=1 \ldots d
$$

- Partition the state into two pieces (Schmidt decomposition)

$$
|\psi\rangle=\sum_{i, j} C_{i j}|i\rangle_{A}|j\rangle_{B}=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B}
$$

- Entanglment entropy is a measure for the amount of entanglement $S=-\sum_{\alpha} \lambda_{\alpha}^{2} \ln \lambda_{\alpha}^{2}$
Equivalent to $S=-\operatorname{Tr} \rho_{A} \ln \rho_{A}$ with $\rho_{A}=\operatorname{Tr}_{B}|\psi\rangle\langle\psi|$

Entanglement

- Product state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{2}\left(|\uparrow\rangle_{A}+|\downarrow\rangle_{A}\right)\left(|\uparrow\rangle_{B}+|\downarrow\rangle_{B}\right) \\
S=0
\end{gathered}
$$

One non-zero Schmidt value Not entangled.

- Entangled state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{A}|\downarrow\rangle_{B}+|\downarrow\rangle_{A}|\uparrow\rangle_{B}\right) \\
S=\ln 2
\end{gathered}
$$

Two non-zero Schmidt values

Entanglement

Area law

The entropy of a region of a ground state of a local Hamiltonian is proportional to the area of the boundary (up to logarithmic corrections)

Compression of quantum states

- Wavefunction

$$
|\psi\rangle=\sum_{i, j} C_{i j}|i\rangle_{A}|j\rangle_{B}=\sum_{\alpha} \lambda_{\alpha}|\alpha\rangle_{A}|\alpha\rangle_{B}
$$

- Matrix $C_{i j}$ as an image

$$
\left(\begin{array}{ccc}
0.78 & \cdots & 0.22 \\
\vdots & \ddots & \vdots \\
0.91 & \cdots & 0.66
\end{array}\right)=\binom{2}{0}
$$

- Reconstruct the image (matrix) from a small number of Schmidt vectors (Singular Value Decomposition):

$D=4$

$D=5$

$D=6$

$$
D=8
$$

$D=9$

$D=10$

$$
D=11
$$

$$
D=12
$$

$$
D=13
$$

$$
D=15
$$

$$
D=16
$$

$$
D=17
$$

$$
D=18
$$

$$
D=19
$$

$$
D=20
$$

$$
D=50
$$

$$
D=100
$$

$D=600$ maximum

Worst case scenario: no compression (maximally entangled)

Tensor networks

Graphical representation for a state vector

Vector \vec{v}

Matrix $A_{i j}$

Tensor $T_{i j k}$

Matrix-vector multiplication
$\operatorname{Tr}(A B C)$ (Scalar)

Tensor networks

$$
T_{1 I T}
$$

Decompose into smaller tensors via Schmidt decomposition

Tensor networks

Continue this recursively ...

Choose a decomposition that matches the geometric distribution of entanglement

Satisfies area law: maximum entropy of a partitionis proportional to the number of cut bonds

Example: 3 bonds cut

Entanglement and tensor networks

Entanglement scaling is encoded in the shape of a tensor network

Partition cuts chain at single point
$\rightarrow S(L) \sim$ const

2D - Tensor Product State or PEPS

Constructing MPS: Method 1: quantize a classical state

Start from a classical (product) state

$$
|\psi\rangle=\left|s^{1}\right\rangle\left|s^{2}\right\rangle\left|s^{3}\right\rangle\left|s^{4}\right\rangle \cdots
$$

Each $\left|s^{i}\right\rangle$ is a classical vector, with real (or c-number) coefficients in some basis

$$
\left|s^{i}\right\rangle=a_{i}^{x}|x\rangle+a_{i}^{y}|y\rangle+a_{i}^{z}|z\rangle
$$

Turn our (commuting) numeric coefficients into a matrix

$$
\left|s^{i}\right\rangle_{j k}=A_{j k}^{x}|x\rangle+A_{j k}^{y}|y\rangle+A_{j k}^{z}|z\rangle
$$

We can recover an amplitude at the end by taking the trace, or arranging that the boundary matrices are $1 \times D$ and $D \times 1$.

$$
|\psi\rangle=\operatorname{Tr} \sum_{s_{i}} A^{s_{1}} A^{s_{2}} A^{s_{3}} A^{s_{4}} \cdots\left|s^{1}\right\rangle\left|s^{2}\right\rangle\left|s^{3}\right\rangle\left|s^{4}\right\rangle \cdots
$$

Method 2: quantum finite-state machines

What is a Matrix Product State?

- Another way to visualizing them (from Greg Crosswhite)

A classical finite-state machine is always in one discrete state.

In a quantum finite-state machine, we choose every possible transition with some probability amplitude

(from Crosswhite and Bacon, Phys. Rev. A 78, 012356 (2008))

$$
\begin{gathered}
|\psi\rangle=\left\{\begin{array}{l}
|\uparrow\rangle \\
|\downarrow\rangle
\end{array}\right. \\
|\psi\rangle=\left\{\begin{array}{l}
|\uparrow \uparrow\rangle \\
|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle
\end{array}\right. \\
|\psi\rangle=\left\{\begin{array}{l}
|\uparrow \uparrow \uparrow\rangle \\
|\downarrow \uparrow \uparrow\rangle+|\uparrow \downarrow \uparrow\rangle+|\uparrow \uparrow \downarrow\rangle
\end{array}\right. \\
|\psi\rangle=|\downarrow \uparrow \uparrow \uparrow\rangle+|\uparrow \downarrow \uparrow \uparrow\rangle+|\uparrow \uparrow \downarrow \uparrow\rangle+|\uparrow \uparrow \uparrow \downarrow\rangle
\end{gathered}
$$

Matrix Product States

This quantum finite-state machine has a transition matrix associated with it

- W-state

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{N}}(|\downarrow \uparrow \uparrow \uparrow \ldots\rangle+|\uparrow \downarrow \uparrow \uparrow \ldots\rangle+|\uparrow \uparrow \downarrow \uparrow \ldots\rangle+\ldots) \\
A=\left(\begin{array}{cc}
|\uparrow\rangle & 0 \\
|\downarrow\rangle & |\uparrow\rangle
\end{array}\right)
\end{gathered}
$$

Practically all prototype wavefunctions studied in quantum information have a low-dimensional MPS representation

- GHZ state - long-range entangled, $S=\ln 2$

$$
\begin{gathered}
|\psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \uparrow \ldots\rangle+|\downarrow \downarrow \downarrow \ldots\rangle) \\
A=\left(\begin{array}{cc}
|\uparrow\rangle & 0 \\
0 & |\downarrow\rangle
\end{array}\right)
\end{gathered}
$$

- AKLT state

$$
A=\left(\begin{array}{cc}
\sqrt{1 / 3}|0\rangle & -\sqrt{2 / 3}|+\rangle \\
\sqrt{2 / 3}|-\rangle & -\sqrt{1 / 3}|0\rangle
\end{array}\right)
$$

Spin 1 Chains

The AKLT Model: A prototypical Resonating Valence Bond groundstate

- $H=\sum_{<i j>}\left[\vec{S}_{i} \cdot \vec{S}_{j}+\beta\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}\right]$
- $\beta=0$: usual Heisenberg spin chain
- Haldane: unlike half-integer spin chains, integer spin chains have a gap
- string order parameter: $S_{0}^{z} \exp \left[i \pi \sum_{m=1}^{n-1} S_{m}^{z}\right] S_{n}^{z} \rightarrow$ constant
- free Z_{2} parameter at the boundary: effective spin- $1 / 2$ edge states
- $\beta=1 / 3$: exactly solvable groundstate

Matrix product realization:

- $A=\left(\begin{array}{llll}\sqrt{1 / 3} & |0\rangle & -\sqrt{2 / 3} & |+\rangle \\ \sqrt{2 / 3} & |-\rangle & -\sqrt{1 / 3} & |0\rangle\end{array}\right)$

