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o Scaling relations in the thermodynamic limit

@ Expectation values of IMPO's
@ Higher moments
@ Binder cumulant

e Entanglement spectrum
e Projective representations
e Triangular Heisenberg model example

@ Binder ratio for symmetric states

lan McCulloch (UQ) iMPS 12/12/2016 2/51



Correlation Functions

The form of correlation functions are determined by the eigenvalues of the
transfer operator

@ All eigenvalues < 1

@ One eigenvalue equal to 1,
corresponding to the identity
operator

Expansion in terms of eigenspectrum A;:

(00 =37 a X
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Hubbard Model transfer matrix spectrum
Half-filling, U/t = 4
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Correlation length

Hubbard model transfer matrix spectrum
Half-filling, U/t=4
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Critical scaling example

Two-species bose gas with linear tunneling 2, from F. Zhan et al, Phys. Rev. A 90, 023630 2014
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CFT Parameters

For a critial mode, the correlation length increases with number of states m as
a power law,
E~m”

[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)
M. Andersson, M. Boman, S. Ostlund, Phys. Rev. B 59, 10493 (1999)

L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

6
K= ——
V12c+ ¢

[Pollimann et al, PRL 2009]

Note: in practice this usually isn’t a good way to determine ¢ — better to use
entropy scaling
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Scaling dimensions

(Vid Stojevic, IPM et al, Phys. Rev. B 91, 035120 (2015))

Suppose we have a two-point correlator that has a power-law at large
distances

(0(X)0(y)) =y — x4

As we increase the number of states kept m the correlation length increases,
so the region of validity of the power law increases.

@ Take two different calculations with m; and m,
@ Correlation lengths &, and &,

L0&) (& .
@ We expect: o) - (51)
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Scaling dimensions

(Vid Stojevic, IPM et al, Phys. Rev. B 91, 035120 (2015))

Suppose we have a two-point correlator that has a power-law at large
distances

(0(X)0(y)) =y — x4

As we increase the number of states kept m the correlation length increases,
so the region of validity of the power law increases.

@ Take two different calculations with m; and m,
@ Correlation lengths &, and &,

L0&) (& .
@ We expect: o) - (51)

o for x large, we have: O(x) ~a X* (with £ = —1/1In}\)

@ Prefactor a is overlap of operator O with next-leading eigenvector of
transfer operator
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Scaling dimensions

(Vid Stojevic, IPM et al, Phys. Rev. B 91, 035120 (2015))

Suppose we have a two-point correlator that has a power-law at large
distances

(0(X)0(y)) =y — x4

As we increase the number of states kept m the correlation length increases,
so the region of validity of the power law increases.

@ Take two different calculations with m; and m,
@ Correlation lengths &, and &,

L0&) (& .
@ We expect: o) - (51)

o for x large, we have: O(x) ~a X* (with £ = —1/1In}\)

@ Prefactor a is overlap of operator O with next-leading eigenvector of
transfer operator

ax A

This gives directly the operator scaling dimensions by direct fit
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prefactor of the spin operator at this mode

Heisenberg model fit for the scaling dimension

0.0625

I

0.03125

x—x iDMRG data for m=15,20,25,30,35
— y=0.45126 * x"0.480
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Expectation values of MPO'’s - arxiv:0804.2509

We have seen that we can write many interesting operators in the form of a
matrix product operator

@ Can we evaluate the expectation value of an arbitrary MPO?

If the MPO has no Jordan structure, this is a simple eigenvalue problem

e -t
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Expectation values of MPO'’s - arxiv:0804.2509

We have seen that we can write many interesting operators in the form of a
matrix product operator

@ Can we evaluate the expectation value of an arbitrary MPO?
If the MPO has no Jordan structure, this is a simple eigenvalue problem

e -t

For a lower triangular MPO, this doesn’t work.

@ But we can make use of the triangular structure

1
Sz
ASY 80T

@ index by index, each component is a function only of the previously
calculated terms
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i J

Choose bond indices i,j of W;;, and denote Ty,

Example:
1
SZ
ASY ST
Eigentensoris (E;, E, Ej3)
@ Starting from E;:
Ey=Ti(Es3) =1

is equivalent to the orthogonality condition - Ej is just the identity

@ E:
Er = Ts:(E3) = Ts:(I) = §°

@ [;: doesn’t reach a fixed point, E; = E; (L) depends on the number of

iterations L

E(L+1) = Ti(E((L))+ Ts:(Ez) + Ths:(E3)
= Ti(E\(L)+C
where C is a constant matrix, C = Ts: (%) + AS*
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Fixed point equations for E;:

Ei(L+1)=T/(E/(L)+C

Eigenmatrix expansion of 7;:

m2
T = AN
n=1
giving
EM(L+1) = MEM (L) + ™

@ Since \; = 1 by construction, this motivates decomposing into
components parallel (e;) and perpendicular (£}) to the identity:

E((L+1)=E{(L)+e (L)
where TrE|(L)p =0
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@ Component in the direction of the identity:
eif(L+1)=¢(L)+TrCp

Has the solution
ei(L)=L TrCp

is the energy
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@ Component in the direction of the identity:
eif(L+1)=¢(L)+TrCp

Has the solution
ei(L)=L TrCp

is the energy
@ Component perpendicular to the identity:

E/(L+1)=T/(E|(L))+C

where C' = C — (TrCp) I

Ell (L + 1)/1 = )\nEi (L)n + C;z

Since all |\,| < 1 here, this is a geometric series that converges to a fixed
point (independent of L),
(1-T)(E) =C

Linear solver for the unknown matrix E}
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Summary:
@ Decompose eigentensor into components parallel and perpendicular to
the identity
@ The component parallel to the identity is the energy per site

@ The perpendicular components reach a fixed point and give the
Hamiltonian matrix elements

E; = 1 Identity operator
E; = Sz Sz block operator
E\(L) = E +Le Hamiltonian operator + energy per site
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Generalization to arbitrary triangular MPO'’s

arXiv:1008.4667

At the i iteration, we have

E(L+1) = Tw,(E(L)) + >_ Tw, (E
J>i

= cw)
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Generalization to arbitrary triangular MPO'’s

arXiv:1008.4667

At the i iteration, we have

E(L+1) = Tw,(E(L)) + >_ Tw, (E
J>i

= cw)

Basic idea:

@ ifwW;=0,thenE;, =C

o if W; # 0, then solve (1 — Ty, )(E;)) = C
The result will be a polynomial function of L

@ solve separately for the coefficient of the k-th power of n

@ If the diagonal element is unitary, then obtain the eigenvalues of
magnitude 1

@ If any eigenvalues are complex, then expand also in fourier modes
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Example 1 - Variance

How close is a variational state to an eigenstate of the Hamiltonian?
@ Sometimes there is an algorithmic measure, often not.
The square of the Hamiltonian operator determines the energy variance
(H*)p — (H)] = ((H — E)*). = Lo®

@ A universal measure for the quality of a variational wavefunction
@ lower bound for the energy: there is always an eigenstate within o of E

We can easily construct an MPO representation of H?
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Spin 1/2 Heisenberg Model

Energy per site scaling with variance (exact energy = -In 2 + 0.25 = -0.44314718056)
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Example 2 - momentum distribution

Momentum-dependent operators have a simple form,

bi = e*b]

1
sz - ( bt e*r )

1
n(k) = Zb,ﬁbk

Momentum occupation:

@ Broken U(1) symmetry: (b') # 0 hence n(k = 0) x L (extensive)
@ With U(1) symmetry: n(k = 0) is finite, but diverges with m in superfluid
phase
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Bose-Hubbard Model N(K)

Infinite 1D, one particle per site
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Higher moments

It is straight forward to evaluate a local order parameter, eg
M=> M,
The first moment of this operator gives the order parameter,
(M) = m (L)
It is also useful to calculate higher moments, eg
(M?) = my(L)
or generally

(M*) = my(L)

These are polynomial functions in the system size L.
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For finite systems, the Binder cumulant of the order parameter cancels the
leading-order finite size effects

3<m2>2
0.8 T T T
1 T T g T -~ L=50
-0 L=50 - L =100
-o- L =100 -- L=150
-0~ L =150 — L =200 A
L =200 7]

-3¢ iDMRG

(ANL)|

0.216

018 09 099 094 0.18 0.2 0.22 0.24
Q Q

The 2-component Bose-Hubbard model, with a linear coupling between
components, has an Ising-like transition from immiscible (small €2) to miscible
(large Q).

Z blT,a,bj7a+H-C.+UZn0'(no' +U122nTni+QszTbji+HC

<ij>,o0 i,o <iyj>
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Cumulant expansions

Express the moments m; in terms of the cumulants per site «;,

mp (L) = I'ilL

my(L) = K2+ KoL

ms (L) H?LS + 3H1H2L2 + K?3L

my(L) = KIL* + 6K3koL3 + (353 + 4r1k3) L% + kel

k1 is the order parameter itself

Kk, is the variance (related to the susceptibility)
k3 is the skewness

k4 is the kurtosis

The cumulants per site x; are well-defined for an iIMPS

Note: the cumulants are normally written such that they are extensive
quantities — Lky.

lan McCulloch (UQ) iMPS 12/12/2016 22/51



IMPS for two-component bose gas

The cumulant expansion already gives a lot of information

k1 is the order parameter itself
Ising transition in 2-component Bose gas
Order parameter IN_a - N_bl
\ ‘ \

0.6 — =

02 —
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The second cumulant gives the susceptibility
2-component Bose gas

Second cumulant (susceptibility)
50 T T T

40—

30—

20 —

10—

| | |
%,l 0.12 0.14 0.16 0.18 0.2

Different to a finite-size scaling, the susceptibility exactly diverges at the
critical point.

Sulfficiently close to the critical point, it looks mean-field-like (so will generally
give the wrong exponent/)
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The fourth cumulant changes sign at the transition.
2-component Bose gas

fourth cumulant

_J
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Binder Cumulant for iMPS

Naively taking the limit L — oo for the Binder cumulant doesn’t produce
anything useful:

@ if the order parameter x; # 0,

@ if Ky = 0, then my(L) = 3K3L* + k4L

Hence -
3k5L" + k4L
U =1-"2-"""30
t 31212
@ Finally, a step function that detects whether the order parameter is
non-zero

Better approach, in the spirit of finite-entanglement scaling: Evaluate the
moment polynomial using L « correlation length
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Transverse field Ising model

Binder cumulant, scale factor s=5

‘ Order pardmeter

M
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Scaling functions

Critical exponents

Exponent relation

v & o« |fTr
B (M) o (=1)f
« C « |f*
gl X o |7

Finite-size scaling functions

U = UL
(M) = L PYMO(tLv)

Up = U(m~/)
<M> _ m—Bn/VMO(t mn/l/)
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Binder Cumulant scaling function collapse

Fixes k/v=2

0.6 —
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X=X m=12
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Magnetization scaling function below A

fixes p=1/8
0.7 7 I
0.6 —
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String parameters

Order parameters do not have to be local

Mott insulator string order parameter

Oh= lim (I5_(~1)

li—i|—o0

We can write this as a correlation function of ‘kink operators’,

pi = i (—=1)™
This turns the string order into a 2-point correlation function:

|j—i| =00
Or as an order parameter:

PZZP:’
i

Then 07 = & (P?)
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Real example: 3-leg Bose-Hubbard model with flux phase (F. Kolley, M. Piraud,
IPM, U. Schollwoeck, F. Heidrich-Meisner, New J. Phys. 17 (2015) 092001)

(1,3) U L - (L.3)

1,2) ; - (L.2)

=\ u S

(r1) (r+1,1)
For density n = 1/3 (one particle per rung), near flux ¢ ~ 7, there is a
transition from a Mott to critical as a function of J

(1,1)

(L.1)

@ P has a simple MPO representation

P:(5 <—1>">

@ Hence we can calculate higher moments of P.
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Bose-Hubbard Ladder

String order parameter
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Bose=Hubbard Ladder
Scaling of correlation length

1000 L ——)
Jperp =0.99
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L | >—x Jperp=1.14
»—x Jperp = 1.25
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|
100 1000
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Bose-Hubbard Ladder

String parameter Binder cumulant
\ ‘ \ ‘ \ ‘ \

0.98 1 1.02 1.04 1.06 1.08
Jperp
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Entanglement spectrum spectroscopy

SENONY

@ Bipartite cut — reduced density matrix p
@ Entanglement Hamiltonian H = —1np

@ Reduced dimension — the entanglement Hamiltonian lives on the
boundary

@ Label states by global symmetries spin, transverse momentum
@ Degeneracy structure provides information about symmetries

For SU(2) symmetry broken states:
@ If the symmetry is allowed to break: bulk gap

@ unbroken SU(2): Goldstone mode, separated band of excitations below
the bulk gap
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Z, SL, even-width, odd-sector, J,=0.125

Map onto one-dimensional chain:

Global symmetries

Broken by the real-space structure:
@ spatial symmetries, such as
translation, reflection of the
cylinder

Preserved in the MPS structure:

@ internal symmetries, such as
particle number, spin, ...
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density matrix as the eigenvector of the transfer operator

Left eigenvector Right eigenvector
identity matrix density matrix

Eigenvalues of p’ are \;e'
@ ); are the density matrix eigenvalues
@ 0; is the corresponding symmetry angle up to a global phase
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Allowed symmetries of the ES

Let U be a global symmetry of the wavefunction

Uly) = €|v)

What is the action of U on the reduced density matrix p?
Bipartition:

V) = Yap¥a la)®|b)
= Up®Up

=
|

Actionon pis  UxpU]

@ U, is distinguishable only up to a global phase
@ U, is a projective representation of the symmetry
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Projective representations

Physical states are rays in Hilbert space
@ aly), for a € C represents the same physical state

Symmetry transformations that are ambiguous up to some scalar are
projective representations

Assuming a unitary representation, only the phase is unknown: a = €.
A projective representation is defined by:

UU, = £0) U,

The function 6(x, y) defines the representation
Example:

@ 7, has no non-trivial (unitary) projective representations
@ 7, X Z; has has two projective representations

v =1
U, =1
UU, = =+UU
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Triangular lattice — frustration

@ Frustrated lattice — suppress ordering

at

@ But ordering may be possible
@ Groundstate widely established as SU(2)-broken 120° order

Beyond nearest neighbor: H = J1 3", SiS; + /23 ;) S5
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Z, spin liquid

@ The simplest spin liquid that doesn’t break time reversal symmetry
@ Elementary excitations are spinons with non-trivial braiding statistics
(anyons)
@ Four anyon types:
e 1:vacuum

@ b : bosonic spinon (electric charge ¢)
@ Vv :vison (magnetic charge m)
e f: fermionic spinon (fermion v)
@ Fusion rules for combining excitations:
e bxb=1
o vxv=1
o fxf=1
e bxv=f
e bxf=v
e vXf=>
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Anyonic statistics

R matrix: counter-clockwise exchange
of particles

a b
S matrix: intertwining two vacuum S5 = L O‘ )
excitations 1
s = Z d, Tr (R®RY)
R =R =1

Rl = (RF)? = -1
In basis (1, b,v,f):

1 1 1 1

1 1 1 -1 -1
5= 201 1 -1 1 -1
1 -1 -1 1
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Identifying the topology

Groundstate degeneracy on a torus

@ construct a vison or spinon that threads down the torus

@ spinon flips between time-reversal symmetric and
antisymmetric states

@ vison inserts —1 flux — antiperiodic boundary conditions

@ Symmetry fractionalization — these correspond to
projective symmetries

How to construct these fluxes?
@ translationally invariant infinite
system and manipulate the
boundary conditions
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Antiperiodic boundary conditions

Dihedral group symmetries around the cut:
@ T, —translation by one site around the cylinder
@ R, — reflection about a site or bond

This forms the dihedral group D>y,

Ty =R =1
RyTyL,V/zR;l — TyLy/2

(a 7 rotation commutes with a reflection)

The dihedral group has a non-trivial projective representation:
Ty =R =1
—1 —1
RT,R ' = —T;

(a 7 rotation anti-commutes with a reflection)
This is the subgroup of D>, taking only the odd momenta (antiperiodic BC)
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Antiperiodic boundary conditions

Nariman Saadatmand, IPM, Phys. Rev. B 94, 121111 (2016)

We see two (nearly) degenerate states

@ smaller L,: the groundstate has a 2-fold degenerate entanglement
spectrum

@ for larger L,, we obtained a non-degenerate entanglement spectrum
In the two-fold degenerate sector, we measure
(R,TEPRITH>T) = —0.9999970 - - -

yoy

10
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T
O

7.5

&
O
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@

D
3

© ©

L @ L
-5m/6 —3%/6 -m/6  T/6 3%6 5m/6
k, momenta

L, = 6 entanglement spectrum
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Detecting ordered phases

] i columnar order
120° order toPOI(.)gI(.:aI icolumnar; ;columnar
spin liquids i order only for YC6: algebraic order J>
0.105(5) 0.140(5) 0.170(5) 0.200(5)

Using SU(2) symmetry the magnetic order parameter is identically zero.
@ can we see signatures of symmetry breaking in higher moments of the

order parameter?
@ Binder cumulant U, =1 — ;f‘%
Cumulant expansion of the 4th moment:

(M*), = KIL* 4 6ryR7TL3 4 (41 ks + 3K3)L> + Kyl
Symmetry implies all odd cumulants vanish

<M4>L = 3H%L2 + k4L
Need L length scale — use correlation length ¢ from transfer matrix

Binder ratio
Rq

K3E
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Binder ratio — 120° order

1F— 1 — "~ T ] — T T T T
- [ m=800 ]
[ |*> m=900 ]
OF [+ m=1000 ]
g [ xm=1200 — x
> 0 / ]
o -1F ]
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g 2r g
2 YC6
23 ]
=) L
m - 120° order
4F ]
'5 - | | L | | N
0.06 0.08 0.1 0.12
J2
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Binder ratio — staggered order
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Binder ratio — staggered order YC6
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Summary

Download the code: https://people.smp.uq.edu.au/lanMcCulloch/mptoolkit

S Matrix Product Toolkit | Main / Home Page - Mozilla Firefox v

File Edit View History Bookmarks Tools Help
W Matrix Product T... x | +

¢v 0 € 0ang Jle.smp.ug.edu.au/l @1 ¢ | x |[Qsearc *“B 9O 3 a Bau rx 0o =
3 5 a Recent Changes - Search: Go

WATRIX FROSUCT TOGEKIT You ever have that feeling where you're not sure if you're awake or still dreaming?

HomePage Main / View Edit Rename History Print

About

o - Home Page

Download ) ;

Installing The Matrix Product Toolkit

HOWTO

Tools The Matrix Product Toolkitis a suite of tools for and Matrix Product States, aimed at numerical

References simulations in condensed matter physics, quantum information science and related areas. For more information and history of the toolkit, see the

s About page.

ChangelLog e g

NCTS

Bug tracking To get started, see the Download and Install links below. To see some applications of the toolkit, try the HOWTO pages note much of the

Report bug documentation on the HOWTO pages is out of date.
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