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Correlation Functions

The form of correlation functions are determined by the eigenvalues of the
transfer operator

All eigenvalues ≤ 1
One eigenvalue equal to 1,
corresponding to the identity
operator

Expansion in terms of eigenspectrum λi:

〈O(x)O(y)〉 =
∑

i

ai λ
|y−x|
i
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Critical scaling example
Two-species bose gas with linear tunneling Ω, from F. Zhan et al, Phys. Rev. A 90, 023630 2014
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CFT Parameters

For a critial mode, the correlation length increases with number of states m as
a power law,

ξ ∼ mκ

[T. Nishino, K. Okunishi, M. Kikuchi, Phys. Lett. A 213, 69 (1996)
M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999)
L. Tagliacozzo, Thiago. R. de Oliveira, S. Iblisdir, J. I. Latorre, Phys. Rev. B 78, 024410 (2008)]

This exponent is a function only of the central charge,

κ =
6√

12c + c

[Pollmann et al, PRL 2009]

Note: in practice this usually isn’t a good way to determine c – better to use
entropy scaling
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Scaling dimensions
(Vid Stojevic, IPM et al, Phys. Rev. B 91, 035120 (2015))
Suppose we have a two-point correlator that has a power-law at large
distances

〈O(x)O(y)〉 = |y− x|−2∆

As we increase the number of states kept m the correlation length increases,
so the region of validity of the power law increases.

Take two different calculations with m1 and m2

Correlation lengths ξ1 and ξ2

We expect:
O(ξ2)

O(ξ1)
=

(
ξ2

ξ1

)∆

for x large, we have: O(x) ' a λx (with ξ = −1/ lnλ)
Prefactor a is overlap of operator O with next-leading eigenvector of
transfer operator

a ∝ ξ−∆

This gives directly the operator scaling dimensions by direct fit
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Expectation values of MPO’s - arxiv:0804.2509

We have seen that we can write many interesting operators in the form of a
matrix product operator

Can we evaluate the expectation value of an arbitrary MPO?

If the MPO has no Jordan structure, this is a simple eigenvalue problem

= λW

For a lower triangular MPO, this doesn’t work.

But we can make use of the triangular structure I
Sz

λSx Sz I


index by index, each component is a function only of the previously
calculated terms
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Choose bond indices i, j of Wij, and denote TWij

ji W

Example:  I
Sz

λSx Sz I


Eigentensor is (E1 E2 E3)

Starting from E3:
E3 = TI(E3) = I

is equivalent to the orthogonality condition - E3 is just the identity
E2:

E2 = TSz(E3) = TSz(I) = Sz

E1: doesn’t reach a fixed point, E1 = E1(L) depends on the number of
iterations L

E1(L + 1) = TI(E1(L)) + TSz(E2) + TλSx (E3)
= TI(E1(L)) + C

where C is a constant matrix, C = TSz(Sz) + λSx
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Fixed point equations for E1:

E1(L + 1) = TI(E1(L)) + C

Eigenmatrix expansion of TI :

TI =

m2∑
n=1

λn|λ〉〈λ|

giving

E(n)
1 (L + 1) = λnE(n)

1 (L) + C(n)

Since λ1 = 1 by construction, this motivates decomposing into
components parallel (e1) and perpendicular (E′1) to the identity:

E1(L + 1) = E′1(L) + e1(L) I

where Tr E′1(L)ρ = 0
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Component in the direction of the identity:

e1(L + 1) = e1(L) + Tr Cρ

Has the solution
e1(L) = L Tr Cρ

is the energy
Component perpendicular to the identity:

E′1(L + 1) = TI(E′1(L)) + C′

where C′ = C − (Tr Cρ) I

E′1(L + 1)n = λnE′1(L)n + C′n

Since all |λn| < 1 here, this is a geometric series that converges to a fixed
point (independent of L),

(1− TI)(E′1) = C′

Linear solver for the unknown matrix E′1
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Summary:

Decompose eigentensor into components parallel and perpendicular to
the identity
The component parallel to the identity is the energy per site
The perpendicular components reach a fixed point and give the
Hamiltonian matrix elements

E3 = I Identity operator
E2 = Sz Sz block operator
E1(L) = E′ + Le1 Hamiltonian operator + energy per site
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Generalization to arbitrary triangular MPO’s
arXiv:1008.4667

At the ith iteration, we have

Ei(L + 1) = TWii(Ei(L)) +
∑
j>i

TWji(Ej(L))︸ ︷︷ ︸
= C(L)

Basic idea:
if Wii = 0, then Ei = C

if Wii 6= 0, then solve (1− TWii)(Ei) = C

The result will be a polynomial function of L

solve separately for the coefficient of the k-th power of n

If the diagonal element is unitary, then obtain the eigenvalues of
magnitude 1
If any eigenvalues are complex, then expand also in fourier modes
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Example 1 - Variance

How close is a variational state to an eigenstate of the Hamiltonian?

Sometimes there is an algorithmic measure, often not.

The square of the Hamiltonian operator determines the energy variance

〈H2〉L − 〈H〉2L = 〈(H − E)2〉L = Lσ2

A universal measure for the quality of a variational wavefunction
lower bound for the energy: there is always an eigenstate within σ of E

We can easily construct an MPO representation of H2
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Example 2 - momentum distribution

Momentum-dependent operators have a simple form,

b†k =
∑

x

eikxb†x

Wb†k
=

(
I

b† eikI

)

Momentum occupation:

n(k) =
1
L

b†kbk

Broken U(1) symmetry: 〈b†〉 6= 0 hence n(k = 0) ∝ L (extensive)
With U(1) symmetry: n(k = 0) is finite, but diverges with m in superfluid
phase
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Higher moments

It is straight forward to evaluate a local order parameter, eg

M =
∑

i

Mi

The first moment of this operator gives the order parameter,

〈M〉 = m1(L)

It is also useful to calculate higher moments, eg

〈M2〉 = m2(L)

or generally

〈Mk〉 = mk(L)

These are polynomial functions in the system size L.
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For finite systems, the Binder cumulant of the order parameter cancels the
leading-order finite size effects

UL = 1− 〈m4〉
3〈m2〉2
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The 2-component Bose-Hubbard model, with a linear coupling between
components, has an Ising-like transition from immiscible (small Ω) to miscible
(large Ω).

H =
∑

<i,j>,σ

b†i,σbj,σ +H.c.+ U
∑
i,σ

nσ(nσ−1)+ U12

∑
i

n↑n↓+Ω
∑
<i,j>

b†i,↑bj,↓+H.c.
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Cumulant expansions

Express the moments mi in terms of the cumulants per site κj,

m1(L) = κ1L
m2(L) = κ2

1L2 + κ2L
m3(L) = κ3

1L3 + 3κ1κ2L2 + κ3L
m4(L) = κ4

1L4 + 6κ2
1κ2L3 + (3κ2

2 + 4κ1κ3)L2 + κ4L

κ1 is the order parameter itself
κ2 is the variance (related to the susceptibility)
κ3 is the skewness
κ4 is the kurtosis

The cumulants per site κk are well-defined for an iMPS

Note: the cumulants are normally written such that they are extensive
quantities→ Lκk.
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iMPS for two-component bose gas

The cumulant expansion already gives a lot of information

κ1 is the order parameter itself
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The second cumulant gives the susceptibility
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Second cumulant (susceptibility)

Different to a finite-size scaling, the susceptibility exactly diverges at the
critical point.
Sufficiently close to the critical point, it looks mean-field-like (so will generally
give the wrong exponent!)
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The fourth cumulant changes sign at the transition.
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Binder Cumulant for iMPS

Naively taking the limit L→∞ for the Binder cumulant doesn’t produce
anything useful:

if the order parameter κ1 6= 0,

UL = 1− 〈m
4〉L

3〈m2〉2L
→ 2

3

if κ1 = 0, then m4(L) = 3k2
2L2 + k4L

Hence

UL = 1− 3k2
2L2 + k4L
3k2

2L2 → 0

Finally, a step function that detects whether the order parameter is
non-zero

Better approach, in the spirit of finite-entanglement scaling: Evaluate the
moment polynomial using L ∝ correlation length
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Scaling functions

Critical exponents
Exponent relation
ν ξ ∝ |t|−ν
β 〈M〉 ∝ (−t)β

α C ∝ |t|α
γ χ ∝ |t|γ

Finite-size scaling functions

UL = U0(t L1/ν)
〈M〉 = L−β/νM0(t L1/ν)

Finite-entanglement scaling functions

Um = U0(t mκ/ν)
〈M〉 = m−βκ/νM0(t mκ/ν)
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String parameters
Order parameters do not have to be local

Mott insulator string order parameter

O2
P = lim

|j−i|→∞
〈Πj

k=i(−1)nk〉

We can write this as a correlation function of ‘kink operators’,

pi = Πk<i (−1)nk

This turns the string order into a 2-point correlation function:

O2
P = lim

|j−i|→∞
〈 pi pj 〉

Or as an order parameter:
P =

∑
i

pi

Then O2
p = 1

L2 〈P2〉
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Real example: 3-leg Bose-Hubbard model with flux phase (F. Kolley, M. Piraud,
IPM, U. Schollwoeck, F. Heidrich-Meisner, New J. Phys. 17 (2015) 092001)

For density n = 1/3 (one particle per rung), near flux φ ∼ π, there is a
transition from a Mott to critical as a function of J⊥

P has a simple MPO representation

P =

(
I
I (−1)n

)
Hence we can calculate higher moments of P.
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Entanglement spectrum spectroscopy

Bipartite cut – reduced density matrix ρ
Entanglement Hamiltonian H = − ln ρ
Reduced dimension – the entanglement Hamiltonian lives on the
boundary
Label states by global symmetries spin, transverse momentum
Degeneracy structure provides information about symmetries

For SU(2) symmetry broken states:
If the symmetry is allowed to break: bulk gap
unbroken SU(2): Goldstone mode, separated band of excitations below
the bulk gap
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Symmetries

Infinite cylinder of circumference Ly

Map onto one-dimensional chain:

Global symmetries

Preserved in the MPS structure:
internal symmetries, such as
particle number, spin, . . .

Broken by the real-space structure:
spatial symmetries, such as
translation, reflection of the
cylinder
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density matrix as the eigenvector of the transfer operator
Left eigenvector
identity matrix

Right eigenvector
density matrix

=
ρ ρ

=

Symmetry-resolved density matrix

ρ ρ=’ ’

Eigenvalues of ρ′ are λieiθi

λi are the density matrix eigenvalues
θi is the corresponding symmetry angle up to a global phase
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Allowed symmetries of the ES

Let U be a global symmetry of the wavefunction

U|ψ〉 = eiθ|ψ〉

What is the action of U on the reduced density matrix ρ?
Bipartition:

|ψ〉 =
∑

ab ψab |a〉 ⊗ |b〉
U = UA ⊗ UB

Action on ρ is UAρU†A

UA is distinguishable only up to a global phase
UA is a projective representation of the symmetry
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Projective representations
Physical states are rays in Hilbert space

a|ψ〉, for a ∈ C represents the same physical state

Symmetry transformations that are ambiguous up to some scalar are
projective representations
Assuming a unitary representation, only the phase is unknown: a = eiθ.
A projective representation is defined by:

UxUy = eiθ(x,y)Uxy

The function θ(x, y) defines the representation
Example:

Z2 has no non-trivial (unitary) projective representations
Z2 × Z2 has has two projective representations

U2
x = I

U2
y = I

UxUy = ±UyUx
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Triangular lattice – frustration

Frustrated lattice – suppress ordering

But ordering may be possible
Groundstate widely established as SU(2)-broken 120◦ order

Beyond nearest neighbor: H = J1
∑
〈i,j〉

~Si~Sj + J2
∑
〈〈i,j〉〉

~Si~Sj
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Z2 spin liquid

The simplest spin liquid that doesn’t break time reversal symmetry
Elementary excitations are spinons with non-trivial braiding statistics
(anyons)
Four anyon types:

1 : vacuum
b : bosonic spinon (electric charge e)
v : vison (magnetic charge m)
f : fermionic spinon (fermion ψ)

Fusion rules for combining excitations:
b × b = 1
v × v = 1
f × f = 1
b × v = f
b × f = v
v × f = b
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Anyonic statistics

R matrix: counter-clockwise exchange
of particles

S matrix: intertwining two vacuum
excitations

Sab =
1
D

∑
c

dc Tr
(
Rab

c Rba
c

)
Rbb

1 = Rvv
1 = 1

Rff
1 = (Rvb

f )2 = −1

In basis (1, b, v, f ):

S =
1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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Identifying the topology
Groundstate degeneracy on a torus

construct a vison or spinon that threads down the torus
spinon flips between time-reversal symmetric and
antisymmetric states
vison inserts −1 flux – antiperiodic boundary conditions
Symmetry fractionalization – these correspond to
projective symmetries

How to construct these fluxes?
translationally invariant infinite
system and manipulate the
boundary conditions
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Antiperiodic boundary conditions

Dihedral group symmetries around the cut:
Ty – translation by one site around the cylinder
Ry – reflection about a site or bond

This forms the dihedral group D2×Ly

TLy
y = R2

y = 1

RyTLy/2
y R−1

y = TLy/2
y

(a π rotation commutes with a reflection)

The dihedral group has a non-trivial projective representation:

TLy
y = R2

y = 1

RyTyR−1
y = −T−1

y

(a π rotation anti-commutes with a reflection)
This is the subgroup of D2×2×Ly taking only the odd momenta (antiperiodic BC)
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Antiperiodic boundary conditions
Nariman Saadatmand, IPM, Phys. Rev. B 94, 121111 (2016)

We see two (nearly) degenerate states
smaller Ly: the groundstate has a 2-fold degenerate entanglement
spectrum
for larger Ly, we obtained a non-degenerate entanglement spectrum

In the two-fold degenerate sector, we measure

〈RyTLy/2
y R†yTL/2†

y 〉 = −0.9999970 · · ·

-5π/6 -3π/6 -π/6 π/6 3π/6 5π/6

k, momenta

0

2.5

5

7.5

10
S=0
S=1
S=2

Ly = 6 entanglement spectrum
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Detecting ordered phases

J2
0.105(5) 

only for YC6: algebraic 

0.140(5) 0.200(5)0.170(5) 

topological 
spin liquids

columnar order 
columnar 

order 
columnar 

order 
120° order

Using SU(2) symmetry the magnetic order parameter is identically zero.
can we see signatures of symmetry breaking in higher moments of the
order parameter?
Binder cumulant U4 = 1− 〈M4〉

3〈M2〉
Cumulant expansion of the 4th moment:

〈M4〉L = κ4
1L4 + 6κ2κ

2
1L3 + (4κ1κ3 + 3κ2

2)L2 + κ4L

Symmetry implies all odd cumulants vanish

〈M4〉L = 3κ2
2L2 + κ4L

Need L length scale – use correlation length ξ from transfer matrix
Binder ratio

BR =
κ4

κ2
2ξ
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Binder ratio – 120◦ order
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Binder ratio – staggered order
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Binder ratio – staggered order YC6
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Summary
Download the code: https://people.smp.uq.edu.au/IanMcCulloch/mptoolkit

finite entanglement scaling
higher moments
Binder cumulant
scaling functions
symmetries of the entanglement spectrum
Binder ratio for symmetric states
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