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Abstract

We use sampling methods to analyse the “apparent minima” of the
error surfaces of feedforward neural networks learning encoder problems.
First and second-order statistics of a sample of these points of attraction
are shown to provide qualitative statistical information about the struc-
ture of the error surface, allowing a simple description of this structure.
Following methods previously used in the analysis of other complex con-
figuration spaces (such as spin glass models and several combinatorial
optimization problems), the third-order statistics of the points of attrac-
tion are examined and found to be arranged in a highly ultrametric way,
using the normal Euclidean distance measure. The implications of this
result are discussed.

1 Introduction

1.1 Learning as Error Surface Optimization

The error surface is essentially a cost function of the type that arises in general
multivariate optimization problems. Given a vector of weights in a feedfor-
ward neural network or Multi-Layer Perceptron (MLP), the task of learning a
set of training patterns is to find the weight vector w* = (wjy, ..., w,) which
minimizes some given cost or error function E(w)

w* = argmin E(w).

Finding w* can be viewed as searching an error surface sitting above weight
space for a minimum point, the height of which is determined by E(w). Formu-
lating the training problem in this way is quite general: the network is simply
treated as a black box (mapping input vectors to output vectors) with N ad-
justable parameters, allowing for arbitrary error surfaces. Normally specific
choices are made regarding the cost function, the model (in this case an MLP
of fixed topology) and the training set to be used. Such choices limit the kinds
of possible error surfaces formed and this is one important reason for exploring
error surface structure.

From a more practical viewpoint, any training algorithm which is able to
utilize information about the structure of the error surface, either explicitly or



implicitly (through knowledge or manipulation of the network topology, error
function or training set) has the potential to outperform a “blind” algorithm:
“any algorithm performs only as well as the knowledge concerning the cost
function put into the cost algorithm” [10] (see [7] for an example).

1.2 Exploring the Structure of the Error Surface

In general, the very high dimensionality of the error surface makes its investi-
gation a difficult task. For problems involving small networks or small training
sets (e.g, XOR), the error surface can be studied by visualization methods such
as plotting different two dimensional “slices” of the surface, or analytically [3].
These methods become impractical for larger networks/training sets.

Despite this, some limited results concerning error surfaces exist. For exam-
ple, if the training patterns are linearly separable, then an MLP error surface
has a unique minimum under some loose assumptions [2]. It is also well known
that error surfaces contain a large degree of redundancy, due to symmetry [1].
Permuting hidden units in the same layer (including all ingoing and outgoing
connected weights), as well as flipping the sign of each weight connected to a
hidden unit (for an odd activation function), leaves the input-output function
of the network unchanged, meaning that for every point on the error surface
there are M!2V equivalent points, where M is the number of hidden layer units.

An interesting feature of the error surface concerns its “local minima”. Since
it is impractical to locate minima precisely on a continuous surface, it is normal
practice to conduct repeated runs of backpropagation with a small learning
rate, to obtain points which are “close” to minima after significant numbers
of training epochs. Note that it is often suggested that MLP error surfaces
contain a number of wide, flat areas rather than true critical points of the cost
function - we make no distinctions between them here. To make this clear we
refer to points collected at the end of training runs as apparent minima (AM).

2 Statistical Properties of Error Surfaces

2.1 Encoder Networks

The (auto)encoder problem is a simple problem which is commonly applied to
neural network architectures. For an N-input/output encoder, logs(N) hidden
units are required to perform a binary encoding. When the hidden units use
intermediate activation levels, an N —2— N encoder can be constructed that can
solve the encoder problem for arbitrarily large N [4], although backpropagation
has great difficulty in finding such a solution for N > 8 [5]. The encoder
problem is convenient because it can be scaled to any desired size, and the
difficulty of the problem can be somewhat controlled.

In this paper we examine the error surfaces of encoder networks for N = 4
and N = 8. In each case the number of hidden units is varied between 1 and
N. All experiments were conducted using an MLP with a single hidden layer,
bias inputs for the hidden and output layers and tanh() activation functions on



hidden and output units. In the training set, desired output values of [+0.9]
were used, to avoid units being forced to saturation. Standard backpropagation
was used with no momentum and learning rate n = 0.1. At the end of each
training run (30000 epochs), all weight vectors were transformed to lie within
a unique wedge of weight space [1], to remove the permutation and sign-flip
symmetries of the error surface. Data samples consisted of 1000 points.

2.2 Error Histograms and Pairwise Distances

Given a sample of AM and their corresponding error values, the cumulative fre-
quency distribution of the different error values in the sample can be examined
(results for several encoder networks are shown in Fig. 1). The first prominent
feature for many of the networks was the step-like nature of the curves, indicat-
ing that a small number of error values often dominate a sample. Secondly, the
curves shift upwards and to the left as the number of hidden units increases,
indicating an increasing chance of an AM being an (increasingly) good solution
(E =~ 0). To examine how the AM are distributed on the error surface, we cal-
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Figure 1: Error distributions for AM samples.

culate the probability distribution P(q) for the distances between two randomly
selected points, where ¢ = d(wa, W) is the Euclidean distance between points
wa and wp. Fig. 2 shows typical P(q) histograms for samples of AM. Many
of these distributions were skewed to the left (esp. for the 4-1-4, 8-1-8, 8-2-8
and 8-3-8 networks). This suggests that a degree of clustering is present in the
AM. Further examination is required to determine the nature of the clustering
(e.g, the number of clusters). One way of visualizing the AM is using Principal
Component Analysis (see next section).

3 Ultrametricity

It is known that under certain conditions, the spin glass models of statistical
physics, combinatorial optimization problems and other systems exhibit the
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Figure 2: Distribution of distances between AM.

phenomenon of ultrametricity (see [8] for a review). In general, a distance in a
metric space obeys the triangular inequality

d(wa,we) < d(wa, wp) + d(Wp, W)

whereas an ultrametric space is endowed with an (ultrametric) distance measure
satisfying a stronger inequality

d(Wa, W) < Maz{d(Wa, Wp), d(Wp, Wc)}.

For any three points in such a space, the two of them that are nearer to
each other are equidistant from the third. This means that all triangles in an
ultrametric space must be either equilateral, or isosceles with a small base (third
side shorter than the two equal ones). It is known that configuration spaces with
ultrametrically distributed minima are quasi-fractal, and empirical evidence
suggests that simulated annealing can work well in such spaces [6],[]9]. Other
algorithms might also be developed to make use of this structural information.

Given a sample of points in a configuration space, the degree of ultrametric-
ity can be estimated using a correlation function of distances between sample
points in the configuration space [9], which uses the two longest sides of a sample
of triangles randomly generated from the data points. Having no knowledge
of the distribution of the data, we use the distribution-free rank correlation
coefficient S
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where k denotes the number of points in the sample, and d; is the difference
between the ranks of the ¢th pair of longest sides. Fig. 3 shows values of S for
several of the AM samples as a function of the number of epochs. While the
random starting points return a small value of S, as training progresses the
distribution of the points on the error surface becomes highly ultrametric.

To partially visualize this structure present in the AM, we use Principal
Component Analysis and plot the AM in the first three principal components
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Figure 3: Degree of ultrametricity in samples of AM as a function of the number of epochs.

of the sampled data. Fig. 4 shows an example of such a plot for a 4-1-4 network,
with points collected after 30000 epochs (S = 0.93). In this case 83% of the
distance information on the error surface is captured by the first three principal
components.
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Figure 4: A visualization of how the AM are organized in weight space, using the first three
principal components, for the 4-1-4 encoder.

4 Discussion

From the above, a simple description of the error surfaces of autoencoders is
possible.

The fact that AM often corresponded to only a few error values suggests
that they are either very tightly clustered (into a small number of clusters), or
that these particular values are present in many places about the error surface.
When the pairwise distribution is dominated by distances near zero, the former
is true (esp. in the 4-1-4, 8-1-8, and 8-2-8 encoders). However, for many of the
other encoders, a wide range of distances between points is shown, meaning AM
are scattered over the error surface. A staircase-like error surface is consistent
with these observations.



The high degree of ultrametric structure detected in AM is quite unex-
pected. Previously [8],[9], the configuration spaces which have displayed this
structure were defined on discrete spaces (together with an appropriate distance
measure), and are thus quite different to our Euclidean setting. Fig. 3 shows
that the degree of ultrametricity increases rapidly from the start of training runs
with the number of epochs. This indicates that the paths followed by smooth
gradient descent are ultrametrically distributed, not just the AM obtained after

a large number of epochs.

5 Summary

This paper shows how the structure of the error surface can be explored and
its statistical properties measured. The results show that ultrametricity is em-
bedded in the error surface of encoder networks. Examining the effectiveness
of simulated annealing for searching such a surface [6], and designing an algo-
rithm which can utilize other available information about the error surface (e.g,
gradient, higher-order statistical information) are interesting areas for future
work.
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