Lecture 3

1 SERIES OF NUMBERS

DEFINITION Let \(\{a_n\} \subset \mathbb{R} \) and define

\[
s_n = \sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n
\]

for each \(n \in \mathbb{N} \).

The symbol \(\sum_{n=1}^{\infty} a_n \) or \(a_1 + a_2 + \ldots \) is called an infinite series having nth term \(a_n \) and nth partial sum \(s_n \).

DEFINITION A series \(\sum_{n=1}^{\infty} a_n \) is said to converge to \(a \in \mathbb{R} \) if the sequence of partial sums \(s_n = \sum_{k=1}^{n} a_k \) converges to \(a \), and if so we write

\[
a = \lim_{n \to \infty} a_n.
\]

Otherwise we say that \(\sum_{n=1}^{\infty} a_n \) diverges.

Theorem 1.1 If \(\sum_{n=1}^{\infty} a_n \) converges, then \(\lim_{n \to \infty} a_n = 0 \).

Proof Let \(\sum_{n=1}^{\infty} a_n = a \). Since \(a_n = s_n - s_{n-1} \), we have \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = 0 \).

Example Let \(\sum_{n=1}^{\infty} \frac{n+10}{n+1000} \), then \(\lim_{n \to \infty} \frac{n+10}{n+1000} = 1 \), so \(\sum_{n=1}^{\infty} \frac{n+10}{n+1000} \) diverges.

Cauchy criterion Let \(\{a_n\} \subset \mathbb{R} \). A series \(\sum_{n=1}^{\infty} a_n \) converges if and only if to every \(\epsilon > 0 \) there corresponds \(n_\epsilon \in \mathbb{N} \) such that

\[
\left| \sum_{n=p+1}^{q} a_n \right| < \epsilon \ \text{whenever} \ q > p \geq n_\epsilon.
\]

Proof Apply the Cauchy criterion (condition) to the sequence of partial sums \(\{s_n\} \)

\[
s_q - s_p = a_{p+1} + \ldots + a_q.
\]

\[\square\]
EXAMPLE \[\sum_{n=1}^{\infty} \frac{1}{n} \] - the harmonic series
Assume that the series converges. Then its partial sums
\[s_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} \]
form a Cauchy sequence. Thus there exists \(N \in \mathbb{N} \) such that
\[n \geq N \text{ implies } |s_n - s_N| < \frac{1}{3}. \]
Therefore
\[\frac{1}{3} > s_{2N} - s_N = \frac{1}{N+1} + \frac{1}{N+2} + \ldots + \frac{1}{2N} \]
\[> \frac{1}{2N} + \frac{1}{2N} + \ldots + \frac{1}{2N} = \frac{N}{2N} = \frac{1}{2}, \]
which is impossible.

Theorem 1.2 If \(\sum_n a_n \) and \(\sum_n b_n \) converge, then
\[\sum_n (a_n \pm b_n) = \sum_n a_n \pm \sum_n b_n \]
and
\[\sum_n ca_n = c \sum_n a_n \text{ for every } c \in \mathbb{R}. \]

Geometric series. Let \(a \in \mathbb{R} \) and \(r \in \mathbb{R} \). Then \(\sum_n^\infty ar^n \) converges and its sum is \(\frac{a}{1-r} \) if \(|r| < 1 \). If \(a \neq 0 \) and \(|r| \geq 1 \), then this series diverges.

By the formula for geometric progressions we have
\[s_n = \sum_{k=0}^{n} ar^k = a \frac{1 - r^{n+1}}{1 - r}. \]
Assuming that \(|r| < 1 \), \(\lim_{n \to \infty} s_n = \frac{a}{1-r} \). If \(a \neq 0 \) and \(|r| \geq 1 \), then \(|ar^n| \geq |a| \neq 0 \) and this shows that the series cannot converge.

Comparison test Suppose that \(0 \leq a_n \leq b_n \) for all \(n \in \mathbb{N} \).

1. If \(\sum_n b_n \) converges, then \(\sum_n a_n \) converges.
2. If \(\sum_n a_n \) diverges, then \(\sum_n b_n \) diverges.

Proof (1) Let \(A_n = \sum_{k=1}^{n} a_k \), \(B_n = \sum_{k=1}^{n} b_k \). Both sequences are nondecreasing. By assumption \(B_n \to B \) so it must be bounded. Hence \(\{A_n\} \) in nondecreasing and bounded, so \(\lim_{n \to \infty} A_n \) exists. \(\square \)
EXAMPLES

(1) \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) diverges because \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges and \(\frac{1}{n} \leq \frac{1}{\sqrt{n}} \) for every \(n \).

(2) \(\sum_{n=1}^{\infty} \frac{1}{2^n + n}, \frac{1}{2^n} \leq \frac{1}{2^n} \) for every \(n \) and \(\sum_{n=1}^{\infty} \frac{1}{2^n} = 1 \), so \(\sum_{n=1}^{\infty} \frac{1}{2^n + n} \) converges.

(3) \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \),

Note \(a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \)

and

\[s_n = \sum_{k=1}^{n} \frac{1}{k(k+1)} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \ldots + (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{n+1} \to 1 \quad \text{as} \quad n \to \infty. \]

Hence \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) converges.

(4) \(\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \) converges because \(\frac{1}{(n+1)^2} \leq \frac{1}{n(n+1)} \) and \(\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \) converges.

Since \(\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}, \sum_{n=1}^{\infty} \frac{1}{n^2} \) converges.

Using the integral test it will be shown that

\[\sum_{n=1}^{\infty} \frac{1}{n^p} = \left\{ \begin{array}{ll}
\text{converges if } p > 1, \\
\text{diverges if } p \leq 1.
\end{array} \right. \]

Remark Comparison test, as stated, does not apply to

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)^2}. \]

2 ABSOLUTE CONVERGENCE

DEFINITION We say that \(\sum_{n=1}^{\infty} \) converges absolutely, if \(\sum_{n=1}^{\infty} |a_n| \) converges.

Theorem 2.1 If \(\sum_{n=1}^{\infty} |a_n| \) converges, then \(\sum_{n=1}^{\infty} a_n \) converges.

Proof Assume \(\sum_{n=1}^{\infty} |a_n| \) converges. Since \(a_n = (a_n + |a_n| - |a_n|) \) we have

\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (a_n + |a_n|) - \sum_{n=1}^{\infty} |a_n|. \]
We now observe that

\[0 \leq a_n + |a_n| \leq 2|a_n| \quad \text{and} \quad \sum_{n=1}^{\infty} 2|a_n| \]

converges, so by the comparison test \(\sum_{n=1}^{\infty} (a_n + |a_n|) \) converges, consequently by (2.1) \(\sum_{n=1}^{\infty} a_n \) converges.

Remark The converse is not true.

Leibnitz’s alternating test Let \(\{a_n\} \) be a nonincreasing sequence of positive numbers such that \(\lim_{n \to \infty} a_n = 0 \). Then \(\sum_{n=1}^{\infty} (-1)^n a_n \) is convergent.

EXAMPLE \(\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \) converges. If \(a_n = (-1)^n \frac{1}{n} \), then \(|a_n| = \frac{1}{n} \), and \(\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n} \). Thus \(\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \) converges but not absolutely.

Root test (Cauchy) Let \(\sum_{n=1}^{\infty} a_n \) and

\[\rho = \limsup_{n \to \infty} \sqrt[n]{|a_n|} \]

(i) If \(\rho < 1 \), the series converges absolutely,

(ii) If \(\rho > 1 \), the series diverges.

(iii) If \(\rho = 1 \), then the test is inconclusive.

Proof Suppose that \(\rho < 1 \). Fix \(\beta \) such that \(\rho < \beta < 1 \). There exists \(n_0 \in \mathbb{N} \) such that \(\sqrt[n]{|a_n|} < \beta \) for every \(n \geq n_0 \). Thus,

\[\sum_{n=1}^{\infty} |a_n| < \sum_{n=n_0}^{\infty} \beta^n = \frac{\beta^{n_0}}{1 - \beta} < \infty. \]

If \(\rho > 1 \), then \(\sqrt[n]{|a_n|} > 1 \), hence \(|a_n| > 1 \) for infinitely many \(n \), and so it is false that \(a_n \to 0 \). Hence \(\sum_{n=1}^{\infty} a_n \) converges.

Ratio test (d’Alembert) Let \(\sum_{n=1}^{\infty} a_n \) be a series with \(a_n \neq 0 \) for every \(n \).

(i) If \(\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \), then the series converges absolutely.

(ii) If \(\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \), then the series diverges.

(iii) If \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1 \), then the test is inconclusive.

Proof This follows from the following observation: let \(\{b_n\} \) be a sequence of positive numbers. Then

\[\liminf_{n \to \infty} \frac{b_{n+1}}{b_n} \leq \liminf_{n \to \infty} \sqrt[n]{b_n} \leq \limsup_{n \to \infty} \sqrt[n]{b_n} \leq \limsup_{n \to \infty} \frac{b_{n+1}}{b_n}. \]
We shall prove the first inequality. Let \(a = \liminf_{n \to \infty} \frac{b_{n+1}}{b_n} \). We may assume that \(a > 0 \), since otherwise there is nothing to prove. Let \(0 < \alpha < a \). There is an integer \(N \) such that \(\frac{b_{n+1}}{b_n} > \alpha \) for every \(n \geq N \). Iterating this inequality we get

\[
\begin{align*}
 b_{N+1} & \geq b_N \alpha \\
 b_{N+2} & \geq b_{N+1} \alpha \geq \alpha^2 b_N \\
 b_{N+3} & \geq b_{N+2} \alpha \geq \alpha^2 b_N \\
 \vdots \\
 b_{N+m} & \geq \alpha^m b_N
\end{align*}
\]

for every \(m \in \mathbb{N} \). We write the last inequality in the following way: let \(n > N \), then

\[
\frac{b_n}{b_N} > \alpha^{n-N} \quad \text{or} \quad b_n > \alpha^{n-N} b_N,
\]

so

\[
\liminf_{n \to \infty} \sqrt[n]{b_n} \geq \alpha \liminf_{n \to \infty} \alpha^{\frac{n}{n-N}} = \alpha.
\]

But \(\alpha \) was an arbitrary (positive) number \(< a \) and so

\[
\liminf_{n \to \infty} \sqrt[n]{b_n} \geq a = \liminf_{n \to \infty} \frac{b_{n+1}}{b_n}.
\]

\[\square\]

EXAMPLES

1. \(\sum_{n=1}^{\infty} \frac{1}{n^{2\pi}}, \quad a_n = \frac{1}{n^{2\pi}}, \quad \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{2(n+1)} \to \frac{1}{2} < 1 \) and the series converges.

2. \(\sum_{n=1}^{\infty} \frac{n}{3^n}, \quad a_n = \frac{n}{3^n} \quad \sqrt[n]{a_n} = \frac{\sqrt[n]{3}}{3} \to \frac{1}{3} \) and the series converges.