MATH4405 PROBLEM SHEET 1

- 1) Show that if \mathcal{A} is an algebra of sets, and if, $\bigcup_n A_n$ belongs to \mathcal{A} whenever $\{A_n\}$ is a sequence of disjoint sets in \mathcal{A} , then \mathcal{A} is a σ -algebra.
- 2) Show that $\mathcal{B}(\mathbb{R})$ is generated by the collection of intervals $(-\infty, t]$ for which the end-point t is a rational number.
- 3) Show that if \mathcal{A} is a σ -algebra in the Cartesian product $X_1 \times X_2$, then for every $x_1 \in X_1$ the collection $\{(A)_{x_1}; A \in \mathcal{A}\}$ is a σ -algebra on X_2 . (Here $(A)_{x_1} = \{x \in X_2; (x_1, x) \in A\}$).
- 4) Find an infinite collection of subsets of \mathbb{R} that contains \mathbb{R} , is closed under the formation of countable unions, and is closed under the formation of countable intersections, but is not a σ -algebra.
 - 5) Show that $\mathcal{B}(\mathbb{R})$ is generated by the collection of all compact subsets of \mathbb{R} .