MATH4405 PROBLEM SHEET 3

- 1) If the set $E \subset \mathbb{R}$ has a Lebesgue measure zero, then the set $\{x^2; x \in E\}$ has also measure zero.
- 2) If $E \subset \mathbb{R}$ is a Lebesgue measurable set with finite measure, then there exists a measurable set $A \subset E$ such that $\lambda(A) = \frac{\lambda(E)}{2}$.
- 3) Let $A \subset \mathbb{R}$. Show that if $f: E \to \mathbb{R}$ is (Lebesgue measurable), then for each $r \in \mathbb{R}$, the set $\{x \in E; f(x) = r\}$ is measurable. The converse is false.

Hint. To show that the converse is not valid, consider a nonmeasurable set $A \subset (0,1)$ and define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} -x & \text{if } x \notin A \\ x & \text{if } x \in A. \end{cases}$$

- 4) Find the completion of $\mathcal{B}(\mathbb{R})$ under the point mass concentrated at 0.
- 5) Prove that under Lebesgue measure on \mathbb{R}^2
- (1) every straight line has a measure zero, and
- (2) every circle has a measure zero.