MATH4405 PROBLEM SHEET 4

- 1) Show that there is a Lebesgue measurable subset of \mathbb{R}^2 whose projection on \mathbb{R} under the map $(x,y)\to x$ is not Lebesgue measurable.
- 2) Show that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable everywhere on \mathbb{R} , then its derivative f' is Borel measurable.
- 3) Let (X, \mathcal{A}) be measurable space and let $A \in \mathcal{A}$. Show that if $f : \mathbb{R} \to \mathbb{R}$ is monotone and $g : A \to \mathbb{R}$ is measurable, then $f \circ g$ is measurable. (Here $(f \circ g)(x) = f(g(x))$ for $x \in A$).
- 4) Let $\{x_n\}$ be a sequence of real numbers, and define μ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by $\mu = \sum_m \delta_{x_m}$. Show that functions $f, g : \mathbb{R} \to \mathbb{R}$ agree μ -almost everywhere if and only if $f(x_m) = g(x_m)$ holds for each m.
 - 5) Let (X, \mathcal{A}, μ) be a measure space, and let $f: X \to [0, \infty]$ be \mathcal{A} -measurable.
- (a) Show that if each value of f is a nonnegative integer or $+\infty$, then $\int f d\mu = \sum_{n=1}^{\infty} \mu(\{x; f(x) \ge n\})$.
- (b) Now suppose that the values of f are arbitrary elements of $[0, \infty]$ and that μ is finite. Show that f is integrable if and only if the series $\sum_{n=1}^{\infty} \mu(\{x \in X; f(x) \ge n\})$ has a finite sum.