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We perform first-principles quantum simulations of dissociation of trapped, spatially inhomogeneous
Bose-Einstein condensates of molecular dimers. Specifically, we study spatial pair correlations of atoms
produced in dissociation after time of flight. We find that the observable correlations may significantly
degrade in systems with spatial inhomogeneity compared to the predictions of idealized uniform models.
We show how binning of the signal can enhance the detectable correlations and lead to the violation of the
classical Cauchy-Schwartz inequality and relative number squeezing.
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Producing and utilizing quantum mechanical correla-
tions between entangled particle pairs are major themes
in quantum mechanics research. In this Letter we inves-
tigate correlations of the kind used by Einstein, Podolsky,
and Rosen (EPR) to argue that local realism is inconsistent
with quantum mechanics being a complete theory of nature
[1]. EPR type nonlocal correlations were first produced
experimentally in the form of photon pairs from nonde-
generate parametric down-conversion [2]. Here, the corre-
lations are observed between the optical quadrature
amplitudes of spatially separated signal and idler beams,
which are analogous to canonical position and momentum
variables originally discussed by EPR.

It should be possible to extend this type of experiment to
ultracold atoms, which would allow the investigation of
EPR correlations for particles with nonzero rest mass.
These might be produced by the transfer of correlations
from photons to atoms [3], or else by nonlinear matter-
wave interactions. The latter include atomic four-wave
mixing via Bose-Einstein condensate (BEC) collisions
[4,5] and matter-wave down-conversion via dissociation
of a molecular BEC [6–9]. Although the direct measure-
ment of matter-wave quadrature correlations of this type is
a challenging task [9], a simpler measurement of density-
density correlations—as a prerequisite for the EPR quad-
rature correlations—can be performed with current experi-
mental techniques.

In this Letter we perform first-principles quantum simu-
lations of dissociation of a BEC of molecular dimers into
pair-correlated bosonic atoms. This has been demonstrated
experimentally using ultracold (but not Bose condensed)
87Rb2 dimers [10], although the atom correlations have not
yet been measured. In the case of fermionic atoms [11,12],
such as in dissociation of 40K2 dimers [13], the density-
density correlations between the atoms in two different
spin states have been measured; this case, however, cur-
rently resists first-principles quantum simulations.
Nevertheless, many insights from the present bosonic

case also apply to the fermionic case, and to correlations
produced via BEC four-wave mixing [14]. For example,
the importance of operationally well defined measures of
correlations, the role of spatial inhomogeneity, and the
trade-off between image resolution and binning to enhance
correlation detection.

Measurements now challenge theory to give precise
quantitative descriptions of the observable correlations.
Experiments measuring atom shot noise in absorption
images [13,15,16] and using microchannel plate detectors
[17] have demonstrated atom-atom correlations [13,14].
However, their quantitative theoretical analysis is lacking.
There is also a need to determine the best operational
measures [12,18] of correlations for these experiments.
The present work is a step towards these goals, and a
benchmark for other (approximate) theories.

Previous theoretical work on molecular dissociation has
explored the atomic correlations in simplified cases such as
1D systems [7,9], without depletion of the molecules dur-
ing conversion [12], or for spatially uniform systems
[11,18]. The present work builds on the characterization
of the atomic correlations in momentum space in Ref. [18].
Here, we extend the analysis to spatial correlations and
study molecular dissociation in three dimensions under
experimentally realistic conditions, including the effects
of inhomogeneity of the initial molecular BEC [19] and
time-of-flight expansion. We focus on the use of absorption
images, obtained by line of sight integration, to measure
the atomic correlations.

To investigate the quantum dynamics of molecular dis-
sociation we use stochastic equations in the positive
P-representation [20]. In this method, one simulates the
evolution of four complex stochastic (c-number) fields
�i�x; t� and �i�x; t� [��i �x; t� � �i�x; t�], representing
the field operators �̂i�x; t� and �̂yi �x; t�, respectively,
where i � 0 stands for molecules and i � 1 for atoms.
Averages of the stochastic field products over a large
number of trajectories h. . .ist correspond to quantum me-
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chanical ensemble averages of normally ordered opera-
tor moments. For example, h��̂yi �x; t��

k��̂j�x0; t��ni �
h��i�x; t��k��j�x0; t��nist.

The stochastic differential equations governing the
quantum dynamics of dissociation are [18]
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Here, �j�x; t� (j � 1, 2) are real, independent Gaussian
noises with zero means and nonzero correlations
h�j�x; t��k�x0; t0�ist � �jk��x� x0���t� t0�, m1 and m0 �

2m1 are the atomic and molecular masses, � is the detun-
ing corresponding to the energy mismatch 2@� � 2E1 �
E0 between the free two-atom state at the dissociation
threshold and the bound molecular state, and � is the
coupling responsible for coherent conversion of molecules
into atom pairs, e.g., via Raman transitions or a Feshbach
resonance (see Refs. [18,21] for details).

We have ignored s-wave scattering interactions because
they do not significantly affect the dynamics or the corre-
lations for durations resulting in less than 	10% conver-
sion [18]. The characteristic time scale for this can be
estimated using a Fermi’s golden rule calculation [22],
giving t & 0:1��1, where � � �2�m1=2@�3=2

�������
j�j

p
=� is

the molecular decay rate. The duration of dissociation
should also be shorter than the time scale for losses due
to inelastic collisions [23].

We assume that the molecular BEC is initially in a
coherent state, whereas the atoms are in the vacuum state.
Once the dissociation is suddenly switched on [24], the
trapping potentials are simultaneously switched off, so that
the evolution takes place in free space. For molecules at
rest, the excess of potential energy is converted into kinetic
energy, 2@j�j ! 2@2k2=�2m1�, of dissociated atom pairs
with equal but opposite momenta around 
k0, where
jk0j �

���������������������
2m1j�j=@

p
. This is the physical origin of the ex-

pected correlations between the atoms. Ideally, in the time-
of-flight expansion the momentum correlations are con-
verted into position correlations between diametrically
opposite atoms in the far field. In nonideal cases, such as
in strongly inhomogeneous systems with large momentum
uncertainty, or with insufficient time for expansion, the
spatial correlations may degrade.

In absorption imaging the number of photons detected
by each camera pixel determines the number of atoms
contained in the volume of a narrow column in the imaging
laser’s propagation direction, which we denote as z.

Denoting the area of the camera pixel about the point
r � x? � �x; y� on the detection plane as A�r�, the corre-
sponding atom number operator is given by

 N̂ r �
Z
A�r�

dr0
Z
dzn̂�r0; z� �

Z
A�r�

dr0n̂?�r0�: (2)

On a computational grid, the number operator N̂r is related
to the integrated 2D column density n̂?�r� �

R
dzn̂�x� via

N̂r � n̂?�r��x�y, where n̂�x� � �̂y1 �x��̂1�x� is the 3D
density, �x and �y are the lattice spacings, and A�r� �
�x�y.

Correlation between the atom number fluctuations in a
pair of different pixels can be quantified via the normalized
number-difference variance (r � r0)

 Vr;r0 �
h���N̂r � N̂r0 ��

2i

hN̂ri � hN̂r0 i
� 1�

h:���N̂r � N̂r0 ��
2:i

hN̂ri � hN̂r0 i
; (3)

where �Ĉ � Ĉ� hĈi is the fluctuation in Ĉ and the colons
:: indicate normally ordered operator products. This defi-
nition uses the conventional normalization with respect to
the shot-noise level of Poissonian statistics, such as for a
coherent state, hN̂ri � hN̂r0 i. Vr;r0 � 1 for uncorrelated
signals. Variance smaller than 1, Vr;r0 < 1, implies reduc-
tion (or squeezing) of fluctuations below the shot-noise
level and is due to correlation between particle number
fluctuations in the r and r0 pixels. Perfect (100%) squeez-
ing of the number-difference fluctuations corresponds to
Vr;r0 � 0.

The number-difference variance is related to Glauber’s
second-order correlation function g�2��r; r0� �
h:n̂?�r�n̂?�r0�:i=�hn̂?�r�ihn̂?�r0�i�. In the simplest symmet-
ric case, with hn̂?�r�i � hn̂?�r0�i and g�2��r; r� �
g�2��r0; r0�, the relationship is

 Vr;r0 � 1� hN̂ri�g�2��r; r� � g�2��r; r0��: (4)

In order that Vr;r0 is suppressed below the level of classical,
uncorrelated statistics, Vr;r0 < 1, it is necessary and suffi-
cient to have g�2��r; r0�> g�2��r; r� which is a direct signa-
ture of the violation of the classical Cauchy-Schwartz
inequality [25]. Similarly, Vr;r0 � 1, implies g�2��r; r0� 

g�2��r; r� which agrees with the classical Cauchy-Schwartz
inequality. Thus, Eq. (4) shows that to have a nontrivial
quantum correlation it is not enough to have g�2��r; r0�> 1,
but one has to have g�2��r; r0�> g�2��r; r�. Note that a non-
ideal atom detection efficiency adds a factor of �< 1 to
the second term in Eq. (4), but does not affect the Cauchy-
Schwartz inequality.

An immediate consequence of Eq. (4) is that the ob-
served number-difference squeezing can be insignificant if
the pixel occupation number N̂r is very small due to a small
pixel size, even if the pair correlation g�2��r; r0� is much
larger than g�2��r; r�. In other words, fine spatial resolution
can degrade the number-difference squeezing between the
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elementary pixels, and larger pixel size or binning favor
observing strong squeezing.

Figure 1 shows the results of a simulation of the disso-
ciation of a small molecular BEC of size 	1:4 �m, con-
taining about 205 molecules (in subsequent examples we
simulate larger condensates, containing 874 and 9:2� 103

molecules [26]). The images relate to the atomic field after

dissociation and expansion. There are about 30 atoms in
total in this example, corresponding to 7% conversion.
Figure 1(a) shows a slice through the 3D atomic density,
which forms an expanding spherical shell about 14 �m in
radius. Figure 1(b) shows the 2D column density after
integration along the z axis. The projection of the spherical
shell of atoms is clear and is similar to the experimental
observations of Refs. [10,13]. Figures 1(c) and 1(d) show
correlations in column densities at the same, opposite, and
orthogonal locations: (c) shows the local pair correlation,
g�2��r; r�, which has a thermally bunched character in 3D,
g�2��x;x� � 2 [18], while the obtained value of g�2��r; r� ’
1:2< 2 is due to the integration along z; (d) shows strong
pair-correlation at opposite locations, g�2��r;�r� ’ 2:05>
g�2��r; r�, originating from the momentum correlations of
dissociated atom pairs; and (e) shows an uncorrelated
signal of g�2��r; r90� ’ 1, where r90 corresponds to a 90�

rotation of the original image about the origin. In (a)–(f),
the elementary pixel size is given by the computational
grid, with 0:215 �m spacing in each dimension. The nu-
merical convergence of our simulations is ensured by
smaller grid sizes reproducing the results within the sto-
chastic sampling errors.

In the example of Fig. 1 we have a violation of the
classical Cauchy-Schwartz inequality as g�2��r;�r�>
g�2��r; r�. However, due to small occupation numbers of
the elementary pixels, hN̂ri, the associated number-
difference variance at the diametrically opposite locations,
Vr;�r, shows very little squeezing in Fig. 1(f), as explained
by Eq. (4); it deviates from Vr;�r � 1 by only�1:7� 10�3

on the projected dissociation sphere where the signal is
maximal. Figures 1(g) and 1(h) show that measurement
bins of size 32� 32 pixels improve the number-difference
squeezing to Vr;�r ’ 0:4 (60% squeezing).

To understand the dependence of the correlation strength
on the initial size of the molecular BEC and the expansion
time, we analyzed the binned number-difference variance
for three different cases. Figure 2 shows the dependence of
the angle averaged variance �Vr0;�r0

on the expansion time,
for different bin sizes. At each time, the angle averaged
result is at the radius r0 of the dissociation sphere, where
the signal is maximal.

As we see from Fig. 2, the squeezing improves with
larger bin sizes in all cases, consistent with the experimen-
tal results of Ref. [13]. For the case of a small condensate,
Fig. 2(a), the squeezing degrades with the expansion time
due to the large momentum uncertainty of the initial mo-
lecular BEC. The resulting center-of-mass momentum off-
set of correlated atom pairs, causes them to fail to appear in
diametrically opposite bins in the far field. Increasing the
bin size captures the pairs in the opposite (larger) bins and
restores the pair correlations. For a larger molecular con-
densate, as in Fig. 2(c), the complimentary effect is that the
position uncertainty may give the atom pairs a center-of-
mass position offset, again preventing them from appear-

FIG. 1 (color online). Dissociation of a molecular condensate
in free space, for dissociation time of t � 0:2 ms with � � 7�
10�7 m3=2 s�1 and a further expansion of te � 2:5 ms with � �
0 [26]. Each dimension is 55 �m long and contains 256 lattice
points. 10 000 stochastic paths were averaged. (a) Slice through
z � 0 of the 3D atomic density n�x� � hn̂�x�i after expansion.
(b) 2D column density n?�r� � hn̂?�r�i after integration along
the z axis. (c) local pair-correlation, g�2��r; r�. The g�2� data are
too noisy outside the dissociation sphere where the signal is
negligible and should be discarded at radii r * 15 �m. (d) Pair-
correlation at opposite locations, g�2��r;�r�. (e) Pair-correlation
g�2��r; r90� at orthogonal locations. (f) Number-difference vari-
ance Vr;�r at opposite locations. (g) Binned atomic signal on the
detection plane, for bins of size 32� 32 pixels, and (h) number-
difference variance between the opposite bins.
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ing in the diametrically opposite bins in the near field. In
this case, the squeezing improves with expansion, corre-
sponding to a more complete conversion of the intrinsic
opposite-momentum correlations into spatial correlations
in the far field. The case of Fig. 2(b) is intermediate and is
affected by the competition between these two effects,
resulting in the optimum expansion time and implying
the existence of an optimum size of the molecular BEC
for a given expansion time.
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FIG. 2 (color online). The effect of binning on the angle
averaged number-difference variance between the opposite
bins, �Vr0 ;�r0

, as a function of the expansion time te following
0.2 ms of dissociation. Graphs (a),(b) and (c) correspond, re-
spectively, to the initial molecular BEC size of 1.4, 3, and
6:4 �m [26]. The different curves are for different bin sizes.
The largest bins into just four quadrants on the detection plane.
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