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Nonlocal entanglement between pair-correlated particles is a highly counter-intuitive aspect of
quantum mechanics, where measurement on one particle can instantly affect the other, regardless
of distance. While the rigorous Bell’s inequality framework has enabled the demonstration of such
entanglement in photons and atomic internal states, no experiment has yet involved motional states
of massive particles. Here we report the experimental observation of Bell correlations in motional
states of momentum-entangled ultracold helium atoms. Momentum-entangled pairs are generated
via s-wave collisions. Using a Rarity-Tapster interferometer and a Bell-test framework, we observe
atom-atom correlations required for violation of a Bell inequality. This result shows the potential
of ultracold atoms for fundamental tests of quantum mechanics and opens new avenues to studying
gravitational effects in quantum states.

I. INTRODUCTION

Bell’s inequality serves as a fundamental test for dis-
tinguishing between classical local realism and the non-
local correlations predicted by quantum mechanics [1, 2].
Its violation is a cornerstone of quantum mechanics, di-
rectly challenging local hidden variable (LHV) theories
and demonstrating the nonlocal nature of quantum en-
tangled states. Such violations of Bell’s inequality have
been experimentally observed in various systems, pre-
dominantly focusing on internal degrees of freedom such
as the polarization states of massless photons [3–6] and
atomic spin states [7–11]. These Bell tests involve mea-
suring so-called Bell correlations – a set of certain joint
probability measurements on a pair of particles – that
provide compelling evidence supporting the nonlocal na-
ture of quantum entanglement.
Extending Bell tests to external, motional degrees

of freedom – particularly momentum-entanglement – of
massive particles offers a deeper understanding of quan-
tum nonlocality and its implications for the foundations
of quantum mechanics. Momentum-entangled states
of massive particles, for instance, enable fundamental
experiments involving couplings to gravitational fields,
thereby enabling tests of theories that seek to recon-
cile the currently incompatible frameworks of quantum
mechanics and general relativity [12–17]. However, ex-
perimental demonstrations of Bell inequality violations
in motional states remain limited, with only photonic
demonstrations to date [18].
Ultracold atomic systems, and particularly metastable

helium (4He∗) atoms [19], have been proposed as promis-
ing systems for observing Bell nonlocality in momentum-
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entangled massive particle states [20]. The high internal
energy of metastable helium enables precise single-atom
detection with high spatial and temporal resolution. Ef-
forts towards this goal so far [21–23] include demonstrat-
ing a matter-wave Rarity-Tapster configuration [18] in-
terferometer using colliding BECs of 4He∗ [24] and show-
ing control over the relative phases of momentum modes
in atomic Bragg diffraction [25]. Additionally, Perrier et
al. [26] validated the quantum statistics of a two-mode
squeezed vacuum state generated via atomic four-wave
mixing in BEC collisions, either in free space [24, 27–
29] or within an optical lattice potential [23, 30–34]. In
the low-mode occupancy limit, such states approximate
the archetypal Bell state that maximally violates Bell’s
inequality. However, a demonstration of nonlocal be-
haviour in this system has remained elusive.
This work presents the first experimental observation

of Bell correlations sufficient to demonstrate nonlocal-
ity in momentum-entangled pairs of atoms. By col-
liding two BECs of 4He∗, we generate pairs of corre-
lated atoms with opposite momenta via spontaneous s-
wave scattering. We implement the matter-wave ana-
log of the Rarity-Tapster interferometric scheme and
measure phase-sensitive momentum correlations between
scattered atoms after passing through separate interfer-
ometric arms. Analyzing these momentum correlations
within the framework of a Bell inequality test, we ob-
serve strong correlations that provide direct evidence of
the nonlocal quantum nature of the system and are un-
able to be explained by a large class of LHV theories.

II. METHOD

Our experiment begins by creating a Bose-Einstein
Condensate (BEC) of ∼105 helium atoms trapped in the
mJ = +1 sub-level of the long-lived 23S1 metastable
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Fig. 1. Schematic of the experimental procedure in momentum space. Orthogonal laser beams with wavevectors
ku and kl (orange arrows) initially drive a two-photon Raman transition (A) to transfer 4He∗ atoms to the mJ=0 sublevel
and impart momentum of −2k0ẑ in the direction of gravity (g). (B) A Bragg transition at t0 coherently splits the atoms into
momentum modes: 0,−2k0,−4k0. The 0 and −2k0 components (red) and −2k0 and −4k0 components (blue) collide to create
two spherical s-wave scattering halos of entangled pairs of atoms (C). A Rarity-Tapster interferometer mixes atom pairs in
momentum modes {p,p′} and {q,q′} from each halo, which are entangled through momentum conservation. Bragg transition
pulses couple the atoms in separate arms of the interferometer, denoted by L for (p,q) and R for (p′,q′). At t1 and t2, we
apply mirror and beamsplitter pulses of duration TM and TB and impart phases π/2 and φL,R = θu − θl, respectively, equal
to the phase difference between the upper (θu) and lower (θl) Bragg beams. After a fall-time tf ≈ 0.416 s the scattered atoms
are detected on the MCP-DLD. Detection windows (grey-shaded annuli) centred around each halo’s equatorial plane yield
multi-particle correlations between {DL1, DL2, DR1, DR2} at the output of the interferometer.

state [19, 35]. Figure 1 shows a schematic representa-
tion of the experimental procedure. Using a bi-planar
quadrupole Ioffe configuration magnetic trap [36], we pre-
pare our 4He∗ BEC in a harmonic potential with fre-
quencies of (ωx, ωy, ωz)/2π ≈ (15, 25, 25) Hz. Following
a rapid switch-off of the magnetic trap, we wait approx-
imately 1.5 ms for the background magnetic field to sta-
bilise to a uniform magnetic field B0 ≈ [0.5(x̂+ ẑ)−0.8ŷ]
G.

The momentum-entanglement is created and manip-
ulated via resonant two-photon Raman [37] and Bragg
[38] transitions using two orthogonal laser beams aligned

along the (x̂ ± ẑ)/
√
2 directions. The beams are phase-

locked and tuned to have optical frequencies far-detuned
(to the blue) from the 23S1 → 23P0 transition by 2.3 GHz

(Fig. 1, A and B), to minimize single-photon absorption.

We first transfer 90(5)% of the BEC atoms to the
magnetically insensitive mJ = 0 sub-level via a Raman
pulse. This pulse also imparts a two-photon recoil mo-
mentum of −2~k0 in the ẑ-direction, where k0 = k0ẑ
and k0 = K/

√
2 based on our beam geometry. Here

K = 2π/λ is the wavenumber of the laser beam and
λ=1083.19 nm denotes the wavelength of the incident
laser beams. By transferring atoms to a magnetically
insensitive state, we prevent momentum distortions that
may occur due to stray magnetic fields in the vacuum
chamber during the experiment.

We then coherently split the condensate of mJ = 0
atoms, already moving with momentum −2~k0, by im-
parting ±2~k0 momentum to the atoms via a two-photon
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Bragg transition pulse [29, 39] (Fig. 1B). This ‘collision
pulse’ splits the bulk of the condensate atoms into three
momentum orders: 0, −2~k0, −4~k0. As the momentum
displaced condensates spatially separate, pairs of con-
stituent atoms undergo s-wave collisions [27, 35], forming
spherically symmetric halos of spontaneously scattered
atom pairs in momentum space. Each halo is centred
about the centre-of-mass (COM) momentum of the rel-
evant pair of colliding condensates. Since we split the
condensate into three momentum orders, we observe the
formation of two distinct scattering halos: one between 0

and−2~k0 (red), and another between−2~k0 and−4~k0

(blue), as illustrated in Fig. 1C.
This collision process creates momentum-entangled

atom pairs analogous to the process of four-wave mix-
ing in quantum optics [27, 28, 40], in which entangled
photon pairs are generated through spontaneous para-
metric down-conversion [41]. In this context, each of the
halos can be characterized as an ensemble of two-mode
squeezed vacuum states, with atom pairs occupying di-
ametrically opposite momentum modes within the halo,
in accordance with conservation of momentum and en-
ergy [20, 24]. We operate our experiment in the low-gain
regime with mode occupancies n̄ ≪ 1, i.e., a low aver-
age number of atoms in a scattered momentum mode
[42]. Under such conditions, we analyse data with a sin-
gle pair detected in the relevant output momentum ports
of the Rarity-Tapster interferometer, which allows us to
truncate and transform the halo’s mode-squeezed states
into a prototypical Bell state for atoms [20, 24, 43]. The
reduced and truncated initial state (i.e., the state of a
quartet of scattering modes that form the initial state
at the input ports of the interferometer) can be approx-
imated to acquire the form of a prototypical Bell state
[20, 24]:

|Ψ〉 ≈ 1√
2
(|1〉p|1〉p′ |0〉q|0〉q′ + |0〉p|0〉p′ |1〉q|1〉q′), (1)

where (p,p′) and (q,q′) (illustrated in Fig. 1) correspond
to correlated momentum modes in the top (red) and bot-
tom (blue) halos, respectively, satisfying, p + p′ = 2k0,
q+ q′ = −2k0, p− 2k0 = q and p′ − 2k0 = q′.
We wait a separation time of 350 µs (= t1) after the

collision pulse (t0) to apply a series of Bragg pulses - mir-
ror (at t1) and beamsplitter (at t2 = t1 + 350 µs) pulses
[43, 44] - to selectively couple the momentum modes:
(p,p′) and (q,q′), whose total paths through the interfer-
ometer are indistinguishable and interfere. The interfer-
ence is manipulated through phases φL and φR imparted
onto the momentum modes by the beamsplitter pulse.
In our experimental setup, we are limited to equal phase
settings φL = φR controlled via the relative phase of a
single pair of Bragg laser beams that we use to globally
address all momentum modes within the halos. We re-
fer to this setup as a Rarity-Tapster type matter-wave
interferometer [18, 24] (Fig. 1C).
To detect atoms, we utilize a micro-channel plate

(MCP) and a delay line detector (DLD) system located

848 mm below the trap that provides three-dimensional
(3D) resolved detection with single atom resolution [45].
From spatial-temporal information the DLD records, we
can reconstruct the velocity (i.e., momentum) distribu-
tion of the atoms, enabling us to measure multi-atom
momentum correlations within our system [42]. We be-
gin with a raw reconstruction of the 3D momenta of the
atoms and then proceed through several post-processing
stages, involving coordinate transformations, filtering,
and masking, to accurately determine the correlations
between selected atomic momenta [43].

III. RESULTS AND DISCUSSION

Forming the central basis in the analysis of our ex-
periment is the measurement of two-particle momentum
correlations [42] between atoms in opposite momentum
modes k, −k+∆k of the scattering halos given by [46],

g(2)(∆k) ≡ g(2)(k, -k+∆k) =

∑

k∈V 〈: n̂kn̂-k+∆k :〉
∑

k∈V 〈n̂k〉〈n̂-k+∆k〉
,

(2)
where n̂ denotes the momentum-mode number operator
and V is the volume of the scattering halo occupied in
momentum space (Fig. 2A). We describe this correlation
function as the measurement of the joint probability of
detecting atoms in the momenta k,-k+∆k divided by
the product of their individual detection probabilities.
Figures 2B and C display the experimentally measured
second-order correlation function g(2)(∆k) obtained from
the pair of scattering halos, where ∆k ≡ |∆k|. The high
amplitude observed at ∆k = 0 indicates the generation
of highly correlated atom pairs and is set by the mode
occupancy n̄ (following the relationship, g(2)(0) = 2+1/n̄
[42]), which represents the average number density of
a scattering mode whose volume is set by the momen-
tum correlation widths of the source condensate [47]. We
reach averaged amplitudes of g(2)(0) ∼ 30 for each of the
halos (Fig. 2, B and C) corresponding to average mode
occupancies of n̄ ≈ 0.035, demonstrating correlation am-
plitudes consistent with those required to violate a Bell
inequality [20, 48].
In the interferometer, the spatially separated atoms

in the entangled momentum modes (p, p′) and (q, q′)
must be made to overlap to observe significant multi-
particle interference [23]. This interference depends on
the phases applied by the beam splitter pulse on each
separated arm of the interferometer (Fig. 1C). Success-
fully achieving this multi-particle interference with in-
dependently adjustable phases is essential to effectively
demonstrate quantum non-locality in the sense of a vio-
lation of the CHSH-Bell inequality [49]. We can observe
this multi-particle interference at the output of our inter-
ferometer by measuring the joint probability distribution
function or population correlations Pk,k′ between entan-
gled momentum pairs (p, p′) and (q, q′). This is defined

as Pk,k′ = 〈â†kâ
†
k′ âk′ âk〉 = 〈n̂kn̂k′〉 (where k ∈ {p,q} and
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Fig. 2. Two-particle momentum correlations in scat-
tering halos. (A) Experimental data from 1000 shots show-
ing the momentum distribution of the initial double s-wave
scattering halo state. The yellow annulus about the equator
of each halo depicts the chosen detection window range with
a vertical range of ±4◦ about the equator. (B), (C) Measured

g(2)(∆k), with ∆k ≡ |∆k| and k0 ≡ |k0|, for the ‘Top halo’-
between 0 and −2k0 (red), and the ‘Bottom halo’- between
−2k0 and −4k0 (blue), respectively. Error bars show the shot
noise for each data point and solid lines are Gaussian fits to
the data.

k
′ ∈ {p′,q′}) and measures correlations between joint-

detection events at the outputs of the left (L) and right
(R) arms of the interferometer. Taking the input of our
interferometer as the momentum-entangled Bell state in
Eq. (1) and treating the mirror and beamsplitter pulses
of the interferometer as instantaneous linear transforma-
tions [43], we arrive at the joint probability distribution
functions

Pp,p′ = Pq,q′ =
1

2
sin2(

φL + φR
2

) =
1

2
sin2(Φ/2) (3)

and

Pp,q′ = Pq,p′ =
1

2
cos2(

φL + φR
2

) =
1

2
cos2(Φ/2), (4)

with respect to the output state. Interference of the scat-
tered pairs is illustrated by the dependence of the joint
probability distribution function on the combined phase
Φ = φL+φR, where φL and φR represent the beamsplit-
ter phases imparted on the momentum modes {p,q} and
{p′,q′}, respectively. Although our experimental config-
uration only allows for uniform control of the phases, i.e.

φL = φR, Eqs. (3) and (4) demonstrate that it is still pos-
sible to use the global phase Φ = φL+φR (instead of the
relative phase φL − φR as in the original Rarity-Tapster
scheme [18, 20]) to demonstrate entanglement and Bell
correlations present in the initial state.
Figure 3A displays the experimental joint probability

distribution functions measured at the output of the in-
terferometer as we vary the global phase Φ. We ob-
serve strong out-of-phase oscillations of the joint prob-
abilities consistent with the predictions of the ideal Bell
state (Eqs. (3) and (4)), confirming the existence of multi-
particle interference in our setup.
From the joint probability distribution functions, we

can obtain the Bell correlation function

E(Φ) =
Pp,p′ + Pq,q′ − Pp,q′ − Pq,p′

Pp,p′ + Pq,q′ + Pp,q′ + Pq,p′

, (5)

which is expected to have the general form [50]

E(Φ) = −A cos(Φ + δ). (6)

The ideal Bell state (Eq. (1)) would yield an amplitude
of A = 1, following from Eqs. (3) and (4). However, con-
tributions from higher-order Fock states in the entan-
gled pair generation process lead to a reduced amplitude
A = (1 + n̄)/(1 + 3n̄) expressed in terms of the average
mode occupancy n̄ [20, 48, 51]. The additional phase
offset δ in Eq. (6) accounts for details in the precise im-
plementation of the Rarity-Tapster interferometer, such
as path length differences between the two Bragg beams
and phase drifts experienced by the scattered particles
as they follow free-fall trajectories in a uniform gravita-
tional potential.
The Bell correlation function E(Φ) constructed from

the experimentally detected joint probabilities is shown
in Fig. 3B. We find remarkable agreement with both a
sinusoidal fit function, consistent with the expectation
(Eq. (6)), as well as theory predictions (represented by
the black-dotted line) with A = (1 + n̄)/(1 + 3n̄) com-
puted from the experimentally obtained average mode
occupancy.
To verify that the observed Bell correlation function

demonstrates non-classical non-local behaviour, we con-
struct the following nonlocality criterion [43] using the
values that E(Φ) takes at complementary global phase
settings,

C(Φ,Φ+ π) = |E(Φ)− E(Φ + π)| ≤
√
2. (7)

Violation of this bound witnesses not just that the
quantum system is entangled but also rules out a wide
range of LHV theories where one subsystem yields bi-
nary (classical-like) outcomes, while the other subsystem
produces (quantum-like) outcomes that behave like com-
ponents of a vector [11, 43, 52, 53]. We plot the LHS of
Eq. (7) in Fig. 3C using the experimentally constructed
values of E(Φ) (markers), a sinusoidal fit of E(Φ) (solid
mauve line) and theory predictions (black-dotted line).
The strong oscillations in the Bell correlation function
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A B C

Fig. 3. Multi-particle interference and non-classical correlations. Experimental data from over 35,000 shots. (A)
Global phase (Φ)-sensitive joint probability distribution function experimentally measured at the interferometer output as Φ is
varied. Teal data points represent the measured values of (Pp,p′+Pq,q′), while magenta data points correspond to (Pq,p′+Pp,q′).
(B) The Bell correlation function E(Φ) with a sinusoidal fit following Eq. (6), where we obtain an amplitude of A = 0.86(3)
and phase-offset δ = 1.02(4). The light-coloured data points around E = 0 indicate uncorrelated atom pairs passing through
the interferometer, demonstrating expected near-zero Bell correlation amplitudes [43]. (C) A nonlocality witness C constructed
from values of the Bell correlation function E at complimentary phase settings. Data points located within the shaded region
(>

√
2) indicate the presence of Bell correlations strong enough to exclude a class of LHV theories, with an observed maximum

violation of ∼ 3.9σ at C(Φ,Φ+π) = 1.752±0.085 when Φ = 13π/20. All error bars correspond to standard deviation estimates
using a binomial proportional estimator [43] with solid lines being fits to the data. The theoretical prediction (black-dashed
line) is Eq. (6).

lead to an observed maximum violation of C(Φ,Φ+π) =

1.752± 0.085 >
√
2 (i.e., a violation of about ∼ 3.9σ) at

Φ = 13π/20.
The violation of the inequality (Eq. (7)) is dependent

on the Bell correlation function E(Φ) displaying a suffi-
ciently large difference between the maximal and minimal
correlation, as well as following a particular functional
form. In the context of Eq. (6), this reduces to a require-

ment that the oscillation amplitude exceeds A > 1/
√
2.

Such a requirement on A is also shared by more stringent
tests of nonlocality, including the celebrated CHSH-Bell
inequality [49, 50]. However, in the context of Bell non-
locality an equally important aspect that leads to the in-
compatibility of quantum mechanics with LHV theories
is the sinusoidal variation of the Bell correlation function
[2]. In Fig. 3B we demonstrate that our experimental ob-
servations feature both key elements by fitting Eq. (6) to
our experiment observations, which yields a fitted value
of A = 0.86(3). This signals the detection of Bell correla-
tions in our experiment with the potential to violate the
CHSH-Bell inequality upon the implementation of inde-
pendent phase settings in the spatially separate regions
of L and R.

IV. CONCLUSION

In conclusion, we generate momentum-entangled pairs
of massive particles by colliding atomic BECs to form
dual s-wave collision halos. Using Bragg beams, we co-
herently manipulate the momentum states of the scat-
tered atoms, allowing for selective coupling of desired
atom pairs in momentum states (p,p′,q,q′) and impart-

ing an arbitrary global phase onto them. We have ob-
served two-particle correlations dependent on the global
interferometric phase Φ and having a sufficiently strong
amplitude A that signal the detection of nonclassi-
cal, nonlocal Bell correlations in our experiment. This
demonstration could be extended by adding independent
phase settings in separate regions of the scattering ha-
los to test a CHSH-Bell inequality violation [49] using
momentum-entangled states of atoms, an even stronger
bound on nonlocality.

The future development of this scheme could poten-
tially involve generating momentum-entanglement be-
tween isotopes of helium—specifically, 3He∗ and 4He∗

[54]. This entanglement between momentum states of
atoms with different masses would offer a suitable ba-
sis for the testing of the weak equivalence principle with
quantum test masses [55]. Furthermore, such a platform
for entangling massive particles could be useful in ex-
amining decoherence theories in quantum systems influ-
enced by gravitational field interactions [13, 56–58], and
enhance our understanding of the relation between quan-
tum theory and gravity, as described by general relativity.

Our findings not only establish a new platform for
testing the fundamental principles of quantum mechanics
but also open avenues for exploring quantum information
protocols that leverage motional entanglement [59–61].
Demonstrating and controlling momentum-entanglement
in ultracold atomic systems holds promise for advanc-
ing quantum technologies such as quantum sensing and
quantum imaging through sub-shot noise atom interfer-
ometry [62, 63].
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Supplementary material for

Bell correlations between momentum-entangled pairs of 4He* atoms

I. BRAGG PULSE CHARACTERIZATION

The experiment described in the main text consists of a series of light pulses to transfer various groups of atoms
between different momentum and internal states. This pulse sequence is shown in Fig. S1. In the Rarity-Tapster
interferometer scheme, we utilize Bragg transition pulses, starting with a collision pulse (t0 = 0) with duration
TC = 2.4 µs. Following this we apply a π-Bragg pulse or mirror pulse at t1 = 350 µs for TM = 7 µs to reflect selected
scattering modes in the halos onto each other. Due to our laser geometry setup and the use of a single set of Bragg
beams in our experiment, we select scattering pairs about the equator of the halos. This selection of the scattering
modes allows us to use the same set of Bragg beams to couple counter-propagating (moving ±~k0ẑ in relation to the
source mJ = 0 cloud of atoms) scattering modes of (p,p′) and (q,q′), as shown in Fig. 1C of main text.
We optimize the Gaussian-modulated pulse amplitude, duration, detuning and timing of the mirror pulse to achieve
maximum coupling efficiency resonant to our selected modes about the halo equator (i.e., vz = 0 m/s in the
centre-of-momentum reference frame of the halo). All optimisation is performed using a single halo (Fig. S2A), where
only either (p,p′) or (q,q′) are initially diffracted, and then a mirror pulse is applied to achieve maximum transfer
to its counter-propagating pair, i.e., (p,p′) → (q,q′) or (q,q′) → (p,p′). The results of this optimization procedure
are shown in Fig. S2B. Similarly, for the beamsplitter pulse, we apply a π/2-Bragg pulse at t2 = 700 µs for TB = 6.2
µs and optimize the pulse as described above. The results of the beamsplitter optimization are shown in Fig. S2C.

BEC
1.5 ms 1.5 ms

(mJ=+1)

Push B-field Detection

Time

Raman Collision Mirror Beamsplitter

Wait time Rarity-Tapster Interferometer

Trap
Switch-o�

∼0.416 s

TCTR

t0 t1 t2

TM TB

Fig. S1. Schematic of experimental sequence. Following the formation of the 4He∗ BEC in the mJ = +1 sublevel, the
magnetic trap holding the atoms is rapidly switched off. We then wait 1.5 ms to allow the magnetic field to stabilize to a uniform
field B0 ≈ [0.5(x̂+ ẑ)− 0.8ŷ] G set and actively stabilised by 6 external magnetic field compensation coils [36]. A two-photon
Raman transition pulse is then applied for a duration TR = 5.6 µs to transfer the atoms to the magnetically insensitive mJ = 0
state. We eliminate any non-transferred mJ = 1 atoms by applying a ‘push B-field’ (a magnetic field gradient) to expel these
atoms outside the detection range. This ensures that the atoms undergoing the interferometric experiment are unaffected by
stray magnetic fields that may be present in the vacuum chamber. At t0, we begin the Rarity-Tapster interferometric sequence
by applying a series of Bragg pulses - collision(t0), mirror(t1) and beamsplitter(t2) with pulse durations TC , TM and TB ,
respectively. At the end of the interferometric scheme, the scattered atoms fall for tf ≈ 0.416 s onto the MCP-DLD setup for
detection.

II. DATA ANALYSIS AND POST-SELECTION

Exploiting the ∼19.8 eV internal energy of the metastable helium atoms, we can measure single atom detection
events at the microchannel plate (MCP) and delay line detector (DLD) with an estimated quantum efficiency of
20(2)% [64] and spatial-temporal resolutions of 120 µm and 3 µs [65], corresponding to a momentum resolution of
about ∼ (4.5× 10−3)k0 along kx,y and ∼ (4.6× 10−4)k0 along kz .
From the reconstructed velocities of the atoms, we accurately determine the momenta of the scattered atoms by

performing coordinate transforms for each of the halos into the centre-of-momentum (COM) reference frame for
respective halos. Due to the number of scattered atoms in the halos being relatively few (< 100), we determine the
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Fig. S2. Bragg pulse transfer optimisation. 2D histogram plots, integrated over 50 shots, illustrate a slice of the detected
counts for the top (red) and bottom (blue) halos in their respective center-of-velocity reference frames. The grey-shaded boxes
indicate regions of interest around the halo equators, corresponding to the detection windows used in the experiment. (A) A
top halo is generated before optimal Bragg pulses are applied. (B) The mirror pulse reflects atoms across the top halo equator
to the bottom halo, achieving a peak transfer efficiency of 90(5)%. (C) While the beamsplitter pulse yields an average transfer
efficiency of 50(5)%. The bar graphs to the right of the 2D histogram plots display the corresponding transfer efficiencies (ηt)
for the respective pulse types in (B) and (C). Similar transfer efficiencies are also observed when these pulses are applied to
an initially generated bottom halo.

COM of the halo using its colliding parent condensates which have a higher number of atoms (∼ 3 × 103). This
estimation of the position of the COM is a good approximation of the true COM of the halo. Further, we perform this
coordinate transform to the halo COM reference frame for each experimental run, thus minimizing any broadening
or skewing of momentum distributions due to shot-to-shot fluctuations when integrating over multiple datasets. We
also perform dataset filtering based on the number of scattered atoms in the halos to ensure that we analyse datasets
having similar mode occupancy (n̄ ≈ 0.035) and hence consistent two-particle correlation amplitudes g(2)(0).

We obtain the measured correlation results by limiting our detection windows around each of the halo equators.
This is to ensure that selected momentum modes within our detection window experience nearly uniform and identical
coupling from the Bragg transfer pulses [Suppl. section I]. Specifically, we only include scattered pairs having radial
velocities of 0.8 ≤ v/vr ≤ 1.1 (vr is the velocity radius of the scattering halo equal to ∼ 65 mm/s), and pairs within
±4◦ from the halo’s equatorial plane, corresponding to a vertical velocity range of ±4.5 mm/s about the equator. We
arrive at this detection window range as a balance between two competing constraints – minimizing unintentional
averaging of the imprinted phases of the scattered pairs across the detection range resulting in decreased interference
contrast and reduced joint-detection probabilities at the output of the interferometer, and maximizing the signal-
to-noise ratio (SNR) through integrating over a wider scattered momentum range. Our chosen detection window
ranges {DL1, DL2, DR1, DR2} are shown in Fig. 1C, within which the phase varies by approximately 1.5 radians due
to particle-path trajectories, and we achieve an average SNR of 30:1. From this truncated distribution we measure
the pair-correlations between the scattered atoms, where we define the size of the integration volume (equivalently,
size of a scattering mode) as a cubic volume with sides equal to ∼ 0.02 × kr (kr = m · vr/~). The side length of
integration volume is approximately 0.5σBB, where σBB represents the two-atom back-to-back correlation length [42].
This length follows from the relation σBB ≈ 1.1σk, with σk being the rms momentum width of the source condensate,
assuming it can be approximated by an isotropic Gaussian distribution [47]. The small integration volume size also
ensures several bins are within the detection window range.
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III. ERROR ANALYSIS

By selecting experimental runs where we only observe a single scattered pair in our detection window ranges, in
each individual experimental run we only ever obtain a measured value of the Bell correlation function E (Eq. (5) of
the main text) to be either 1 or −1. Given the number of unique values in the sample space of E is only two, we use
a binomial proportional estimator [66], derived from the binomial distribution, in our statistical analysis. Error bars

for a binomial proportion are calculated using the standard error (SE) of the proportion, which is SE =
√

p(1−p)
n ,

where p is the proportion of successes (1 or −1) and n is the sample size. Identical binary set outcome values are
also observed in the measurement of the joint probability distribution function Pk,k′ from post-selected runs and thus
supporting the use of a binomial proportion estimator.

IV. TWO-PARTICLE MOMENTUM-ENTANGLED BELL STATE

The preparation of the Bell state in our experiment is realised through atom-atom interactions where pairwise
scattering between individual atoms in colliding condensates gives rise to entangled pairs of atoms being spontaneously
emitted into distinguishable momentum modes. The derivation of this mapping follows from [20, 24]. The collision
of atomic ensembles can be understood as the spontaneous four-wave mixing (SFWM) of matter-waves and their
collisional non-linear interaction, which creates entangled pairs of atoms with opposite correlated momenta. We begin
by considering a single halo where we describe the collision mechanism between colliding pairs of condensates using

a sum of the two-mode squeezing Hamiltonian Ĥ =
∑

k ~ζ(â
†
kâ

†
k′ + âk′ âk), where k + k′ = 2k0, â

†
k(k′) is the bosonic

creation operator acting on momentum mode k(k′), and ζ is an effective nonlinearity factor dependent on the colliding
species. Assuming an initial vacuum state for all momenta (excluding the momenta of the colliding condensate pair),
the squeezing Hamiltonian generates a product of two-mode squeezed vacuum states (TMSV) describing the scattering
halo as

|ψ〉TMSV, halo =
∏

k+k′=2k0

⊗
(

√

1− µ2

∞
∑

n=0

µn|n〉k|n〉k′

)

, (S.1)

where µ = tanh(ζtc) for a collision duration tc. This state is a product of number-correlated superposition states
|n〉k|n〉k′ across the halo satisfying k+k′ = 2k0. Similarly, as described by Eq. (S.1), the lower halo can be equivalently
constructed with the condition k + k

′ = −2k0. From this, we formulate our initial double s-wave collision halo
configuration as a product state between the independent upper and lower halo states, assuming identical collision
parameters and negligible depletion of the source condensate: |Ψ〉double halo = |ψ〉upper halo ⊗ |ψ〉lower halo. We further
simplify the double halo state |Ψ〉double halo by tracing away momentum modes not equal to our selected momentum
modes (p,p′,q,q′) at the halo equators. This results in the following four-mode state for our selected momentum
modes in the double halo:

|Ψ〉 = (1− µ2)

∞
∑

n,m=0

µn+m|n〉p|n〉p′ |m〉q|m〉q′ . (S.2)

In the low gain, perturbative regime, µ ≪ 1 and thus n̄ = µ2

1−µ2 ≪ 1. This allows us to truncate Eq. (S.2) to the

first order in µ, which corresponds to ignoring contributions from scattering of multiple pairs - i.e., Fock states with
n,m > 1. We truncate the above scattering state to consider only occupancies ≤ 2 particles across the two halos (four
modes), resulting in the following truncated wavefunction:

|Ψ〉 ≈ (1− µ2) (|0〉p|0〉p′ |0〉q|0〉q′ + µ|0〉p|0〉p′ |1〉q|1〉q′ + µ|1〉p|1〉p′ |0〉q|0〉q′) . (S.3)

As the vacuum state |0〉p|0〉p′ |0〉q|0〉q′ does not contribute to the experimental correlations we measure, we neglect
the first term in Eq. (S.3) and further truncate the above expression to

|Ψ〉 ≈ 1√
2
(|0〉p|0〉p′ |1〉q|1〉q′ + |1〉p|1〉p′ |0〉q|0〉q′) , (S.4)

where we have enforced normalisation. This non-separable two-particle state is entangled between atom pairs of
selected momentum modes (p,p′) and (q,q′). A simple mapping reveals its form is identical to a prototypical Bell
state [20, 24]. Experimentally, this truncation is achieved via post-selection of experimental runs that feature only a
single pair of atoms within the equatorial modes of interest.
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V. JOINT PROBABILITY DISTRIBUTION FUNCTION

Here, we develop an analytical model for the Rarity-Tapster (RT) interferometer setup, assuming ideal Bragg pulses
(instantaneous linear transformations) acting on discrete momentum modes with infinite spatial extent. Following
similar derivations in [23, 24], we can express the coupling Hamiltonian of a Bragg pulse in the basis of {âk, âk−2k0

}
as

Ĥ =
~Ω

2

(

0 eiφ

e−iφ 0

)

, (S.5)

where Ω/2π is the two-photon Rabi frequency, and φ is the phase of the Bragg lattice (= θu − θl). Using the unitary

evolution operator Û(t, φ) = e−iĤt/~, we model the Rarity-Tapster setup as the application of a π-pulse (mirror) and
π/2-pulse (beamsplitter), i.e.,

Û(π/2Ω, φπ/2)Û(π/Ω, φπ) = ÛRT(φπ , φπ/2) =
−1√
2

(

e−i(φπ/2−φπ) ie−iφπ

ieiφπ ei(φπ/2−φπ)

)

, (S.6)

where φπ and φπ/2 are the phases of the mirror and beamsplitter pulses, respectively. We note here that, due to the
unique geometry of our experiment, we realize simultaneous realisations of multiple interferometers coupling resonant
momentum modes across the two halos. We express the coupled momenta k ∈ {p,p′}, k− 2k0 ∈ {q,q′} and denote
the spatially separated interferometric arms as L and R, coupling opposing momentum modes in the entangled pairs
within each of the halos, i.e., (p,q) propagates through the L interferometer arm, while (p′,q′) propagates through
the R interferometer arm (as shown in Fig. 1C).
By taking Eq. (1) (the prototypical Bell state) as the initial input state |Ψ〉in to the RT interferometer, we arrive at
the following output state:

|Ψ〉out = ÛRT|Ψ〉in =
1

2
√
2
[(1− e−i(φL+φR))|0〉p|0〉p′ |1〉q|1〉q′

−i(eiφR + e−iφL)|0〉p|1〉p′ |1〉q|0〉q′

−i(eiφL + e−iφR)|1〉p|0〉p′ |0〉q|1〉q′

(1− ei(φL+φR))|1〉p|1〉p′ |0〉q|0〉q′ ]

(S.7)

where we set the mirror pulse phase (φπ) in both interferometer arms to be π/2 and represent the phases of the beam
splitter pulse (φπ/2) for each arm as φL and φR.
When measuring correlations between distinct pairs of these modes, we observe a dependence on the applied

beamsplitter phase shifts - evidence of interference between scattered pairs. Specifically, we measure the second-order

correlation function or joint probability distribution function: Pk,k′ = 〈â†kâ
†
k′ âk′ âk〉 = 〈n̂kn̂k′〉 (where k ∈ {p,q} and

k′ ∈ {p′,q′}). Evaluating the correlations for |Ψ〉out we obtain,

Pp,p′ = Pq,q′ =
1

2
sin2(

φL + φR
2

), and Pp,q′ = Pq,p′ =
1

2
cos2(

φL + φR
2

). (S.8)

Further, if we consider the input state to the interferometer being the truncated double halo squeezed state
(Eq. (S.3)), we obtain the normalised joint probability distribution functions:

Pp,p′

n̄2
=
Pq,q′

n̄2
= 1 +

1

µ2
sin2(

φL + φR
2

), and
Pp,q′

n̄2
=
Pq,p′

n̄2
= 1 +

1

µ2
cos2(

φL + φR
2

). (S.9)

We emphasize that the interference between the scattered pairs, represented by the sine and cosine terms in the joint
probability distribution functions mentioned above, is influenced by the global phase Φ = φL+φR, rather than by the
relative phase difference Φ = φL − φR. This distinction arises from the slightly different, yet physically equivalent,
geometry of our Rarity-Tapster interferometric scheme [18, 24].

VI. BELL CORRELATION AND NONLOCALITY CRITERION

From Eq. (5) of the main text and Eq. (S.9), we find that the Bell correlation function E(φL, φR) has the form,

E(Φ) ≡ E(φL, φR) = −A cos(φL + φR), (S.10)
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Fig. S3. Pair-correlations at interferometer output. (A) Pair-correlation function g(2)(∆k) measured at the output
momentum ports of the interferometer for global phase setting Φ = 13π/20. The two plots display the ‘same-correlations’
(above) and ‘cross-correlations’ (below) when measured within and across the two halos, respectively. (B) Pair-correlation

function g(2)(∆k) measured at the interferometer output ports for Φ = 33π/20. From the two sets of plots at complimentary

phase settings, we observe a shift in the correlation amplitudes (g(2)(0)) between the ‘same-’ and ‘cross-correlations’ suggestive
of particle-pair interference and entanglement of the initial state.

where the amplitude A = (1 + n̄)/(1 + 3n̄) is dependent on the average mode occupancy n̄ of the halo [42]. Using
the Bell correlation function, we can construct the CHSH-Bell parameter SCHSH [18, 49] for our experiment protocol
using four pairs of phase settings,

SCHSH = |E(φL, φR) + E(φ′L, φR) + E(φ′L, φ
′
R)− E(φL, φ

′
R)|, (S.11)

where any local hidden variable (LHV) theory must satisfy the bound SCHSH ≤ 2 independent of phase settings
φL, φ

′
L, φR, and φ′R. As predicted by quantum theory, a violation of this CHSH-Bell inequality bound is possible

through an appropriate selection of four pairs of phase settings - (φL, φ
′
L, φR, φ

′
R) = (0, π/2,−π/4,−3π/4). These

optimal settings differ from the typical choices [18] by a sign resulting from our interferometric geometry and depen-
dence on the global phase as opposed to the relative phase as seen in Refs. [18, 20]. The amplitude range of E limits
the maximum achievable violation of the CHSH-Bell inequality for the chosen phase settings. Using the optimal phase
settings, quantum mechanics leads us to expect a maximum value of SCHSH to be 2

√
2A [20, 50], as indicated by

the expression of E(Φ) in Eq. (S.10), where a minimum value of A = 1/
√
2, is required to achieve a violation with

SCHSH > 2, while a maximum value of A = 1 corresponds to SCHSH = 2
√
2 [20]. Due to the dependence of A on the

mode occupancy n̄, we establish an upper bound for n̄ . 0.26 in order to achieve SCHSH > 2.

To confirm the absence of systematic biases in computing the Bell correlation function at each global phase setting
used in Fig. 3B, we construct the Bell correlation function for momentum mode combinations that do not undergo
two-particle interference under our scheme. Here, we ascribe the particular choice of combination of the momentum
mode quartet based on their momentum vector difference ∆k (in the COM frame), where perfectly correlated pairs of
modes (p,p′,q,q′) having |∆k| ≡ ∆k = 0 experience maximal interference. In contrast, pairs of atoms in momentum
modes with a difference of ∆k > 0 deviate from maximal correlation strength and experience reduced interference
at the beamsplitter. Figures S3, A and B, display the pair-correlation amplitudes g(2) as a function of pair-mode
momentum vector difference ∆k measured at the output of the interferometer for two global phase settings: (A)
Φ = 13π/20 and (B) Φ = 33π/20. The ‘same-correlation’ and ‘cross-correlation’ plots represent measurements made
within each halo and across the two halos, respectively. From these plots, with measurements made at each global
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phase setting, we can compute the Bell correlation function at a chosen ∆k using,

E(Φ) =
g
(2)
same,Φ(∆k)− g

(2)
cross,Φ(∆k)

g
(2)
same,Φ(∆k) + g

(2)
cross,Φ(∆k)

. (S.12)

We select ∆k ≈ 0.2×k0 to measure the Bell correlation for uncorrelated atom pairs that do not experience two-particle
interference in our scheme. The resulting values of E for this combination of modes are displayed in Fig. 3B of the
main text, showing no phase-dependent correlations, with values centred around the expected value of E = 0.
The observed shift in the correlation amplitudes g(2)(0) between the ‘same-’ and ‘cross-correlation’ plots in Fig. S3,

A and B, is indicative of particle-pair interference in the system and entanglement of the initial state. We can

express the pair-correlation function as g(2)(∆k) = Pk,k′/〈n̂k〉〈n̂k′〉, and denote ‘same-correlations’ (g
(2)
same) with

(k,k′) ∈ {(p,p′), (q,q′)} and ‘cross-correlations’ (g
(2)
cross) with (k,k′) ∈ {(p,q′), (q,p′)}. As demonstrated in Eq. (S.8),

the joint probability distribution functions are represented by sine and cosine terms dependent on the global phase
Φ, where the dependence arises from particle-pair interference of the initial Bell state (Eq. (1)) through the RT
interferometer.

Nonlocality criterion

A requirement of the CHSH-Bell inequality violation is the implementation of independent phase settings between
separated subsystems L and R corresponding to each atom in a scattered pair. In our current experiment protocol,
due to the phase-imparting Bragg beams being significantly large in comparison to the scattering halo, all atoms
acquire identical phase shifts resulting in equal phase settings between the two subsystems, i.e., φL = φR. This
prevents us from demonstrating a violation of the CHSH-Bell inequality. To characterise the non-classical, non-local
behaviour that we are able to demonstrate in our system, we instead arrive at a distinct nonlocality criterion that
still enables us to rule out a large class of LHV theories. The derivation and use of this criterion follow from a similar
demonstration by Shin et al. (2019)[11] for spin-entangled separated atom pairs.
Consider two separated subsystems L and R, where quantities L and R are measured in each subsystem, respectively.
The joint probability P (L,R) for observing L and R fulfills the postulates of local realism if

P (L,R) =
∑

λ

p(λ)P (L|λ)P (R|λ), (S.13)

where P (L|λ) and P (R|λ) are the conditional probabilities of observing L or R given a value of some hidden variable
λ, governed by the probability distribution p(λ). Given some result L, the conditional probability for observing R is

P (R|L) = P (L,R)

P (L)

=

∑

λ p(λ)P (L|λ)P (R|λ)
P (L)

=
∑

λ

p(λ)P (L|λ)
P (L) P (R|λ)

=
∑

λ

P (λ|L)P (R|λ). (S.14)

Let us assume the quantity measured in L to be NL
i produces binary outcomes for two local settings i = φ, φ′, i.e.,

NL
φ = ±1 and NL

φ′ = ±1, while, on average, the outcomes of the quantity NR
i measured in R are assumed to be

components of a vector of length 1. This implies that

−1 ≤ 〈NR
i 〉 ≤ 1. (S.15)

We note here that the average outcomes in R can be binary as well and for the following formalism and derivation, we
do not specify any particular probability model in R when calculating this average. Given the result L, the average
outcome in R for the given setting, say φ, is

〈NR
φ 〉L =

∑

R
P (R|L)NR

φ

=
∑

λ

P (λ|L)
∑

R
P (R|λ)NR

φ , (S.16)
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where

−NR
λ ≤

∑

R
P (R|λ)NR

φ ≤ NR
λ (S.17)

and NR
λ is the length of the vector in R given the value λ. This results in the upper bound

〈NR
φ 〉L =

∑

R
P (R|L)NR

φ ≤
∑

λ

P (λ|L)NR
λ = NR

L . (S.18)

Following our assumption that the averaged results of the quantity NR
φ behave like components of a vector, we consider

two quantities measured at orthogonal/complimentary settings, 1√
2
(NR

1 −NR
2 ), to express the average results of NR

φ .

Thus, following the above result (Eq. (S.18)) we obtain,

−NR
L ≤ 〈NR

1 〉L − 〈NR
2 〉L√

2
≤ NR

L . (S.19)

We then multiply the two averages by the corresponding results in L. Since the outcomes in L are taken to be binary,
we obtain

−NR
L ≤ NL

1 〈NR
1 〉L −NL

2 〈NR
2 〉L√

2
≤ NR

L . (S.20)

Finally, by averaging the inequality (Eq. (S.20)) by the outcomes in L, we have

∑

L
P (L)NL

i 〈NR
i 〉L =

∑

L
P (L)NL

i

∑

R
P (R|L)NR

i

=
∑

L,R
P (L,R)NL

i N
R
i = 〈NL

i N
R
i 〉, (S.21)

while
∑

L P (L)NR
L = 〈NR〉 ≤ 1. Thus, the resulting inequality is

|〈NL
1 N

R
1 〉 − 〈NL

2 N
R
2 〉| ≤

√
2. (S.22)

This inequality holds true for a wide range of LHV theories, where classical-like binary outcomes are observed in
one or both subsystems and it is assumed that the averaged results in one of the subsystems behave like components of
a vector (quantum-like), while no assumptions are made regarding the behaviour of the other subsystem [52, 53, 67].
In our experiment protocol, we define the measurement quantity Ni = n̂kup

− n̂kdown
where i represents the phase

setting (φL or φR) set by the beamplitter pulse in the interferometer, n̂ is the number operator acting on the momentum
mode, while kup ∈ {p,p′} and kdown ∈ {q,q′}. We rewrite the inequality (Eq. (S.22)) to form our nonlocality criterion

C(φ, φ+ π/2) = |〈NL
φN

R
φ 〉 − 〈NL

φ+π/2N
R
φ+π/2〉| ≤

√
2. (S.23)

To test this inequality, we measure the Bell correlation function

E(Φ) ≡ E(φL, φR) =
〈n̂(L)

p n̂
(R)
p′ 〉φL,φR + 〈n̂(L)

q n̂
(R)
q′ 〉φL,φR − 〈n̂(L)

p n̂
(R)
q′ 〉φL,φR − 〈n̂(L)

q n̂
(R)
p′ 〉φL,φR

〈n̂(L)
p n̂

(R)
p′ 〉φL,φR + 〈n̂(L)

q n̂
(R)
q′ 〉φL,φR + 〈n̂(L)

p n̂
(R)
q′ 〉φL,φR + 〈n̂(L)

q n̂
(R)
p′ 〉φL,φR

=
〈(n̂(L)

p − n̂
(L)
q )(n̂

(R)
p′ − n̂

(R)
q′ )〉φL,φR

〈(n̂(L)
p + n̂

(L)
q )(n̂

(R)
p′ + n̂

(R)
q′ )〉φL,φR

=
〈NL

φL
NR

φR
〉

〈(n̂(L)
p + n̂

(L)
q )(n̂

(R)
p′ + n̂

(R)
q′ )〉φL,φR

. (S.24)

When the system is composed of a single scattering pair, the denominator in Eq. (S.24) is equal to 1. Thus, we obtain
a simplified expression for E(φL, φR) = 〈NL

φL
NR

φR
〉 and transform the nonlocality criterion (Eq. (S.23)) to obtain,

C(φ, φ+ π/2) = |E(φ, φ) − E(φ+ π/2, φ+ π/2)| ≤
√
2. (S.25)

An equivalent of this expression is seen in Eq. (7), expressing the above inequality in terms of the global phase
parameter Φ = φL + φR.


