
Violation of the Cauchy-Schwarz Inequality with Matter Waves

K.V. Kheruntsyan,1 J.-C. Jaskula,2,* P. Deuar,3 M. Bonneau,2 G. B. Partridge,2,† J. Ruaudel,2 R. Lopes,2

D. Boiron,2 and C. I. Westbrook2

1The University of Queensland, School of Mathematics and Physics, Brisbane, Queensland 4072, Australia
2Laboratoire Charles Fabry de l’Institut d’Optique, CNRS, Université Paris-Sud,
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The Cauchy-Schwarz (CS) inequality—one of the most widely used and important inequalities in

mathematics—can be formulated as an upper bound to the strength of correlations between classically

fluctuating quantities. Quantum-mechanical correlations can, however, exceed classical bounds. Here we

realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and

demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones

of the collision halo. The correlated atoms have large spatial separations and therefore open new

opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.
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The Cauchy-Schwarz (CS) inequality is ubiquitous in
mathematics and physics [1]. Its utility ranges from proofs
of basic theorems in linear algebra to the derivation of the
Heisenberg uncertainty principle. In its basic form, the CS
inequality simply states that the absolute value of the inner
product of two vectors cannot be larger than the product of
their lengths. In probability theory and classical physics,
the CS inequality can be applied to fluctuating quantities
and states that the expectation value of the cross correlation
hI1I2i between two quantities I1 and I2 is bounded from
above by the autocorrelations in each quantity,

jhI1I2ij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI21ihI22i

q
: (1)

This inequality is satisfied, for example, by two classical
currents emanating from a common source.

In quantum mechanics, correlations can, however, be
stronger than those allowed by the CS inequality [2–4].
Such correlations have been demonstrated in quantum
optics using, for example, antibunched photons produced
via spontaneous emission [5], or twin photon beams gen-
erated in a radiative cascade [6], parametric down conver-
sion [7], and optical four-wave mixing [8]. Here the
discrete nature of the light and the strong correlation (or
anticorrelation in antibunching) between photons is re-
sponsible for the violation of the CS inequality. The vio-
lation has even been demonstrated for two light beams
detected as continuous variables [8].

In this work we demonstrate a violation of the CS
inequality in matter-wave optics using pair-correlated
atoms formed in a collision of two Bose-Einstein conden-
sates (BECs) of metastable helium [9–12] (see Fig. 1). The
CS inequality which we study is a multimode inequality,
involving integrated atomic densities, and therefore is
different from the typical two-mode situation studied in

quantum optics. Our results demonstrate the potential of
atom optics experiments to extend the fundamental tests of
quantum mechanics to ensembles of massive particles.
Indeed, violation of the CS inequality implies the possi-
bility of (but is not equivalent to) formation of quantum
states that exhibit the Einstein-Podolsky-Rosen (EPR) cor-
relations or violate a Bell’s inequality [3]. The EPR and
Bell-state correlations are of course of wider significance

FIG. 1 (color online). Diagram of the collision geometry.
(a) Two cigar-shaped condensates moving in opposite directions
along the axial direction z shortly after their creation by a Bragg
laser pulse (the anisotropy and spatial separation are not to
scale). (b) Spherical halo of scattered atoms produced by four-
wave mixing after the cloud expands and the atoms fall to the
detector 46 cm below. During the flight to the detector, the
unscattered condensates acquire a disk shape shown in white
on the north and south poles of the halo. The (red) boxes 1 and 2
illustrate a pair of diametrically symmetric counting zones
(integration volumes) for the average cross-correlation and au-

tocorrelation functions, �Gð2Þ
12 and �Gð2Þ

ii (i ¼ 1; 2) (see text), used in
the analysis of the Cauchy-Schwarz inequality.
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to foundational principles of quantum mechanics than
those that violate a CS inequality. Nevertheless, the im-
portance of understanding the CS inequality in new physi-
cal regimes lies in the fact that: (i) they are the simplest
possible tests of stronger-than-classical correlations, and
(ii) they can be viewed as precursors, or necessary con-
ditions, for the stricter tests of quantum mechanics.

The atom-atom correlations resulting from the collision
and violating the CS inequality are measured after long
time-of-flight expansion using time- and position-resolved
atom detection techniques unique to metastable atoms
[13]. The 307 ms long expansion time combined with a
large collision and hence scattering velocity results in a
�6 cm spatial separation between the scattered, correlated
atoms. This separation is quite large compared to what has
been achieved in recent related BEC experiments based on
double-well or two-component systems [14–16], trap
modulation techniques [17], or spin-changing interactions
[18,19]. This makes the BEC collisions ideally suited to
quantum-nonlocality tests using ultracold atomic gases and
the intrinsic interatomic interactions.

In a simple two-mode quantum problem, described by

boson creation and annihilation operators âyi and âi (i ¼
1; 2), the Cauchy-Schwarz inequality of the form of Eq. (1)
can be formulated in terms of the second-order correlation

functions, Gð2Þ
ij ¼ h:n̂in̂j:i ¼ hâyi âyj âjâii, and reads [2–4]

Gð2Þ
12 � ½Gð2Þ

11G
ð2Þ
22 �1=2; (2)

or simplyGð2Þ
12 � Gð2Þ

11 in the symmetric case ofGð2Þ
11 ¼ Gð2Þ

22 .

Here, Gð2Þ
12 ¼ Gð2Þ

21 , n̂i ¼ âyi âi is the particle number opera-

tor, and the double colons indicate normal ordering of the
creation and annihilation operators, which ensures the
correct quantum-mechanical interpretation of the process
of detection of pairs of particles that contribute to the
measurement of the second-order correlation function
[2]. Stronger-than-classical correlation violating this in-

equality would require Gð2Þ
12 > ½Gð2Þ

11G
ð2Þ
22 �1=2, or Gð2Þ

12 >

Gð2Þ
11 in the symmetric case.

The situation we analyze here is counterintuitive in that
we observe a peak cross correlation (for pairs of atoms
scattered in opposite directions) that is smaller than the
peak autocorrelation (for pairs of atoms propagating in the
same direction). In a simple two-mode model such a ratio
of the cross correlation and autocorrelation satisfies the
classical CS inequality. However, in order to adequately
treat the atom-atom correlations in the BEC collision
problem, one must generalize the CS inequality to a multi-
mode situation, which takes into account the fact that the
cross correlations and autocorrelations in matter-wave op-
tics are usually functions (in our case of momentum). The
various correlation functions can have different widths and
peak heights, and one must define an appropriate integra-
tion domain over multiple momentum modes to recover an

inequality that plays the same role as that in the two-mode
case and is actually violated, as we show below.
The experimental setup was described in Refs. [11,12].

Briefly, a cigar-shaped BEC of metastable helium,
containing approximately �105 atoms, trapped initially
in a harmonic trapping potential with frequencies
ð!x;!y;!zÞ=2� ¼ ð1500; 1500; 7:5Þ Hz, was split by

Bragg diffraction into two parts along the axial (z-) direc-
tion [see Fig. 1(a)], with velocities differing by twice the
single photon recoil velocity vrec ¼ 9:2 cm=s. Atoms in-
teract via binary, momentum conserving s-wave collisions
and scatter onto a nearly spherical halo [see Fig. 1(b)]
whose radius in velocity space is about the recoil velocity
[11,20]. The scattered atoms fall onto a detector that
records the arrival times and positions of individual atoms
[13] with a quantum efficiency of �10%. The halo diame-
ter in position space at the detector is �6 cm. We use the
arrival times and positions to reconstruct three-
dimensional velocity vectors v for each atom. The unscat-
tered BECs locally saturate the detector. To quantify the
strength of correlations corresponding only to spontane-
ously scattered atoms, we exclude from the analysis the
data points containing the BECs and their immediate vi-
cinity (jvzj< 0:5vrec) and further restrict ourselves to a
spherical shell of radial thickness 0:9< vr=vrec < 1:1
(where the signal to noise is large enough), defining the
total volume of the analyzed region as V data.
Using the atom arrival and position data, we can mea-

sure the second-order correlation functions between the
atom number densities n̂ðkÞ at two points in momentum

space, Gð2Þðk;k0Þ ¼ h:n̂ðkÞn̂ðk0Þ:i (see Supplementary
Material [21]), with k denoting the wave vector k ¼
mv=@ and @k the momentum. The correlation measure-
ments are averaged over a certain counting zone (integra-
tion volume V ) on the scattering sphere in order to get
statistically significant results. By choosing k0 to be nearly
opposite or nearly collinear to k, we can define the aver-
aged back-to-back (BB) or collinear (CL) correlation func-
tions,

G ð2Þ
BBð�kÞ ¼

Z
V
d3kGð2Þðk;�kþ�kÞ; (3)

G ð2Þ
CLð�kÞ ¼

Z
V
d3kGð2Þðk;kþ �kÞ; (4)

which play a role analogous to the cross-correlation and

autocorrelation functions, Gð2Þ
12 and Gð2Þ

ii , in the simple two-

mode problem discussed above. The BB and CL correla-
tions are defined as functions of the relative displacement
�k, while the dependence on k is lost due to the averaging.
The normalized BB and CL correlations functions,

gð2ÞBBð�kÞ and gð2ÞCLð�kÞ, averaged over the unexcised part

of the scattering sphere V data are shown in Fig. 2. The BB
correlation peak results from binary, elastic collisions be-
tween atoms, whereas the CL correlation peak is a variant
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of the Hanbury Brown and Twiss effect [22,23]—a two-
particle interference involving members of two different
atom pairs [9,10,24,25]. Both correlation functions are
anisotropic because of the anisotropy of the initial collid-
ing condensates.

An important difference with the experiment of Ref. [9]
is that the geometry in the present experiment (with

vertically elongated condensates) is such that the observed
widths of the correlation functions are not limited by the
detector resolution. Here we now observe that the BB and
CL correlations have very different widths, with the BB
width being significantly larger than the CL width. This
broadening is largely due to the size of the condensate in
the vertical direction (� 1 mm). The elongated nature of
the cloud and the estimated temperature of �200 nK also
means that the condensates correspond in fact to quasicon-
densates [26] whose phase coherence length is smaller than
the size of the atomic cloud. The broadening of the BB
correlation due to the presence of quasicondensates will be
discussed in another paper [27], but we emphasize that the
CS inequality analyzed here is insensitive to the detailed
broadening mechanism as it relies on integrals over corre-
lation functions. This is one of the key points in consider-
ing the multimode CS inequality.
Since the peak of the CL correlation function corre-

sponds to a situation in which the two atoms follow the
same path, we can associate it with the autocorrelation of
the momentum of the particles on the collision sphere.
Similarly, the peak of the BB correlation function corre-
sponds to two atoms following two distinct paths and
therefore can be associated with the cross-correlation func-
tion between the respective momenta. Hence we realize a
situation in which one is tempted to apply the CS inequal-
ity to the peak values of these correlation functions. As we
see from Fig. 2, if one naively uses only the peak heights,

the CS inequality is not violated since gð2ÞBBð0Þ< gð2ÞCLð0Þ and
hence Gð2Þ

BBð0Þ<Gð2Þ
CLð0Þ due to the nearly identical nor-

malization factors (see Supplementary Material [21]).
We can, however, construct a CS inequality that is

violated if we use integrated correlation functions, �Gð2Þ
ij ,

that correspond to atom numbers N̂i ¼
R
V i

d3kâyðkÞâðkÞ
(i ¼ 1; 2) in two distinct zones on the collision halo [21],

�G ð2Þ
ij ¼ h:N̂iN̂j:i ¼

Z
V i

d3k
Z
V j

d3k0Gð2Þðk;k0Þ: (5)

The choice of the two integration (zone) volumes V i and

V j determines whether the �Gð2Þ
ij -function corresponds to

the BB (i � j) or CL (i ¼ j) correlation functions, Eqs. (3)
and (4).
The CS inequality that we can now analyze for violation

reads �Gð2Þ
12 � ½ �Gð2Þ

11
�Gð2Þ
22 �1=2. To quantify the degree of vio-

lation, we introduce a correlation coefficient,

C ¼ �Gð2Þ
12 =½ �Gð2Þ

11
�Gð2Þ
22 �1=2; (6)

which is smaller than unity classically, but can be larger
than unity for states with stronger-than-classical
correlations.
In Fig. 3 we plot the correlation coefficientC determined

from the data for different integration zones V 1 and V 2,
but always keeping the two volumes equal. When V 1 and
V 2 correspond to diametrically opposed, correlated pairs

FIG. 2 (color online). Normalized back-to-back (a) and

collinear (b) correlation functions, gð2ÞBBð�kÞ and gð2ÞCLð�kÞ, in
momentum space integrated over V data corresponding to jkzj<
0:5krec and 0:9< kr=krec < 1:1, where krec ¼ mvrec=@ is the
recoil momentum. The data are averaged over 3600 experimen-
tal runs. Because of the cylindrical symmetry of the initial
condensate and of the overall geometry of the collision, the
dependence on the kx and ky components should physically be

identical and therefore can be combined (averaged); the corre-
lation functions can then be presented as two-dimensional sur-
face plots on the (kz, kxy) plane. The two-dimensional plots were

smoothed with a nearest neighbor running average. The data
points along the kz and kxy projections (corresponding to thin

slices centered at kxy ¼ 0 and kz ¼ 0, respectively) are not

smoothed. The solid lines show the Gaussian fits to these
projections. The peak height of the back-to-back correlation
function is �1:2 while that of the collinear correlation function
is �1:4, apparently confirming the Cauchy-Schwarz inequality.
The widths of the two distributions are, however, very different
(�BB;x ’ �BB;y ’ 0:21krec, �BB;z ’ 0:019krec, whereas �CL;x ’
�CL;y ’ 0:036krec, �CL;z ’ 0:002krec) and a multimode formula-

tion of the Cauchy-Schwarz inequality, which relates the relative
volumes of the correlation functions, is violated.
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of zones (red circles), C is greater than unity, violating the
CS inequality, while for neighboring, uncorrelated pairs
(blue squares) the CS inequality is not violated. The figure
also shows the results of a quantum-mechanical calculation
of C using a stochastic Bogoliubov approach (green thick
solid curve) [20,21,28]. The calculation is for the initial
total number of atoms N ¼ 85 000 and is in good agree-
ment with the observations. The choice of large integration
volumes (small number of zones M) results in only weak
violations, while using smaller volumes (large M) in-
creases the violation. This behavior is to be expected (see
Supplementary Material [21]) because large integration
zones include many, uncorrelated events which dilute the
computed correlation. The saturation of C, in the current
arrangement of integration zones—with a fixed number of
polar cuts and hence a fixed zone size along zwhich always
remains larger than the longitudinal correlation width—
occurs when the tangential size of the zone begins to
approach the transverse width of the CL correlation func-
tion. If the zone sizes were made smaller in all directions,
we would recover the situation applicable to the peak
values of the correlation functions (and hence no CS
violation) as soon as the sizes become smaller than the
respective correlation widths (see Eq. (S11) in the
Supplementary Material [21]).

We have shown the violation of the CS inequality using
the experimental data of Ref. [11] in which a sub-
Poissonian variance in the atom number difference
between opposite zones was observed. Although the two
effects are linked mathematically in simple cases, they are
not equivalent in general [8,21]. Because of the multimode
nature of the four-wave mixing process, we observe
stronger (weaker) suppression of the variance below the
shot-noise level for the larger (smaller) zones (see Fig. 3 of
[11]), whereas the degree of violation of the CS inequality
follows the opposite trend. This difference can be of im-
portance for other experimental tests of stronger-than-
classical correlations in inherently multimode situations
in matter-wave optics.
The nonclassical character of the observed correlations

implies that the scattered atoms cannot be described by
classical stochastic random variables [29]. Our experiment
is an important step toward the demonstrations of increas-
ingly restrictive types of nonlocal quantum correlations
with matter waves, which we hope will one day culminate
in the violation of a Bell inequality as well. In this case, the
nonclassical character of correlations will also defy a
description via a local hidden variable theory [4,29].
Nonoptical violations of Bell’s inequalities have so far
only been demonstrated for pairs of massive particles
(such as two trapped ions [30] or proton-proton pairs in
the decay of 2He [31]), but never in the multiparticle
regime. The BEC collision scheme used here is particularly
well-suited for demonstrating a Bell inequality violation
[32] using an atom optics analog of the Rarity-Tapster
setup [33].
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[14] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M.K.
Oberthaler, Nature (London) 455, 1216 (2008).

[15] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M.K.
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Definitions of correlation functions. The second-order
correlation function G(2)(k,k′) between the particle number
densities at two points in momentum space is defined as

G(2)(k,k′)=〈: n̂(k)n̂(k′) :〉=〈â†(k)â†(k′)â(k′)â(k)〉.
(S1)

Here, â(k) is the Fourier transform of the atomic field anni-
hilation operator Ψ̂(x), and n̂(k) = â†(k)â(k) is the density
operator corresponding to the atomic momentum distribution
(with k denoting the wave-vector k = mv/~).

The normalized correlation functions shown in Fig. 2 of the
main text are defined as

g
(2)
BB(∆k)=G(2)

BB(∆k) /

ˆ
V
d3k 〈n̂(k)〉〈n̂(−k+∆k)〉, (S2)

and

g
(2)
CL(∆k)=G(2)

CL(∆k) /

ˆ
V
d3k 〈n̂(k)〉〈n̂(k+∆k)〉. (S3)

The normalization ensures that for uncorrelated densities
g

(2)
BB(∆k)=1 and g(2)

CL(∆k)=1.
These functions are shown in Fig. 2 of the main text. The

widths and amplitudes of the BB and CL correlation functions
are measured using Gaussian fits to their cuts through the cen-
tre of the 2D surface plots along the kz and kxy axis; the fits
and the data are shown in Fig. S1 (same data as in Fig. 2 of
the main text but with error bars).

CS violation and correlation widths. A fair understand-
ing of the dependence of the multimode CS violation C on
the correlation functions can be gained from a simple model,
which is readily related to the experimental data. Let us make
several assumptions: (A) a Gaussian shape for the normalized
correlation functions (those shown in Fig. 2 of the main text):

g
(2)
CL/BB(∆k)=1 + hCL/BB

∏
d

e−∆k2d/2σ
2
CL/BB,d , (S4)

whereCL andBB are the two kinds of correlations, the index
d = x, y, z runs over spatial directions, σCL/BB,d are stan-
dard deviations (correlation lengths, in wave-number units) of
the correlation peak, and hCL/BB are the peak heights above
the background level of unity. Let us further assume (B) that
the counting zones Vi are much broader than the relevant cor-
relation lengths in all directions. This allows us to neglect
boundary effects caused by atom pairs in which one member
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Figure S 1. Central cuts of the BB and CL correlation functions,
g
(2)
BB(∆k) and g(2)CL(∆k), along the kz and kxy axis.

lies just inside the zone and the other just outside [1]. Fi-
nally, for simplicity we assume (C) that the halo density in
the relevant regions is constant: 〈n̂(k + ∆k)〉 = n̄, and (D)
that the two counting zones have the same widths in each di-
rection d, hence the same overall momentum-space volumes
V1 = V2 ≡ V .

With these assumptions, the integrated correlation func-
tions are

G(2)

ii ≈ n̄2V

{
V + hCL(2π)3/2

∏
d

σCL,d

}
(S5)

(i = 1, 2) and

G(2)

12 ≈ n̄2V

{
V + hBB(2π)3/2

∏
d

σBB,d

}
, (S6)

where the counting zones V1 and V2 are non-overlapping.
Taking the widths of the counting zones V as Ld, the next
order corrections are ∼ O(

∑
d
σCL/BB,d

Ld
) with respect to the

terms proportional to hCL/BB, and so are negligible due to our
assumption (B).



2

It is useful to define an effective geometric mean correlation
width

σ3
CL/BB =

∏
d

σCL/BB,d. (S7)

The large counting volume assumption (B) means
σ̄CL/BB/V1/3 � 1, and taking leading order terms in
this small parameter, we use Eqs. (S5–S6) to obtain an
estimate for the CS violation between opposite zones:

C ≈ 1 +
(2π)3/2

V
[
hBB σ̄

3
BB − hCL σ̄

3
CL

]
. (S8)

Now it is clear that nonclassical measurements (C > 1)
can still occur for a back-to-back correlation peak lower than
the collinear one, provided that the coherence volume for the
back-to-back pairs is correspondingly larger and that it still fits
inside our counting volumes V . Expression (S8) also hints that
a maximally large CS violation will occur when the counting
volumes are of about the same size as the coherence volumes,
since the excursion above one is proportional to the ratios
σ̄3

CL/BB/V .

CS violation and the number of zones M . To apply the
above model to our experiment, we take the radial (r) width of
the counting zone Lr to be approximately equal to the width
wr of the scattering sphere in the radial direction, Lr ≈ wr.
Also, the zone size is Lz = krec/8 in the longitudinal z direc-
tion (where we recall that the analyzed part of the scattering
sphere corresponds to |kz| < 0.5krec, which is further cut into
8 polar zones), and Lc ≈ 2πkrec/(M/8) along the circumfer-
ence of the ring in the xy plane. With this,

C ≈ 1 +M

√
2π

wrk2
rec

[
hBB σ̄

3
BB − hCL σ̄

3
CL

]
(S9)

This is a linear growth with M .
The width of a single zone along the circumference, Lc, be-

comes comparable with, or narrower than, the measured cor-
relation width σBB,xy ≈ 0.21krec when M & 150. This is
indeed when we start to see a deviation from the linear be-
haviour in Fig. 3 of the main text.

For largeM , the zones are narrow along the circumference,
so that the broad zone assumption (B) does not hold, and vari-
ation of ∆k along this direction does not change the corre-
lation from its peak value. If one carries out the calculation
again, but with an alternative assumption (B′) that the count-
ing zone is now much narrower than the correlation widths
σCL/BB,d, the estimate of C becomes

C ≈ 1 +
32π

wrkrec
[hBB σBB,z σBB,xy − hCL σCL,z σCL,xy] ,

(S10)
which amounts to a replacement of one set of Gaussian widths
σCL/BB,xy by Lc/

√
2π. The correlation coefficient C reaches

a saturation value that does not depend on M at all, but may
be larger or smaller than unity, depending on how the widths

and heights play out. In our case it is still a violation, with
C > 1.

If the zones V were made narrower in all directions than
the corresponding correlation widths, we would recover the
two-mode expression

C ≈ hBB + 1

hCL + 1
. (S11)

In our case, since hBB < hCL, this would not be a CS viola-
tion anymore.

Finally, when one considers non-opposite zones, such as
the lower experimental data in Fig. 3 of the main text, the
value of hBB tends to zero as there is no pairing. In this case,
the expressions (S9) and (S10) show that C will lie always
slightly below unity for large counting zones. For the small-
counting-zone limit, C → 1/g

(2)
CL(0). In neither case can there

be CS violation.

Stochastic Bogoliubov simulations. The theoretical re-
sults shown in Fig. 3 of the main text come from numerical
simulations using the positive-P Bogoliubov method, which
is described in detail in Ref. [2]. It was used previously
for our experiment in Refs. [1, 3]. In a nutshell, we evolve
the system in a time-dependent Bogoliubov approximation,
taking the condensate part at time t as the solution of the
Gross-Pitaevskii mean field evolution equation for the collid-
ing condensates. The numerical lattice required to describe
this model is too large for a direct solution of the Bogoliubov-
de Gennes equations to be tractable, so the fluctuation field
(which is responsible for the scattered halo) is represented in-
stead using the positive-P representation. This leads to cou-
pled linear stochastic differential equations which can be inte-
grated numerically. The ensemble of such stochastic realisa-
tions corresponds to the full Bogoliubov dynamics, and allows
one to estimate observables to within a well defined statistical
accuracy.

Simulations were carried out for a collision of metastable
4He∗ atoms in the mF = 0 state (with the s-wave scatter-
ing length of a = 5.3 nm) for several initial total number of
atoms, N = 50 000, 85 000, and 110 000 (the actual value in
the experiment fluctuates from shot to shot in the vicinity of
∼105). The atoms were assumed to be trapped initially in the
mF = 1 state in a harmonic trapping potential with frequen-
cies ωz/2π = 7.5 Hz and ωx/2π = ωy/2π = 1500 Hz.

To begin with, several initial states were tried: a zero-
temperature (T = 0) Bose-Einstein condensate (BEC), and
T > 0 quasicondensates in elongated 3D traps with phase
coherence lengths of lφ = 45 µm and lφ = 100 µm (taken
as a half-width-at-half-maximum of the first-order correlation
function g(1)(0, z) from the center of the trap in the longitudi-
nal direction), which are in the range expected for the cloud in
the experiment. For comparison, the longitudinal size of the
initial cloud along z is about 980 µm.

The magnitude of the calculated C at long times differed
by at most 0.007 between the simulations with quasiconden-
sate and BEC initial conditions (see Fig. S2). Since this is a
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Figure S2. Calculated correlation coefficient C as a function of the
number of zones M at the end of the simulation (t = 186 µs for
the N = 110 000 atom simulations, 248 µs for the others). Cir-
cles are for C between opposite zones and BEC initial conditions;
squares similarly, but with a quasicondensate initial condition hav-
ing the shortest phase coherence length lφ = 45 µm. Filled triangles
show C between next-neighbour zones, which do not violate the CS
inequality (C < 1), as expected. One sees that the value of C de-
pends strongly on N , while its shape as a function of M is almost
unchanged.

very small effect on C in comparison with the effect of parti-
cle number (or in comparison with the effect on the shape of
correlation functions), we will consider mainly the BEC ini-
tial conditions in what follows. The simulation of quasicon-
densates with a Bogoliubov description, in which the initial
T > 0 states were based on the description of Petrov et al. [4]
for elongated 3D clouds, will be described in a future work
[5].

Theoretical predictions for C. The simulation data in
Fig. 3 of the main text are for a time of 248 µs after the start
of the collision with 85 000 atoms, which we regard as the
best-fit value of N .

The values of the correlation coefficient at the end of sim-
ulations for various atom numbers and initial conditions are
shown in Fig. S2. The time evolution of its saturation value
at large M [i.e., small counting volumes as per Eq. (S10)]
is shown in Fig. S3(b), along with the time evolution of the
overall number of scattered atoms [Fig. S3(a)]. It is seen that
the magnitude of C depends strongly on the initial number
of atoms N , while its shape as a function of M remains al-
most unchanged. In particular, smallN and hence small num-
ber of scattered particles in the halo, Nsc [see Fig. S3(a)]
correspond to large values of C for a given counting zone
size. This can be roughly understood from a simple two-mode
model of standard spontaneous parametric down-conversion
in the undepleted pump approximation [6], with a Hamilto-
nian Ĥ ∼ â†1â

†
2 + h.c. that produces atom pairs in the a1 and
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Figure S3. Calculated time evolution. Panel (a) shows the number
of scattered atoms as a function of time for various initial atom num-
bers N . Panel (b) shows the saturation mean value of C at large M
between opposite zones – the value is averaged over M ≥ 400. In
both panels, circles are for BEC initial conditions, squares for the
lφ = 45 µm quasicondensate as in Fig. S2. The C(M) data in Fig. 3
of the main text and in Fig. S2 here are for the last times shown here.
One sees that at that moment C has already achieved its long-time
value, or is very close to it.

a2 modes. This is a process similar to the one that occurs
during our condensate collision. In this toy model, the BB
correlation analogue is g(2)

12 = 2 + 1/n [7], where n is the
mean particle number in modes a1 and a2 (n1 = n2 ≡ n),
and the CL correlation analogue is g(2)

11 = g
(2)
22 = 2. Hence,

C ≈ 1 + 1/2n in this model, showing a similar scaling with
atom number to our simulations. Resorting to this toy model
is done only for qualitative understanding of the scaling of
C with Nsc and hence with the number of atoms in a given
counting zone. The quantitative aspects of the model, how-
ever, are too crude to be applicable to our system due to the
rapid changes in the “pump” (source condensate) density pro-
file, which is in sharp contrast to the undepleted, i.e., constant
in time, pump approximation.

The experimental values in Fig. 3 of the main text come
from an average over many realizations with different atom
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Figure S 4. Central density along z (at x = y = 0) of the two
colliding condensates, for the total initial number of atoms N =
85, 000, shown at three different times: t = 0 – (a), t = 124 µs – (b),
and t = 248 µs – (c). The overlap region includes the interference
fringes, which are, however, not visible on this scale due to the high
frequency of the modulation. As we see, the peak density at t =
248 µs is reduced by a factor of ∼7 due to the rapid expansion of the
condensates in the transverse dimensions, which is the main reason
for the collision to cease. Panel (d) shows detail at the cloud edges.

numbers N from shot to shot. However, the contribution of
small-atom-number shots (which would have a high magni-
tude of C, and poor signal-to-noise) to the atom-number fluc-
tuations that go into the calculation of C is small. Taking this
into account, and noting that N ≈ 85 000 is the most typical
value, best agreement between this value and experiment is
very reasonable.

The time evolution in Fig. S3 shows that, at the final sim-
ulation times shown in Fig. 3 of the main text and Fig. S3
here, the correlation coefficient C is already at, or very close
to, its long-time value. The maximum simulation time is the
result of a trade-off between computational efficiency and ac-
curacy — the size of the numerical grid required to encom-
pass the clouds grows rapidly with longer times. Even though
our maximum simulation time is appreciably shorter than the
time it takes for the clouds to move completely past each other
along z (about 5 ms), the production of halo particles is al-
ready strongly saturating by the end of the simulation [see
Fig. S3(a)]. This is due to a rapid loss of central density of
the colliding source BECs because of their expansion perpen-
dicular to the long (collision) axis. In other words, the end of
collision and the saturation in the number of scattered atoms
in Fig. S3(a) is determined not by a geometric consideration
(i.e., a complete spatial separation of the colliding BECs along
z), but by the rapid loss of peak density (see Fig. S4) due to
the expansion in the transverse direction. The pair production
rate is roughly proportional to the integral of density squared

[8], which is the reason for the premature cessation of particle
scattering, and allows relatively short simulation times to be
considered adequate.

Cauchy-Schwarz inequality and sub-Poissonian number
imbalance. The strength of correlation between the atom
number fluctuations in two diametrically opposite zones on
the collision halo can also be characterised via a normalised
variance [1]

V =
〈[∆(N̂1 − N̂2)]2〉
〈N̂1〉+ 〈N̂2〉

, (S12)

which can be rewritten in terms of the second-order correla-
tion functions,

V = 1 +
G(2)

11 + G(2)

22 − 2G(2)

12 − (〈N̂1〉 − 〈N̂2〉)2

〈N̂1〉+ 〈N̂2〉
. (S13)

The variance is normalised to the level of uncorrelated, Pois-
sonian fluctuations and V < 1 implies sub-Poissonian statis-
tics of the relative number imbalance. From this we see that
the relationship between sub-Poissonian number imbalance
and the violation of the CS inequality is especially transpar-
ent in the symmetric case of 〈N̂1〉 = 〈N̂2〉, in which case

stronger-than-classical correlation, G(2)

12 > [G(2)

11 G
(2)

22 ]1/2 (in
the sense of CS violation), follows from V < 1 and hence
represents a necessary condition for sub-Poissonian statistics.
This last assertion follows from the fact that, if V < 1 and
〈N̂1〉 = 〈N̂2〉, then one must have G(2)

12 > 1
2 (G(2)

11 +G(2)

22 ),

where 1
2 (G(2)

11 +G(2)

22 ) ≥ [G(2)

11 G
(2)

22 ]1/2, and therefore G(2)

12 ≥
[G(2)

11 G
(2)

22 ]1/2. The opposite is, however, not true in gen-

eral, because having G(2)

12 > [G(2)

11 G
(2)

22 ]1/2 does not necessarily

guarantee V <1, unless G(2)

11 =G(2)

22 . Thus, violation of the CS
inequality and sub-Poissonian number imbalance are equiva-
lent only in the completely symmetric case of 〈N̂1〉 = 〈N̂2〉
and G(2)

11 =G(2)

22 .
We emphasise, however, that the equivalence of the CS vi-

olation and the relative number imbalance in the symmetric
case (or the expected ‘approximate equivalence’ in the nearly
symmetric case, as is the case in our experiment) is only of
qualitative nature. The quantitative relationship between the
strength of the CS violation and the degree of suppression
of V below the Poissonian level of fluctuations can, on the
other hand, be very different if we analyse these as functions
of the zone size or the number of zones M into which we
cut the scattering halo. Indeed, as was demonstrated in Ref.
[1], strong suppression of V below unity is observed for the
broader zones (see Fig. 3 of [1]) – a situation in which the
CS inequality is only marginally violated as seen from Fig. 3
of the main text at small M . Conversely, the CS inequality is
maximally violated for largeM (smaller zone sizes), in which
case the variance V is almost indistinguishable from the Pois-
sonian shot-noise level of V = 1. This difference highlights
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the importance of quantifying any particular type of quantum
correlations in an operationally defined manner.
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