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Abstract

We use the coordinate Bethe ansatz to exactly calculate matrix elements between eigenstates of the
Lieb-Liniger model of one-dimensional bosons interacting via a two-body delta-potential. We
investigate the static correlation functions of the zero-temperature ground state and their dependence
on interaction strength, and analyze the effects of system size in the crossover from few-body to
mesoscopic regimes for up to seven particles. We also obtain time-dependent nonequilibrium
correlation functions for five particles following quenches of the interaction strength from two distinct
initial states. One quench is from the noninteracting ground state and the other from a correlated
ground state near the strongly interacting Tonks—Girardeau regime. The final interaction strength and
conserved energy are chosen to be the same for both quenches. The integrability of the model highly
constrains its dynamics, and we demonstrate that the time-averaged correlation functions following
quenches from these two distinct initial conditions are both nonthermal and moreover distinct from
one another.

1. Introduction

The Lieb—Liniger model of a one-dimensional (1D) Bose gas with repulsive delta-function interactions is a
paradigmatic example of an exactly solvable continuous, integrable many-body quantum system [1]. In
particular, it has served as the context for the development of theoretical tools that have subsequently been
widely applied in the study of integrable systems, such as the so-called ‘thermodynamic Bethe ansatz’ functional
representation, which provides the exact equation of state, excitation spectrum [1], and bulk parameters [2] of
the system in the thermodynamic limit. However, the calculation of correlation functions from the exact
solutions provided by the Bethe ansatz is notoriously difficult.

At zero temperature, exact closed-form solutions for some equilibrium correlation functions are known in
the Tonks—Girardeau limit of infinite interaction strength [3—7]. This comparatively tractable limit also allows
for some strong-coupling expansion results for large but finite interactions [7-10]. In the opposite weakly
interacting quasi-condensate regime, a mean-field approach can be used to describe the system [11] and a
Bogoliubov method can be used to determine the low-lying excitation spectrum [12], relying on small density
fluctuations. Fewer results are available for intermediate interaction strengths, away from the strongly
interacting and weakly interacting regimes. The development of the Luttinger liquid description of quantum
fluids [13] and the related formalism of conformal field theory [14, 15] have lead to the prediction of power-law
scaling for first-order correlations at large distances, with an exponent given in terms of the equation of state that
is known exactly from the thermodynamic Bethe ansatz [16]. The algebraic Bethe ansatz provides a
determinantal representation of correlations, from which their asymptotic behavior can be extracted [17]. More
recently, exact expressions for local second- and third-order correlations [18—-20], together with exact results for
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the one-body correlation function at asymptotically short distances [21] in terms of the equation of state have
been derived.

Away from the asymptotic short- and long-range regimes, the behavior of correlation functions is less well
known. For intermediate interaction strengths and arbitrary length scales one must resort to numerics to
determine the correlation functions. Results for the latter have been obtained using numerical methodologies
including quantum Monte Carlo [22, 23], and density matrix renormalization group approaches [24]. A recently
developed, integrability-based approach combines the decomposition of correlation functions into sums over
matrix elements (form factors) of certain simple operators between Bethe ansatz eigenstates [25, 26]. This
approach has generated results, for example, for static and dynamical equilibrium correlations at zero and finite
temperature for systems of up to N & 100 particles [27]. Other finite temperature results for correlation
functions have been obtained using imaginary time stochastic gauge methods [28, 29], taking the nonrelativistic
limit of a relativistic field theory [30], utilizing Fermi—Bose mapping for the strongly interacting gas [9, 31, 32],
employing perturbative expansions in temperature and interaction strength [33], as well as combining the
thermodynamic Bethe ansatz with the Hellmann—Feynman theorem [34].

Experiments with ultracold quantum gases are able to realize effectively 1D systems by tightly confining the
gas in two of the three spatial dimensions, either using optical lattice potentials or atom-chip traps [35-50].
These experiments are now probing the predictions of the Lieb—Liniger model. The configurability of quantum-
gas experiments allows for so-called quenches of the system, in which Hamiltonian parameters of the system are
abruptly changed, and thus for the study of the Lieb-Linger model out of equilibrium, providing even greater
challenges for theory.

The dynamically evolving correlations of the Lieb—Liniger gas in nonequilibrium scenarios are currently a
topic of significant interest, and a number of theoretical approaches have been applied. Notable examples
include exact diagonalization under alow momentum cutoff [51-55], mapping of the hard-core Tonks—
Girardeau gas to free spinless fermions [56—-63], phase-space methods [64], dynamic Bogoliubov-like
approximations [65] and tensor-network methods [66, 67]. References [68—71] employed nonperturbative
approximative functional-integral methods, while in [72] a dynamical Luttinger-liquid approach was taken.
Other calculations make explicit use of the integrability of the system. These are based on various Bethe ansatz
approaches, and include utilizing Fermi—Bose mapping [73, 74] and strong coupling expansions of the
coordinate Bethe ansatz wave function [75-77], combining the algebraic Bethe ansatz with other numerical
methods [78-80], and using the Yudson contour-integral representation for infinite-length systems [81, 82].
Recently, it was conjectured that the dynamics following an interaction strength quench are captured by a
thermodynamic Bethe ansatz saddle point state and excitations around it—the so-called quench action
approach [83—88]. In the spirit of the methodology of [25, 89], Gritsev et al [ 78] investigated a quench from
¥ = 0 — oo by combining algebraic Bethe ansatz expressions for form factors with truncated sums over states,
and employing Monte Carlo summation over the eigenstate components of the initial state.

In this paper we take a different approach, and calculate correlation functions of the Lieb—Linger model,
both in and out of equilibrium, by calculating matrix elements between Lieb—Liniger eigenstates directly within
the coordinate Bethe ansatz formalism. Given the known expressions for the coordinate-space forms of Lieb—
Liniger eigenstates, we generate symbolic expressions for matrix elements of operators between these states in
terms of the Bethe rapidities. The numerically obtained values of the rapidities can then be substituted to yield
essentially numerically exact values for the matrix elements.

In our previous work we applied this methodology to quenches from the ideal gas ground state to positive y
forup to N = 5 particles [90]. In section 2 we provide the details of the methodology, and describe how it can be
used to calculate the matrix elements of the Lieb—Liniger eigenstates. These symbolic expressions, and thus the
computational cost of evaluating them, grow combinatorially with particle number, restricting the method to
systems of only a few particles. However for small particle numbers N < 7 we obtain numerically exact results
for ground-state correlations, which are described in section 3. Our results demonstrate that local correlations in
the strongly interacting regime are already close to their thermodynamic-limit values for these few-body to
mesoscopic systems.

An additional advantage of our methodology is that it can also calculate overlaps between Lieb—Liniger
eigenstates corresponding to any two interaction strengths, which allows us to study the dynamics of quenches
of the interaction strength between arbitrary values. In section 4 we utilize this property to study the effects of
integrability on the relaxation of the Lieb—Liniger model following such a quench. In particular, we compare two
nonequilibrium quench scenarios with the same final Hamiltonian and state energy, but beginning from starkly
different initial states. Statistical mechanics would predict that the system would relax to the same thermal state
in both cases, but due to the integrability of the Lieb—Linger model not only are the time-averaged states
following the two quenches nonthermal, they are also distinct. After characterizing and comparing the
nonequilibrium dynamics following both quenches, we conclude in section 5.
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2. Coordinate Bethe-ansatz methodology

2.1.Lieb-Liniger model eigenstates

The Lieb—Liniger model [1] describes a system of N indistinguishable bosons subject to a delta-function
interaction potential in a periodic 1D geometry of length L. We work in units such that 77 = 1and the particle
mass m = 1/2,and so the Hamiltonian of this system reads

R N 82 N
H = —Zﬁ + ZCZ(S(X,' — x]'), (1)
i=1Y%i i<j

where cis the interaction strength. The coordinate Bethe ansatz yields eigenstates | { A;} ) of Hamiltonian (1)
with spatial representation [17]

Gy () = ((xi 1A}
Y ic sgn(x; — xp)
= A{)\j} Z exp lzxmAa(m) H 1 - —)\ h , 2)
o m=1 k>1 ak)y = No()
where the rapidities \; (or quasimomenta) are solutions of the Bethe equations

N A — A\
A= Zlmj _2 Zarctan(]—k). 3)
L L. c

The quantum numbers 1; are any N distinct integers (half-integers) in the case that N'is odd (even) [2],and >_,
denotes asum over all N!permutations o = {o(j) }of {1, 2,..., N}. The normalization constant reads [17]

_ Hk>l Ak — A
[N! det{Mpyy} [T, [ — AD* + TR

(C))

Az

where M isthe N x N matrix with elements

N
2c 2c
(M) Tk kl( W;Cz T O — )\m)z] A+ = A)? v

The rapidities determine the total momentum P = Z?’:l Ajandenergy E = Zjil )\? of the system in each
eigenstate. The ground state of the system corresponds to the set of N rapidities that minimize E and constitute
the (pseudo-)Fermi sea of the 1D Bose gas [17]. The Fermi momentum
_2r N -1

L 2

ke (6)

is the magnitude of the largest rapidity occurring in the ground state in the Tonks—Girardeau limit of strong
interactions [3]. The only parameter of the Lieb—Liniger model in the thermodynamic limit is the dimensionless
coupling v = ¢/n, where n = N /L is the 1D density. In finite systems, physical quantities also depend on the
particle number N (see, e.g., section 3.3), whereas the length L of our system, and therefore also the density n, are
arbitrary. Consequently, in this article we will specify both N'and +y. Unless specified otherwise, we measure time
in units of ky %, energy in units of k7, and length in units of k.

2.2. Calculation of correlation functions and overlaps
As the eigenstates | { \;} ) form a complete basis [91] for the state space of the Lieb-Liniger model, the expectation

value (O); = Tr{p(t)O} of an arbitrary operator O in a Schrodinger-picture density matrix / (¢) can be
expressed as a sum of matrix elements of O between the states | { Aj} ). In particular, in a pure state
[Y(t) = E{)\f} Cop 1A} ) we have

(O)r = (W 1IOI (1)= D3 Cly ) oy O ({NFIOH A, )

IV
whereas in a statistical ensemble with density matrix pgp = 3, A p{sib} [{A;}) ({Aj}], we find
J

(0)=>"pix) (AHOHAD). ®)
{Aj)
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In this article, we focus in particular on the normalized mth-order equal-time correlation functions

o 2t 2] Ty (!
g(’")(xl voees Xomy xlr ""’xrln; f) = _ (V' (x) - (x )A (iﬁ) A(xn;» = 9)
[AG)) - (AGxm)) (Alx)) - (Alx,))]
where \flm(x) is the annihilation (creation) operator for the Bose field and 71 (x) = \@T(x)\i/(x). Here and in the
following we drop the time index f of the state vectors.
Since the Hamiltonian we consider in this article is translationally invariant along the periodic volume of
length L, the mean density (#i(x)) = nis constant in both time and space, and
GUD(XY vy Xy X yoer X3 1) = <¢'T(x1) U )W) - W(x)))/n™. The correlation functions
g('") (X1 5eres Xops x{ yees xr;; t) can therefore be expressed as the expectation values of the operators

GO (XY vy Xy X yeer X)) = \f/T(xl) e @T(xm)\i/(xf) ‘e \i'(x,;)/nm. We note that for the same reasons as above
the matrix elements ({ X} [§ (X1 5..., Xp» X 5.0 X,,) | { A} ) are invariant under global coordinate shifts

x — x + d and thus, without loss of generality, we can set one of the spatial variables to zero. For the first-order
correlation function, the matrix elements are

(XD, )N} = (N T @) 1{A))
= %fdxl dXNfl CT)\S}(O) X1 yeees fol) C{)\j}(x) X1 5eees fol)- (10)

The evaluation of the integral in equation (10) is complicated by the sign function in equation (2) and the
associated nonanalyticities in ) ({x;}) where any two particle coordinates x; and x; coincide. However, we can
use the Bose symmetry of the wave function (| ) ({xi}) to reexpress this matrix element as a sum of integrals

(NFIEDO, 01 {A)) = — zf - g
Rn- 1/’(x)
X C{/\;}(O) X1 )--->xN71) C{/\j}(xl seees Xy Xy X1 5eees fol)) (11)

over the ordered domains [10]
Rarj(x): 0 < <o <xj < x < xjyy < - <xy < L. (12)
Substituting the coordinate-space form (equation (2)) of the Lieb-Liniger eigenfunctions, we obtain

ic ic
/ - 1 + -
A ZZH [ e Aa<k>) H ( Aviiy = A '<k>]

o o j>k j'>K

X Z exp(l)\o(f+1)x)f

(NHEO©, A} = oA

N-1
o dXN—leXP (1 Z (/\o'(f“)(m) - Air’(m+1))xm]’
m=1

(13)
where 0+ = (¢ (1),...,0 (©), 0 (€ + 2)s..., a (N)). The matrix elements of the second-order correlation
operator §(0, x) = G0)8 0T () ¥ (0) / n? are similarly given by

(DO DY) = —Ap Ay 22 T [ ﬁ] Il (H—A o iCA ,(k)]
o(j o ]

Rn-1, f(x)

o o j>k j'>K
N-2
X Z exp (i(Ay(r+2) — >‘(7'(f+2))x)f - dxn-2
£=0 Rn- zt’(x)
N-2
X eXP[ Z (Agtreaimy — N oD )xm)) (14)
m=1

where 00712 = (6 (2),..., 0 (€ + 1), 0 (£ + 3),...,0(N))and o is defined analogously in terms of the
elements of o’. In the limit x — 0 this expression simplifies somewhat, and in general the matrix elements of the

local mth-order correlation operator ™ (0) = [@-‘-(0)]'” [\TI(O)]'” / n™ are given by the expression

(MO = A, ATy ST ( ﬁ] I [Hi—c]
o(j 4 i >k

oo ok Aoy = Aol iy

RN-m

N—m
X Z dxg - demeXp[i Z ()\a(ern) - >‘:7/(m+n))xn)) (15)
n=1
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where the domain Ry;: 0 < x; < % < ---<xpy < L. We note, moreover, that equations (13)—(15) include as
degenerate cases the diagonal matrix elements (see [10]) appropriate to the calculation of correlations in the
ground state (section 3) and in statistical ensembles (section 4).

The calculation of correlation functions from equations (13)—(15) involves the evaluation of integrals of the
general form

M X¢+2
f dxg -+ dxprexp iz’fmxm f dxMemeMf dogpy_ elrm-1xm-1 f dxy jeirerxes
RM,K(X) m=1

f dx;elhfxff dxf 1elhf 1X£-1 .. f dxelhm

(16)

where (for the repulsive interactions ¢ > 0 considered in this article) the &, are real numbers. A single closed
form for this integral does not exist, as in general one or more k,,, may vanish, and this must be handled
separately from the case of x,, = 0. However, given knowledge of the particular sets of rapidities { \;} and { /\;}
(and permutations o and ¢”), and thus of the locations of zero exponents k,, = 0 in equation (16), each
individual integral of this form can be reduced to an algebraic expression in terms of { x,,, }. More specifically,
each successive integration f dx,, yields a term (involving, in general, x,,; 1) arising from the primitive integral
[92]

f dx xPe = —(i/k)PHT(p + 1, —ikx)
. I (k)
= pli/kprieiy

s=0

17)

in the case that x,, is nonzero, or from f dx x? otherwise. In our calculations, the construction of algebraic
expressions for the integrals occurring in equations (13)—(15) in terms of the rapidities J; is efficiently performed
by a simple computer algorithm that accounts for and combines the symbolic terms that arise from these
successive reductions. We note that, e.g., each matrix element ( { )\;-} 12D (0, x)|{ Aj})isasum of Nintegrals over
(N — 1)-dimensional domains and that the integrand in each case comprises (N!)? terms [10], illustrating the
dramatically increasing computational cost of evaluating correlation functions with increasing N. Nevertheless,
the explicit closed-form expression for the integral produced by our algorithm can be evaluated to obtain a
numerically exact result by substituting in the values of the rapidities. The latter are obtained by solving

equation (3) numerically using Newton’s method, starting in the Tonks—Girardeau regime of strong interactions
~ > 1and iteratively progressing to smaller values of y using initial guesses given by linear extrapolation of the
solutions at stronger interaction strengths.

We note that this algorithmic approach also provides for the efficient and accurate calculation of the
overlaps ({ A} [ { uj} ) between eigenstates of Hamiltonian (1) corresponding to different values of -y, which we
make use of in our analysis of nonequilibrium dynamics in section 4. In particular, the overlap between an
arbitrary eigenstate | { \;} ) of H at a finite interaction strength 7 > 0 and the noninteracting ground state |0),
with constant spatial representation ( {x;}|0) = L~N/2, is simply given by

. N
({Aj}10) = N/2 Ay 2oT1 [ %] R dxl"'deeXP(—iZAm)xn]a (18)

o j>k a(j) — )‘U(k) n=1

which can easily be evaluated semi-analytically using our algorithm. In practice we find that the results we obtain
for the overlaps from our evaluation of equation (18) agree with the recently derived closed-form expressions for
these quantities [84, 93-95], which imply in particular that ({\;}|0) o 1/ A? asany \; — oo.

3. Ground-state correlation functions

As afirst application of our methodology we calculate the correlation functions of the Lieb—Liniger model in the
ground state for up to N = 7 particles. In this case, we need to evaluate only the diagonal elements of

equations (13)—(15) in the ground-state wave function, thereby obtaining exact algebraic expressions for
correlation functions in terms of the ground-state rapidities, which are themselves determined to machine
precision (section 2.2). The ground-state correlations of the Lieb—Liniger model have been considered
extensively in previous works (see [96, 97] and references therein), and we compare our exact mesoscopic results
to those obtained with various other methods and approximations, for finite system sizes as well as in the
thermodynamic limit. This allows us to clarify the utility and limitations of calculations, such as ours here and in
[90], that involve only small particle numbers.
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Figure 1. One- and two-body correlations in the Lieb—Liniger ground state, for N = 7 particles. (a) Nonlocal first-order coherence

gD (x). The black dotted—dashed line indicates the asymptotic long-range behavior gV (x) o |x|~!/2 of a Tonks—Girardeau gas in the
thermodynamic limit. (b) Corresponding zero-temperature momentum distribution 7(k;). The black dotted—dashed line indicates
the universal high-momentum power-law scaling 7i(k) o< k~* common to all positive interaction strengths [21]. (¢) Nonlocal second-
order coherence g?(x). (d) Corresponding static structure factor S(k).

3.1. First-order correlations

We begin by considering the first-order correlation function gV (x) = gV (0, x) in the ground state of the Lieb—
Liniger model. In figure 1(a) we plot g (x) for N = 7 particles for a range of interaction strengths -, which
exhibits the expected decrease in spatial phase coherence with increasing y[16]. As is well known, true long-
range order, lim, .., g (x) = ny > 0[98,99], is prohibited in an interacting homogeneous 1D Bose gas in the
thermodynamic limit, even at zero temperature (see [97] and references therein). Indeed the Lieb—Liniger
system is quantum critical at zero temperature, and the asymptotic long-range behavior of gV (x) is a power-law
decay (so-called quasi-long-range order) [17].

This power-law scaling of gV (x) is only expected to be realized at separations x large compared to the
healinglength £ = 1/./7 and, in a finite periodic geometry such as we consider here, is curtailed by the finite
extent L of the system (see, e.g., [16]). Indeed, for v = 0.1, the power-law decay is not visible in our finite-sized
calculation, although as the interaction strength ~yincreases gV (x) exhibits behavior consistent with power-law
decay over an increasingly large range of x, see figure 1(a). In particular, for > 10, our results for gV (x) seem
to converge toward the asymptotic scaling of the Tonks—Girardeau limit (black dotted—dashed line) with
increasing 7.

Due to the translational invariance of our system, the first-order correlations of the Lieb—Liniger ground
state are encoded in the momentum distribution

fitk;) = n de e ikixg (D (x 19
(kj) . g (x), (19)

which, in our finite periodic geometry, is only defined for discrete momenta k; = 27j /L, with jan integer. In
figure 1(b) we plot the momentum distributions 7i(k;) corresponding to the first-order correlation functions
g (x) shownin figure 1(a). The first feature that we note in figure 1(b) is that for all interaction strengths, 7i(k)
exhibits a power-law decay 7i(k) o< k~* (dotted—dashed black line) at high momenta. This is a universal result
for delta-function interactions in 1D [21, 89, 100] (and indeed also in higher dimensions [101]). The effects of
the finite extent L of the system on the first-order correlations are again evident in this momentum-space
representation. For v = 0.1, no deviation from the ock~* scaling is observed for the smallest (nonzero) momenta
kjthat can be resolved in the periodic geometry. For larger values of the interaction strength, 7i(k) departs from
the ock™* scaling at increasingly large values of k with increasing 7, and develops a hump at momenta near kg for
v 2 10[89]. We note that although the small-k behavior of 7i(k) tends towards the ock~!/2 scaling exhibited by
the Tonks—Girardeau gas in the thermodynamic limit, the rounding off of the power-law decay of ¢V (x) as

x — L/2 precludes 7i(k) from reaching the known asymptotic k — 0 behavior in our finite geometry.
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Figure 2. Interaction-strength dependence of the local second-, third- and fourth-order coherence in the Lieb-Liniger ground state,
for N = 7 particles. To aid visibility, we plot g®(0) scaled by a factor of 10", and g (0) scaled by a factor of 10~ ' Dotted—dashed
lines indicate asymptotic weak- (v < 1) and strong-coupling (y > 1) expressions for ¢ (0), g® (0) and g (0) in the
thermodynamic limit (see text).

3.2.Second-, third-, and fourth-order correlations
In figure 1(c), we present the nonlocal second-order coherence g® (x) = ¢®(0, x, x, 0), which provides a
measure of density-density correlations, for N = 7 particles at a range of interaction strengths ~. In the limiting
case of an ideal gas (y = 0), the ground state of the system is a Fock state of N particles in the zero-momentum
single-particle mode, and the second-order coherence gw(zz) X =1-N ~1 (horizontal dashed line) is therefore
independent of x. As the interaction strength ~yis increased, the second-order coherence is increasingly
suppressed at zero spatial separation and correspondingly enhanced at separations x > 2kg '. Oscillations in
2@ (x) develop at finite x as the system enters the strongly interacting regime « >> 1[9, 17] and, in particular, for
v = 100 (dashed cyan line), our numerical results are practically indistinguishable from the exact Tonks—
Girardeau limit result (solid black line) [3].

An alternative representation of the second-order correlations of the ground state is given by the static
structure factor S(k), which is related to g® (x) by [11]

Stki) =1+ nj;L dx e **[gP(x) — 1]. (20)

In figure 1(d) we present the structure factors S(k) corresponding to the correlation functions g‘® (x) shown in
figure 1(c). For all values of 7, S(0) = 0 due to particle-number conservation and translational invariance. In the
ideal-gas limit (red circles) S (k;) = 1 for all nonzero k;. In the opposite limit of a Tonks—Girardeau gas

kil (1 — N7
S’y:oo(kj) = 2kF
! kil > 2k,

kil <2k
| ]I F (21)

which tends, in the thermodynamic limit, to the well-known result (see, e.g., [9]) S (k) = |k|/2kg for |k| < 2k,
and S (k) = 1for |k| > 2kg. Justas for g® (x), we observe that for y = 100 (cyan plus symbols), our numerical
results for S(k) are almost identical to the known exact expression (equation (21)) for the Tonks—Girardeau limit
(black crosses). For smaller values of y our mesoscopic results for S(k) appear consistent with those of [22, 25],
obtained using quantum Monte Carlo and algebraic-Bethe ansatz techniques, respectively.

We now focus in more detail on local correlation functions. We note that the local second-order coherence
has recently been proposed as a measure of quantum criticality in the 1D boson system [102], while the local
third-order correlations have received increasing attention both in theory [103] and experiment [47, 104—106].
The local fourth-order correlations for the Lieb—Liniger model have also been investigated [ 107]. In figure 2, we
plot the local second-order coherence g (0) (solid red line), together with the local third-order coherence

g®(0) = { [\TJT(O) Prio) P) / n? (dotted green line), and the local fourth-order coherence

g®(0) = ( [\ifT(O)]4 [¥(0) 1*) / n* (dashed blue line) for N = 7 particles and a broad range of interaction
strengths . For comparison, we also plot the asymptotic results obtained in the Bogoliubov limit of weak
interactions (7 — 0) in the thermodynamic limit [12, 18] (left-hand dotted—dashed lines). The numerical
results for small -y are broadly comparable to these thermodynamic-limit results. However, for the small particle
numbers considered here, the suppression of g (0), g®(0), and g™ (0) due to interactions in the limit of small
~is overshadowed by the suppression due to the finite population of the system [20]. At larger ~, the effects of
interactions dominate, and the numerical results converge closely to the appropriate strong-coupling
expressions [18] (right-hand dotted—dashed lines). We note, therefore, that the local correlations of the Lieb—
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Figure 3. Dependence of first- and second-order correlations in the Lieb—Liniger ground state on particle number N for v = 10. (a)
First-order correlation function g (x). (b) Corresponding momentum distribution function i(k;). Black dotted—dashed lines in (a)
and (b) indicate the asymptotic infrared scaling of gV (x) and 7i(k), respectively, with Luttinger parameter K = 1.40 (see text). (c)
Second-order correlation function g? (x). (d) Corresponding static structure factor S(k). The black dotted—dashed lines in (c) and (d)
represent the phenomenological expressions of [108] for g® (x) and S(k) in the thermodynamic limit, respectively.

Liniger ground state, and particularly their scaling with -, appear to be quite insensitive to the infrared cutoff
imposed by the finite extent of our system in the strongly interacting regime ~ > 1.

3.3. System-size dependence

The results we have obtained so far indicate that, as expected, the small size of our system leads to corrections to
correlation functions as compared to their known asymptotic forms in the thermodynamic limit. However, our
results also suggest that the effects of finite system size are comparatively less important for local correlations,
particularly in the limit of large interaction strengths v > 1. To further elucidate the potential significance of
finite-size effects in our calculations of nonequilibrium dynamics [90], here we give a brief characterization of
the dependence of correlation functions of the Lieb—Liniger ground state on the particle number N at a fixed
value of the interaction strength .

Specifically we consider the case for 7 = 10, as this value places the system in the strongly interacting regime
~ > 1(which appears less sensitive to finite-size effects than the weakly interacting regime v < 1), while still
exhibiting significant deviations from the Tonks—Girardeau limit (see, e.g., [9]). Whereas elsewhere in this paper
we quote momenta (lengths) in units of k (kg '), in comparing results between systems with different particle
numbers N we quote momenta (lengths) in units of 77 [ (771)~'], so as to avoid a potentially misleading
dependence of the unit of length on N (see equation (6)).

In figure 3(a) we plot gV (x) for particle numbers N = 3, 4, 5, 6, and 7. For small x, the curves fall nearly
perfectly on one line. The same behavior can be observed for the large-k tail of the corresponding momentum
distribution 7i(k), which we plotin figure 3(b). Indeed, at larger momenta k > 27n, 7i(k) appears to exhibita
rapid collapse to a single curve with increasing N[21, 109]. However, the differences in 7 (k) are so small that
they can not be seen in figure 3(b). For small momenta, our choice of units implies an increasing resolution with
increasing particle number, specifically k; = 27/L x (7n)~! = 2/N.However, this lowest resolvable
momentum seems to fall on one line for increasing particle number, indicating that the infrared behavior of
large systems can be at least partly accessed by our mesoscopic system sizes.

Luttinger-liquid theory predicts along-range power-law decay ¢ (x) oc |x|~1/?K, where the Luttinger
parameter K can be calculated from the thermodynamic limit of the Bethe ansatz solution (see, e.g., [ 16, 17] and
references therein). For our parameters we have K = 1.40, implying an asymptotic scaling gV (x) oc |x|~%-3%7
(black dotted—dashed line in figure 3(a)). This corresponds to a power-law behavior
(k) oc [k|7' + /2K = |k|79643[16] (dotted—dashed line in figure 3(b)) for small momenta. We note that this
infrared scaling is a true many-body effect and as such does not show up for N = 2 particles. Indeed, one can
show analytically that, for N = 2, the momentum distribution 7i(k) oc (A} — k?)~?and thus k—*is the highest
power in the series expansion of 7i(k).
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In figure 3(c) we plot the nonlocal second-order coherence g (x) for y = 10and N = 3, 4, 5, 6,and 7.
The corresponding static structure factor S(k) is shown in figure 3(d). In figure 3(d) we also plot (black dotted—
dashed line) the form of S(k) resulting from the phenomenological expression proposed in [108] (see also [110]).
This expression involves the limiting dispersions and edge exponents of the Lieb—Liniger model, which we
obtain by numerically solving the appropriate integral equations [1, 111]. We also plot the corresponding
prediction for g® (x) (black dotted—dashed line) in figure 3(c). We note that the numerical results for our
mesoscopic systems are, in general, rather close to the phenomenological thermodynamic-limit expressions
even for the relatively small particle numbers considered here.

4. Application to nonequilibrium dynamics

We now apply our methodology to the nonequilibrium dynamics of the Lieb—Liniger model. Specifically, we
consider the evolution of a system, initially prepared in the ground state of Hamiltonian (1) with interaction
strength -, following an abrupt change, at time ¢ = 0, of the interaction strength to a distinct value y =
—aso-called ‘interaction quench’. The evolution of the system following such a quench is generated by
Hamiltonian (1) with interaction strength -, which we denote by H (7) hereafter. The time-evolving state is
given atall times ¢ > 0 by

lh (@) = Coye ET{A}), (22)
{Aj}

where | { A;} ) are the eigenstates of H (7) with energies E(ypand Cpyy = ({Aj} [tho) are the overlaps of the | { \;})
with the initial state |1/i). The expectation value of an arbitrary operator O in the state [ (¢) ) is given by

(O) = (IO ()= D3 CliCray €9 ({NFIOH D). (23)
V)
We use the methodology described in section 2 to evaluate both the overlaps C; ) and the matrix elements
({ )\;} 10|{ Aj}) that appear in equation (23).

One of the features of our methodology is that it allows us to describe quenches between arbitrary interaction
strengths. In this paper we consider two interaction-strength quenches, from different initial interaction
strengths +;, to a common final value of the coupling ~y. Specifically, we consider a quench from the
noninteracting limit , = 0 (similar to those previously studied in [63, 78, 84, 90, 112—115]) and a quench from
the correlated ground state obtained for a strong interaction strength ~, = 100. As H (v) is time independent
following the quench, energy is conserved during the dynamics. We choose the final interaction strength after
the two quenches such that the postquench energy is the same in both cases.

The statistical description of the dynamics of sufficiently ergodic systems is usually based on the assumption
that the energy is the sole integral of motion, such that the equilibrium system is entirely determined by its
energy. If this would be the case for our system, the two quenches would lead to the same equilibrium state.
However, the dynamics according to the integrable Lieb—Liniger Hamiltonian are strongly constrained by the
conserved quantities other than the total energy. By performing two different quenches to the same final
Hamiltonian and energy, we investigate the effects of integrability on the postquench evolution of the Lieb—
Liniger system.

The conserved energy following the quench is the energy of the system at time t = 07,

Eypy = (0 (ODIH M (0D))

dEg () (24)
dy o

0

= Eg(v) + (v — 7)

where Eg () is the energy of the ground state |1)) of the initial Hamiltonian A () and we used the well-known
result gf/z) (0) = n2N"'dEg () / d [18], which implies that E, ., is given by following the tangent to the curve
Eg () at 7, out toy. Here, gﬂg) (0) = {1ho|g®(0)|1)) is the local second-order coherence in the initial state. In
the case of a quench from the noninteracting ground state (7, = 0), equation (24) reduces to the simple
expression E_., = (N — 1)n*y [66, 90], implying that the energy imparted to the system during the quench
divergesas v — oo [63]. By contrast, in a quench from the Tonks—Girardeau limit v, — oo to a finite
interaction strength -y the final energy is bounded from above, Eo ., < Eg (00), by the ground-state energy of
the Tonks—Girardeau gas. Nevertheless, according to equation (24), a final interaction strength 0 < v* < 100
such that Eygg_,+ = Eq_,, does exist.

Here, we consider quenches of N = 5 particles, and determine this final interaction strength to machine
precision, inferring a value v* = 3.7660 ... from numerical solutions for the energy and local second-order
coherence of the ground state at finite 7y (section 3.2). We note that although the overlaps C; ) of the initial state
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Figure 4. Time evolution of local second-order correlations for N = 5 particles following quenches of the interaction strength to a
final value v*=3.7660 ... from initial values ~, = 0 (red dotted line) and ~, = 100 (blue dashed line). The horizontal solid (dotted—
dashed) line indicates the prediction of the diagonal ensemble for g®(0) for the quench from ~, = 100 (v, = 0).

1)) with the eigenstates of H (7*) can be calculated analytically in the case of the quench from Y% = 0[93-95],
for the quench from , = 100 no closed-form expressions for these quantities are known, and thus their
numerical values must be determined using the semi-analytical methodology described in section 2.2.

An important summary of the postquench expectation value of an operator (equation (23)) is provided by
the time-averaged value

6:liml

T—00 T

" dr ()10 (). (25)

Neglecting degeneracies in the spectrum of H (7*) (see discussion in appendix B), such averages are given by the
expectation values (O)pg = Tr{pp; O} of operators O in the density matrix
Poe = 22IC0 PHA) ({A} (26)
(A
of the diagonal ensemble [116, 117].

Formally, the sums in equations (22), (23), and (26) range over an infinite number of eigenstates | { Aj} ),and
thus the basis over which ¢ (#) ) is expanded must be truncated in our numerical calculations. By only including
eigenstates with an absolute initial-state overlap | C , | larger than some threshold, we consistently neglect small
contributions to correlation functions from weakly occupied eigenstates and minimize the truncation error for a
given basis size. We quantify this truncation error by the violations of the normalization and energy sum rules, as
we discuss in appendix A.

4.1. Evolution of two-body correlations

In figure 4 we plot the time evolution of the local second-order coherence g‘¥ (0, t) for N = 5 particles
following quenches of the interaction strength from initial values v, = 0 (red dotted line) and ~, = 100 (blue
dashedline) to the common final value v*. For the quench from the noninteracting initial state (7, = 0), as time
evolves the local second-order coherence decays from its initial value g® (0, t = 0) = 1 — N~!before settling
down to fluctuate about the diagonal-ensemble expectation value g(z) (0) (horizontal dotted—dashed line). This
behavior is consistent with results obtained for similar quenches of the interaction strength from zero to a
positive value in [90]. For the quench from 5, = 100, the value of ¢‘?(0) in the initial ‘fermionized’ state is
2@(0) ~ 1073, In this case g®(0, t) rises as time progresses, and then exhibits somewhat irregular oscillations
about g(z) (0) (horizontal solid line). We observe that the decay (growth) of g¥(0, t) to its diagonal-ensemble
value and the onset of irregular oscillations about this value occur on comparable time scales in the two
quenches.

We note that the predictions of the diagonal ensemble for the local second-order coherence gl()zE) (0) are very
similar for the two quenches, despite the significant difference between the values of ¢‘»(0) in the two initial
states. However, they are clearly distinct— gl(jzlg (0) for the quench from the noninteracting state is in fact larger
than that for the quench from the correlated state by an amount ~20.0125, demonstrating that the system retains
some memory of its initial state in the long time limit as is expected for an integrable system. We analyze this
difference in more detail in section 4.3.

We now turn our attention to the time evolution of the full nonlocal second-order correlation function
gP(x, t).In figure 5(a) we show the dependence of g (x, t) on separation x for the quench from the
noninteracting initial state at four representative times. (Note that the upper limit x = 27k;; ' of the x axis in
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Figure 5. Time evolution of the nonlocal second-order coherence function g (x, t) following quenches of the interaction strength
to v* from initial values ((a)—~(c)) 5, = 0 and ((d)—(f)) 5, = 100. All datais for N = 5 particles. ((a) and (d)) Correlation function
g@(x, t) atfour representative times t. Black dotted—dashed lines indicate the predictions of the diagonal ensemble for the
equilibrium form of this function. ((b) and (e)) Evolution of coherence g?(x, t) and ((c) and (f)) change in coherence
gP(x, t) — g®(x, t = 0) forshort times t < 0.5kz 2. Black lines in (c) and (f) indicate power-law fits to the position x(#) of the first
extremum of the correlation wave, which yield x oc $16£0012and x o ¢0-496£0.005 for quenches from ~;, = 0 and , = 100,
respectively.

figure 5(a) corresponds to x = L/2 in the present case of N = 5 particles.) Att = 0 (horizontal solid line), the
second-order coherence has the constant form of the noninteracting ground state. At short times (e.g.,
t = 0.01 ky %, red dashed line) a minimum in g¢® (x) develops at zero separation, together with the

L
corresponding maximum required by the conservation of f dx g®(x, t) [66]. As time progresses a wave
0

pattern of maxima and minima develops and propagates away from the origin (e.g., t = 0.1k %, green dotted
line). By time ¢t = 1 kg 2 (blue dotted—dashed line), the distinct maxima and minima of g (x, t) have
broadened in such a way that they are no longer clearly distinguishable and the correlation function agrees
reasonably well with its diagonal-ensemble form (black dotted—dashed line) for small separations

x < 0.25 x 27kg ! In figure 5(b) we show the full space and time dependence of g® (x, t) following a quench
from ~, = 0, which gives a more complete picture of the development of a correlation wave at short length
scales and its propagation to larger values of x as time progresses. The correlation wave we observe here is
consistent with the results of previous investigations of the dynamics following the sudden introduction of
repulsive interactions in an initially noninteracting gas [63, 64, 66, 78, 118].

In figure 5(d) we plot the spatial form of g (x, t) for the quench from ~, = 100 at the same four
representative times considered in figure 5(a). Despite the obvious distinction that the initial (f = 0, solid gray
line) correlation function is in the fermionized regime with g (0) < 1, the behavior of g (x, t) for this
quench is qualitatively similar to that observed for the quench from ~; = 0, in that at early times (e.g.,

t = 0.01k; %, red dashed line), deviations from ¢ (x, t = 0) occur only at small separations x < 27ks .
Moreover, as time evolves and ¢g® (0, t) increases towards g(z) (0), larger modulations of g®(x, t) about its
initial functional form develop (e.g., t = 0. lkF , green dotted line). At later times (e.g., t = 1kp 2 blue dotted—
dashed line), g¥(x, t)is close to g(z)(x) at small separations x < 0.25 x 27kg: !, but exhibits large excursions

away from itat larger x. In figure 5(e) we plot the full space and time dependence of g'¥ (x, t) following the
quench from ~, = 100. Although the behavior of g (x, t) here obviously differs from that following a quench
from the noninteracting initial state (figure 5(b)), with the ‘fermionic’ depression around x = 0 lessening rather
than growing in magnitude, a similar pattern of propagating correlation waves in ‘¥ (x, t) can again be seen.
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The correlation-wave pattern common to both quenches is more clearly exhibited by the
changeg® (x, t) — gP(x, 0) in the correlation function following the quench, which we plot in figures 5(c) and
(f). This representation of the postquench second-order coherence of the system reveals a remarkably similar
pattern of propagating waves in both cases, although the maxima and minima of the two wave patterns are
inverted relative to one another. Fitting a power law to the position x(¢) of the first propagating extremum of
each of the two correlation waves, we find x oc 193160012 for the quench from +, = O and x oc #%4%6%0.005 for
the quench from , = 100, which we indicate by the solid black lines in figures 5(c) and (f). These power-law
trajectories are consistent with the ‘telescoping’ x o< t'/2 behavior obtained for a quench v = 0 — ocin[63],
and for quenches from finite repulsive interactions to the noninteracting limit in [119] (see also [120]). The small
scale features on top of the main propagating extrema differ for the two quenches, with fast oscillations
appearing more pronounced for the quench v = 0 — ~* in figure 5(c). Even though hardly visible in
figure 5(f), they are still present for the quench from v = 100 — ~*, but due to the different distribution of
overlaps in the final basis compared to the quench from 7, = 0 (see section 4.3), they contain more high-
frequency components and therefore the fine structure differs.

4.2. Time-averaged correlations

We now compare the time-averaged second-order correlation functions following the two quenches with the
form of this function that would be obtained if, following the quench, the system relaxed to thermal equilibrium.
Asin [90] we make use of the canonical ensemble, for which the density matrix is given by

Pee = Zck ZefﬁE”ﬂ A (LA (27)
{Aj}

where the partition function Zcg = 3, A} EXP (—BEy»;))- The inverse temperature 3is determined implicitly by

fixing the mean energy in the state P to the common postquench energy, i.e., Tt { ﬁCEI:I (7"} = Eg—~+.The
sum in equation (27), like that in equation (26), formally ranges over an infinite number of eigenstates. We
therefore truncate this sum by applying a cutoff in energy, as described in appendix A.

In figure 6(a) we plot the second-order correlation function ggg (x) = Tr{pcg £%(0, x) } in the canonical

ensemble (black dotted—dashed line), along with the diagonal-ensemble predictions gl()zg (x) for the quenches

from ~, = 0 (red solid line) and from -, = 100 (blue dotted line). For comparison we also plot the correlation
functions in the initial states with v, = 0 (horizontalline), v, = 100 (gray dashed line), as well as the ground

state for v = ~* (solid black line). For the quench from ~, = 0, the time-averaged value g]()ZE) (0) is smaller than
the corresponding thermal value géé) (0), consistent with the results of [84, 90, 112]. In fact g](DZE) (x) is suppressed
below gézE) (x) over arange of separations x < 0.4 x 27ky . Correspondingly, g](sz) (x) > gézE) (x) atlarger

separations x due to particle number and momentum conservation. For the quench v = 100 — ~*, the
diagonal-ensemble coherence function glgzlg (x) is similar in shape to that of the quench from ~, = 0. However, it
is somewhat smaller at x = 0, and correspondingly larger at large x. This indicates some memory of the initial
state preserved by the dynamics of the integrable Lieb—Liniger system [58, 85]. Despite these differences, on the
whole both functions ggg (x) are comparable to géZE) (x) (see also [66]). We note, however, that they are also both
reasonably close to the ground state result for g'® (x) at interaction strength v* (solid black line), although the
local value g2 (0) for both quenches is much closer to the thermal value than the ground state value.

DE
Since the system is in its ground state before the quench for both 4, = 0 and ~, = 100, and the total

momentum operator P commutes with the Hamiltonian, the postquench states at 4* only have support on
eigenstates with total momentum P = 0. Furthermore, the spatially structureless initial state at 7, = 0 implies
additional parity-invariance ({ \;} = {—;}) in Bethe rapidity space for the postquench eigenstates [93-95].
Thus an interesting question to ask is if we constructed a canonical density matrix (27) restricted to P = 0 states,
or one further restricted to parity-invariant states (which are a subset of the P = 0 states), would these yield
better agreement with the diagonal ensemble predictions for the quenches? We have performed these
constructions with the temperature in both cases fixed via the postquench energy in the same way as for the
canonical ensemble, see equation (27) and the following text.

In figure 6(b), we plot the resulting second-order correlation function gc(? (x) = Tr{pcg £%(0, x) } for the
standard canonical ensemble (black dotted—dashed line), as well as in the restricted P = 0 ensemble (solid black
line), and the parity-invariant ensemble (solid gray line). We also include the diagonal-ensemble predictions
g](DZE) (x) for the quenches from ~, = 0 (red solid line) and from -, = 100 (blue dotted line). It can be seen that the
restricted ensembles give results for the correlation function that are quite close to the standard canonical
ensemble, and are no closer to the diagonal ensemble results.
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Figure 6. Time-averaged second-order correlation functions following quenches of the interaction strength to v* = 3.7660 ... from
initial values ~, = 0 (red solid line) and ~, = 100 (blue dotted line). Results are for N = 5 particles. (a) The correlation functions
g@(x) in the initial states with ~, = 0 (horizontal solid line) and ~, = 100 (gray dashed line), as well as for the ground state at y = +*
(solid black line) are also indicated for comparison. The black dotted—dashed line corresponds to the thermal value of the correlation
function following relaxation, as predicted by the canonical ensemble (see text). (b) Comparison of the time-averaged second order
correlation functions to the various ensembles defined in the text: the standard canonical ensemble (black dotted—dashed line), the
canonical ensemble restricted to zero-momentum eigenstates (black solid line), and the canonical ensemble restricted to parity-
invariant states (gray solid line).

4.3. Contributions to relaxed correlation functions
The relaxation of the nonlocal correlations g (x, t) takes place on a similar time scale to that of the local

coherence g (0, t) for both of the quenches considered here. This should be contrasted with, e.g., the behavior
following a quench from the noninteracting limit to -y = 100 reported in [90], in which g® (0, t) decays rapidly
and the development and propagation of correlation waves occurs over a significantly longer time scale. We
identify the absence of a significant separation of the time scales of local and nonlocal evolution here as a
consequence of the fact that only a small number of eigenstates contribute significantly to the postquench
dynamics (see [90] and references therein). Indeed, we find that the purity Ipg = Tr{(ppg)?} of the diagonal-
ensemble density matrix takes values ~0.52 for the quench v = 0 — ~v* and ~0.63 for the quench

v = 100 — ~*, indicating rather weak participation of the eigenstates | { \;} ) in the dynamics. The difference in
the purities can largely be attributed to the somewhat greater occupation of the ground state of H (*) following
the quench from the v = 100 initial state.

To further illustrate the difference in the final states, in figure 7 we plot the occupations of eigenstates with
energy Ey ) for the quenches from 5, = 0 (red crosses) and , = 100 (blue squares). For the quench from
v, = 100, significantly more eigenstates have occupations above a given threshold than in the case of 5, = 0,
resulting in a much larger basis size in this case. However, the occupation of the ground state of H (*) s
somewhat larger for the quench from +, = 100 than for , = 0, and the low-lying excited states are
comparatively weakly occupied for , = 100, see figure 7(b). This result is reasonably intuitive, as the ground
state for v = ~* is moderately correlated, and will be more similar to the vy = 100 than the v = 0 ground state.
The distribution of normalization over eigenstates | { A;} ) is thus more sharply localized’ on the ground state in
this case, resulting in the somewhat larger value of the purity Ihg following this quench.

For comparison, we also plot the occupations of the three ensembles introduced in section 4.2 in figure 7.
The restrictions lead to a reduction in available eigenstates for any given energy-window, and correspondingly
the temperature of the canonical ensemble is smaller than that of the P = 0 ensemble, which is in turn smaller
than that of the parity-invariant ensemble. The occupations of eigenstates for the quench from v, = 0 (red
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Figure7. (a) Populations |C ;) [? of eigenstates with energies E ») following quenches to ¥ =3.7660 ... from ~, = 0 (red crosses)
and 7, = 100 (blue squares). Note that the y-axis is plotted on a logarithmic scale. For the quench from ~;, = 100, additional
nonparity-invariant states appear in degenerate, parity-conjugate pairs and since their contributions is identical, the points lie on top
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E{; for the canonical ensemble. The gray line with gray filled circles, and the black dashed line with empty black circles are the
corresponding results for the P = Orestricted ensemble, and the parity-restricted ensemble, respectively. (b) Low-energy part of (a).

crosses) and from v, = 100 (blue squares) are suggestive of power-law decay at high energies. For small energies
on the other hand, figure 7(b) shows that the functional form is not incompatible with exponential decay.

5. Conclusions

We have described a method to calculate matrix elements between eigenstates of the Lieb—Liniger model of one-
dimensional delta-interacting bosons. This method is based on the coordinate Bethe ansatz, which generates a
complete set of energy eigenfunctions for any fixed coupling strength. This allows us to obtain overlaps between
eigenstates of different Hamiltonians, as well as expressions for correlation functions. By introducing periodic
boundary conditions, we obtained expressions amenable to numerical evaluation. We applied our methodology
to the evaluation of first-, second-, third-, and fourth-order correlation functions in the ground state of the Lieb—
Liniger model for various values of the interparticle interaction strength. Our results indicate that although the
correlations of the system are in general distorted by the small system size, finite-size effects become increasingly
less significant with increasing interaction strength and decreasing spatial separation.

Out of equilibrium, we investigated the dynamics of relaxation after a quantum quench of the interparticle
interaction strength towards a nonthermal steady state. Starting from two different initial states, we quenched to
acommon final interaction strength v* chosen in such a way that both postquench energies were the same. Our
calculations reveal a similar relaxation process for the second-order coherence ¢ (x, t) for both initial states:
the build-up of correlations on short interparticle distances and their propagation through the system as time
progresses. The time-averaged second-order correlation functions in both cases disagreed with the prediction
for thermal equilibrium and were biased, relative to one another, towards their pre-quench forms—an intuitive
result given the integrability of the system. In the future it would be interesting to study quenches from other
initial states with the same final energy to explore how the memory of the initial state is manifest in different
situations.

Although our method is restricted to small system sizes due to computational complexity and here only applied to
five particles out of equilibrium, we were able to obtain the dynamical evolution as well as time-averaged correlation
functions to high precision. Finally we note that the evaluation of matrix elements of the Lieb—Liniger model with this
method is not restricted to real-valued Bethe rapidities, opening the door to investigating the nonequilibrium
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dynamics of attractively interacting systems (where the rapidities become complex-valued) and that following
quenches from more complex initial states.
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Appendix A. Basis-set truncation

The Hilbert space of the Lieb—Liniger model is infinite dimensional, and therefore the sums in

equations (22), (23), and (26) must be truncated for numerical purposes. Here, we provide details of the
truncation scheme for the two different initial states we considered in section 4, and explain how we quantify the
error resulting from this truncation.

For the quench from ~, = 0, the initial state |¢),) only has nonzero overlap with eigenstates | { \;} ) of H(>™)
that are parity invariant (i.e., eigenstates for which {\;} = {—\;}) and, a fortiori, have zero total momentum P
[114]. The strongly correlated initial state of the quench from -, = 100 similarly has zero overlap with
eigenstates | { \;} ) with nonzero total momentum, but in this case states contributing to [ (¢) ), and thus p,p,
need not be parity-invariant in general. For -, = 0 our results for the overlaps agree with recently obtained
analytical expressions [94, 95], which predict real positive overlaps, given the phase convention implicit in
equation (2), for quenches to v > 0. For v, = 100, we find that the overlaps are still real, but are no longer
restricted to positive values.

We briefly summarize our procedure to determine the cutoff here—see appendix A of [90] for an extended
discussion for the case of parity-invariant states. It can be shown [2] that the solutions { A;} of the Bethe
equations (3) are in one-to-one correspondence with the numbers 1 that appear in equation (3). This allows us
to uniquely label states by the set {m1;}. Without loss of generality, we order the numbers #; such that
my > my > ---> my_1 > my,and we only need consider states for which jmj =0, corresponding to zero
total momentum P. We specialize hereafter to the case N = 5, which is the largest N for which we consider the
dynamics in this article. The states can be grouped into families, labeled by 11,. We have found empirically that
within each such family, the eigenstate (17, 1, 0, —1, —#) has the largest absolute overlap | ({ A} [4) | with the
initial state, for both initial states we consider (y, = 0and 7, = 100). Furthermore, this overlap is larger than
that of the most significantly contributing eigenstate (m; + 1, 1, 0, —1, —m; — 1) of the following family
(m; + 1). We therefore construct the basis by considering in turn each family m; and including all states within
that family for which the overlap with the initial state exceeds our chosen threshold value C,,;,. Eventually, for
some value of m;, even the eigenstate (11, 1, 0, —1, —my) has overlap with |¢)y) smaller than the threshold, at
which point all states that meet the threshold have been accounted for.

We note that the Lieb—Liniger model has an infinite number of conserved charges [Q(m) ,H(y)] = 0;

m =0, 1, 2,..., with eigenvalues given by Q(m)l {\}) = le\il N'{Aj}). However, for a quench from 7, = 0

their expectation values in the diagonal ensemble (Q(m) )pg diverge forall even m > 4 [94, 95]. Our numerical
results suggest that this is also the case for quenches from v, > 0 (indeed, they diverge for almost all states but
eigenstates [121, 122]). For all odd values m, the expectation values of the corresponding conserved charges Q(m)
are identically zero for our initial states and quench protocol. Thus, the only nontrivial and regular conserved
quantities are the particle number (i = 0) and energy (m = 2). Asin [90], we quantify the saturation of the
normalization and energy sum rules by the sum-rule violations

AN =1 = Y IC %
{Aj}
1

N
AE=1— SIC P O0?, (A1)
I=1

%7 {A)

respectively, where E, _., is the exact postquench energy (equation (24)). We note that the calculation of time-
dependent observables involves a double sum over { A}, and is therefore more numerically demanding than the
calculation of expectation values in the DE. Moreover, the calculation of the local coherence ¢ (0, t) is much
less demanding than that of the full nonlocal g (x, t). We therefore use different thresholds Cyyiy, resulting in
different basis sizes and sum-rule violations, in the calculation of g?(0, t), g (x, t),and g](jzlg (x), as indicated
in table A1 . We note that the energy sum rule is in general less well satisfied than the normalization sum rule,
due to the ocX™* tail of the diagonal-ensemble distribution of eigenstates [90]. We find also that both sum rules
are less well satisfied for the quench v = 100 — ~*, despite the truncation procedure described above resulting
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Table Al. Basis-set sizes and sum-rule violations for full nonlocal, time-evolving sec-
ond-order coherence g (x, t), for local, time-evolving second-order coherence
g@(x = 0, t),and for time-averaged second-order coherence ggg (x) following quen-
ches from 5, = 0,and ~, = 100 to v* =3.7660....

% Type® Crmin No. states AN AE/K}
0 g9, 1) 5% 1075 673 7 x 1077 6 x 1073
0 2?0, 1) 1x107° 1704 7 x 1078 3 x 1073
0 g5 (x) 1x 107 6282 2 x 1079 8 x 1074
100 P, 1) 5% 107 3704 4 x 1076 4% 1072
100 §9(0, 1) 1x10°° 10473 5% 1077 3% 1072
100 g5 (x) 1 x 1076 43918 2% 1078 2 % 1073

* Occupations of the g@

g (X) basis set are used in the calculation of I'hg (section 4.3).

in more than five times as many basis states being employed in its solution than are used in the
quenchy = 0 — ~*,

For expectation values in the CE (equation (27)), we truncate the basis by retaining all states with energies
below some cutoff E .. The inverse temperature Jis then chosen to minimize the energy sum-rule violation
AE. The normalization sum rule is fulfilled by construction. Since all states (not only those with zero
momentum) contribute to this sum, the number of eigenstates involved in canonical-ensemble calculations is
much larger than that in diagonal-ensemble calculations. For the canonical-ensemble correlation function
plotted in figure 6 we used an energy cutoffof 3.2 x 102 k7, which yields a basis of 2.1 x 10° eigenstates | { Ai})-
We checked that this cutoff is sufficiently large to ensure saturation of gC(ZE) (x) (figure 6). For the ensemble

restricted to P = 0 eigenstates (figure 6(b)), we used an energy cut-offof 6.4 x 10° k7, corresponding to 44 530
eigenstates, while for the parity-invariant ensemble we used an energy cut-offof 8.5 x 10 kZ, corresponding to
64 204 eigenstates.

Appendix B. Time-averaged correlation functions and the diagonal ensemble

The time-averaged expectation value (equation (25)) of an operator O canbe expressed as an expectation
O = Tr{p O} in the time-averaged density matrix

=_ .1 pr7

p= hm; e [ (@) (¥ ()]

=Y ICo PN (I + > 5EM,,E(X.)Cﬁ\;}C{Aj}l{)\j}><{>\/]'}|- (B1)
) D=y

The first term in equation (B1) is simply the diagonal-ensemble density matrix pp;, (equation (26)), to which p
reduces in the absence of degeneracies in the spectrum of H (7). This is the case for the quench from Y% = 0,as
the only eigenstates of H (7*) with nonvanishing overlaps with |1/i) in this case are the parity-invariant states
[{Aj})with {\;} = {—\;}, which are nondegenerate (see [90] and references therein). By contrast, in a quench
from 7, > 0, [¢(¢)) has support on nonparity-invariant states | { A;} ), which are degenerate with their parity
conjugates | { —\;} ).

In general such degeneracies can have observable consequences for time-averaged expectation values [117].
However, as can be seen from figure B1 , the correction to g[()zE) (x) due to the contributions of degenerate
eigenstates in the case of the quench from ~, = 100 is small. It is straightforward to show that the elements
({—=A}1g@(0)|{\j}) of thelocal second-order coherence between parity-conjugate states must vanish due to
symmetry considerations. At larger separations x, the matrix elements between these pairs of states are nonzero,

asillustrated in figure B1(a). However, these contributions are small compared to the diagonal-ensemble result

)]
8pE

(figure B1(b)) would yield a barely visible correction to the function g]()ZE) (x) plotted in figure 6. We note also that

(x), and indeed the total contribution of all parity-conjugate states in our finite-basis description

the substitution of pp, for the time-averaged density matrix p introduces negligible error in the calculation of
the purity of this matrix (section 4.3).
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Figure B1. Contributions of degenerate energy eigenstates to the time-averaged second-order correlation function following a quench
from 4, = 100 to v* =3.7660 ... for N = 5 particles. (a) Contributions C Cﬁx,-}( {=A}18P(0, )| {\;}) + c.c. of off-diagonal
matrix elements corresponding to the three largest weights C ) e »1- (b) Total contribution of degenerate energy eigenstates.
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