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Quantum heat engines are capable of utilizing uniquely quantum many-body effects to enhance
the performance of classical engine cycles, implying a quantum advantage. Here we propose and
investigate the performance of a quantum many-body Otto cycle operating under a sudden interac-
tion quench protocol, with a one-dimensional (1D) Bose gas as a working fluid. We show that the
very operation of this Otto cycle as an engine is enabled by atom-atom correlations in the system.
These correlations are different from those in a classical ideal gas, and are a result of the interplay
between quantum statistics, interparticle interactions, and thermal fluctuations; extracting positive
net work from the system without such correlations would be impossible. We also demonstrate how
the performance of the engine can be further enhanced by allowing particle exchange between the
system and the thermal reservoirs, in addition to heat exchange. We evaluate the performance of
the engine using approximate analytic and exact thermodynamic Bethe ansatz results available for
the Lieb-Liniger model that describes the 1D Bose gas, but we emphasise that the broad conclusions
arrived at here are not limited to this particular model.

Introduction.—Quantum heat engines (QHE’s) are
central in the theoretical and experimental development
of quantum thermodynamics—an emerging field devoted
to the exploration of thermodynamical processes in a
quantum mechanical context [1–11]. These engines,
which can be traced back to 1959 [12], play a similar role
in the development of quantum thermodynamics that
their macroscopic counterparts played in fuelling scien-
tific advancement during the Industrial Revolution [13–
15]. In the past decade, advances in the control over
quantum platforms, such as single ions [16–18], nitro-
gen vacancy centers [19], and single-atom impurities im-
mersed in an ultra-cold atomic bath [20], have led to
the realization of single-particle QHE’s, representing the
limit in the creation of an ‘infinitesimal machine’ [21].

However, in order to utilize the breadth of quantum re-
sources available, one must move beyond single-particle
systems to engines that utilize many-body interactions.
Such QHE’s are uniquely positioned to take advantage
of quantum resources, such as entanglement [22–25], cor-
relations [26–28], or quantum coherence [29–34], to en-
hance performance. Many-body QHE’s have been shown
to be capable of outperforming an ensemble of single-
particle engines operating with the same resources [35].
Control over inter-particle interactions, in particular, al-
lows for the creation of uniquely many-body QHE’s [36–
40], which have recently been realized in the laboratory
[41, 42]. Such rapid experimental development under-
scores the need for further theoretical studies of thermo-
dynamical processes in the context of quantum many-
body interacting systems.

In this Letter, we propose a quantum many-body Otto
engine using a finite temperature one-dimensional (1D)
Bose gas with contact interactions as the working fluid,
in which the unitary work strokes are driven by a sud-
den quench of the interaction strength. The benefits of
using the 1D Bose gas is that the underlying theoreti-

cal model—the Lieb-Liniger model—is exactly solvable
in the uniform limit [43–45], in addition to being ex-
perimentally realizable using ultracold atomic gases con-
fined to highly anisotropic traps [46–72]. This offers
unique opportunities for gaining physical insights into
the performance of such an engine as a tractable and
testable quantum many-body problem. The 1D Bose
gas has a rich equilibrium phase diagram [73, 74] which
spans several nontrivial regimes, from the weakly inter-
acting quasicondensate through to the strongly interact-
ing Tonks-Girardeau regime of fermionization [56, 73–82].
We demonstrate how the thermodynamic performance,
in particular net work and efficiency, of this many-body
QHE can be calculated through the experimentally mea-
surable atom-atom pair correlation [57, 73, 74], internal
energy, and density profile of an ultracold quantum gas.

Interaction-driven Otto cycle.—In 1D Bose gases con-
fined to highly anisotropic harmonic traps with longi-
tudinal and transverse frequencies ω and ω⊥ such that
ω ≪ ω⊥, the 1D interaction strength can be expressed as
g ≃ 2ℏω⊥as, away from confinement induced resonances
[83], where as is the 3D s-wave scattering length. Chang-
ing the interaction strength g may be achieved by tuning
the magnetic field that controls the transverse confine-
ment frequency ω⊥, which leads to a volume change of
the gas (i.e., transverse expansion or compression), and
hence can be thought of as analogous to mechanical work
in the conventional Otto cycle [84] (see also [85]).

The interaction-driven Otto engine cycle consists of
four strokes (see Fig. 1): (1) Unitary expansion, A→B:
the working fluid, consisting of N total atoms at in-
teraction strength gh, initially in a thermal equilibrium
state at temperature Th of the hot reservoir, is decou-
pled from the reservoir and has its interaction strength
quenched to gc < gh, generating beneficial work out
Wout = ⟨Ĥ⟩A−⟨Ĥ⟩B > 0 done by the fluid, where Ĥ
is the system Hamiltonian [86], and ⟨Ĥ⟩i is its expec-
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FIG. 1. An interaction-driven quantum many-body Otto cy-
cle, operating between two interaction strengths, gc and gh.
Unitary strokes (AB and CD) are shown in black, while non-
unitary thermalization strokes (BC and DA) are color-coded
to the cold (blue) and hot (red) reservoirs at temperatures
Tc and Th, respectively. In addition to the regular Otto cy-
cle, which does not involve any exchange of particles between
the system and reservoirs, we also show a modified version
of the cycle, in which such exchange is allowed; the latter is
illustrated via the cartoons of the system density profiles that
either grow or decrease, depending on whether particles flow
in from the hot reservoir or out into the cold reservoir.

tation value for the total energy of the system in state
i = {A,B,C,D}. (2) Thermalization with cold reser-
voir, B→C: the working fluid is connected to a thermal
reservoir at temperature Tc and allowed to equilibrate
at constant interaction strength gc, transferring energy
in the form of heat Qout = ⟨Ĥ⟩B−⟨Ĥ⟩C > 0 to the cold
reservoir where Qout(in) ≡ Eout(in) for a purely thermal
system-reservoir contact in Fig. 1. (3) Unitary compres-
sion, C→D: disconnected from the cold reservoir, the
working fluid has its interaction strength quenched from
gc → gh, with work Win = ⟨Ĥ⟩D−⟨Ĥ⟩C > 0 done on
the fluid. (4) Thermalization with hot reservoir, D→A:
the working fluid is connected to a reservoir at tem-
perature Th, where it is left to equilibrate, taking in
heat Qin = ⟨Ĥ⟩A − ⟨Ĥ⟩D > 0 from the hot reservoir,
returning to the initial thermal state of the overall cy-
cle. Such an engine cycle generates net positive work
W =Wout−Win > 0, if ⟨Ĥ⟩A − ⟨Ĥ⟩D > ⟨Ĥ⟩B − ⟨Ĥ⟩C,
with efficiency η=W/Qin=1−Qout/Qin [14, 15].

In this work, we specifically consider a sudden or in-
stantaneous quench of the interaction strength g in the
unitary strokes of the Otto cycle. Realistically, such a
sudden quench from gc(h) to gh(c) would still occur over a
finite duration ∆t, and the “instantaneity” of the quench
here refers to the assumption that ∆t is much shorter
than the characteristic time of longitudinal dynamics,
i.e. that ∆t ≪ 2π/ω. Thus, it is with respect to the
longitudinal dynamics that we refer to our quench as
sudden. With respect to the transverse dynamics, on
the other hand, we are assuming that ∆t is sufficiently
long compared to the characteristic transverse timescale,
2π/ω⊥ ≪∆t. In this case, the quench would retain the

system in the transverse ground state, hence without
compromising the 1D character of the system. As such,
the work done on (or by) the system during the unitary
strokes can be regarded as transversely quasi-static.

Under such a sudden quench, all expectation val-
ues over field operators in the system Hamiltonian be-
fore (i) and after (f) the quench remain unchanged.
Hence, the only contribution to the difference in total
energy between pre- and post-quench states, ⟨Ĥ⟩f −
⟨Ĥ⟩i, comes from the difference between the interac-
tion terms, 1

2gf
´

dz⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩f − 1
2gi
´

dz⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩i,
where ⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩f = ⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩i in a sudden quench,

and Ψ̂†(z) and Ψ̂(z) represent the field creation and an-
nihilation operators. Accordingly, the energy difference

can be expressed as ⟨Ĥ⟩f − ⟨Ĥ⟩i= 1
2 (gf−gi)G

(2)
i , where

we have defined the total (integrated) correlation of the

thermal equilibrium state G
(2)
i =

´

dz⟨Ψ̂†Ψ̂†Ψ̂Ψ̂⟩i [74].
Identifying the i and f states as A (h) and B, or as C

(c) and D, the net work can be expressed as

W =
1

2
(gh − gc)

(
G

(2)
h −G

(2)
c

)
, (1)

where states h and c are thermal equilibrium states of the
gas in contact with hot and cold reservoirs. Likewise, the
efficiency may be expressed as,

η = 1− ⟨Ĥ⟩h − ⟨Ĥ⟩c − 1
2 (gh − gc)G

(2)
h

⟨Ĥ⟩h − ⟨Ĥ⟩c − 1
2 (gh − gc)G

(2)
c

. (2)

These equations allow for investigation of the interaction-
driven quantum Otto cycle under a sudden quench proto-
col through solely the equilibrium properties of the gas.

Though we began our discussion having in mind a har-
monically trapped 1D Bose gas as a working fluid, our
results so far are general enough to be applicable in ar-
bitrary longitudinal confinement. In particular, this in-
cludes a uniform 1D Bose gas on a ring, which is the pro-
totypical model originally introduced by Lieb and Liniger
[43]. Because of this, and for analytical insight, we pro-
ceed by first presenting results for a uniform system [87],
before considering the harmonically trapped case.

Uniform gas as a working fluid.—Finite-temperature
uniform 1D Bose gases have no phase transition to a true
Bose-Einstein condensate in the thermodynamic limit,
unlike Bose-Einstein condensation in three dimensions
[88, 89]. However, there still exists a rich crossover
phase diagram of different regimes [73, 74], that can
be parameterized by dimensionless interaction strength,
γ = mg/ℏ2ρ, and temperature, τ = 2mkBT/ℏ2ρ2, where
m is the bosonic mass and ρ=N/L is the 1D density for
N atoms in a system of length L.

For a uniform 1D Bose gas, the total correlation in
the hot (h) or cold (c) thermal equilibrium state may be
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expressed as G
(2)
h(c) = Nρg

(2)
h(c)(0) [86], where g

(2)
h(c)(0) is

the normalized local (same point) atom-atom correlation
function [73]. Combining this with Eq. (1), the net work
per particle can be expressed as

W

N
=

ℏ2ρ2

2m
(γh − γc)

(
g
(2)
h (0)− g(2)c (0)

)
. (3)

From this equation, and given that γh is always larger
than γc, we note that if the local pair correlations did
not depend on the respective interaction strengths and

temperatures, i.e. if they were the same, g
(2)
h (0)=g

(2)
c (0),

then the net work per particle would vanish. This implies
that such an Otto cycle would never operate as an engine
that converts heat into net positive work. We therefore
conclude that extracting positive net work, W/N > 0,
from this Otto cycle can only be enabled by atom-atom
correlations. More specifically, the only way to extract

positive net work is to have g
(2)
h (0)/g

(2)
c (0)>1.

Net work and efficiency of the quantum Otto cycle
with a working fluid consisting of a uniform gas, cal-
culated using analytic approximations to the atom-atom
correlation function for the weakly interacting 1D Bose
gas in a quasicondensate regime (see Appendix A and
Ref. [73]) realizable in typical experiments are shown in
Fig. 2 (a) and (b) as a function of the ratio of temper-
atures, Th/Tc, and interaction strengths, gh/gc, of the
thermal equilibrium states. The cold thermal state C of
the cycle is defined by γc=5× 10−3 and τc=1.3× 10−2.
The observed increase of net work under large tempera-
ture ratios may be attributed to the linear dependence of
Eq. (3) on the local correlation of the hot thermal state

g
(2)
h (0)≃1 + 1

2τhγ
−1/2
h , for γh ≪ τh ≪ √

γh [73]. On the
other hand, the unfavorable inverse dependence of the
correlation function on the square root of the interac-
tion strength results in no positive net work under large
interaction strength ratios.

Harmonically trapped working fluid.—For a harmon-
ically trapped 1D Bose gas, the total correlation of
the thermal equilibrium states can be approximated as

G
(2)
h(c) ≃ Nh(c)bh(c)ρh(c)(0)g

(2)
h(c)(0, 0) [86], where Nh(c) is

the total atom number of the system in the hot (cold)
thermal equilibrium state (where we will consider the
possibility of Nh ̸= Nc in the next section below),

g
(2)
h(c)(0, 0) is the normalized local atom-atom correlation

function in the trap center z = 0 [74], and bh(c) is a di-
mensionless factor of order one that depends on the shape
of the density profile [86]. Combining this with Eq. (1),
the net work per particle may be approximated as

W ≃ gh−gc
2

(
bhg

(2)
h (0, 0)ρh(0)Nh−bcg

(2)
c (0, 0)ρc(0)Nc

)
.

(4)
Eqs. (3) and (4) represent the main results of this letter.

We see from Eq. (4) that, if g
(2)
h (0, 0) = g

(2)
c (0, 0) ≡

FIG. 2. Net work and efficiency of an interaction-quench Otto
engine with a 1D quasicondensate working fluid. The net
work, W , and efficiency, η, of the engine, for a uniform system
of 1D density ρ, are shown in panels (a) and (b), respectively,
as functions of the ratio of reservoir temperatures, Th/Tc,
and interaction strengths, gh/gc, of the hot (h) and cold (c)
thermal equilibrium states. Here, the cold equilibrium state
is defined through the dimensionless interaction strength γc=
5×10−3 and dimensionless temperature τc = 1.3×10−2 [90].
Panels (c) and (d) show the same, but for a harmonically
trapped quasicodensate, with a total of N = 2000 particles.
The cold equilibrium state has an interaction strength and
temperature of gc=0.6 and T c=100, respectively [91].

g(2)(0, 0), then net work per particle would simplify to
W/N ≃ 1

2b(gh − gc)g
(2)(0, 0) (ρh(0)−ρc(0)) and would

never be positive, where we have taken Nh = Nc ≡ N
and have also assumed that the geometric factors bh and
bc are approximately the same (bh ≃ bc = b) for small
quenches. This is true because gh>gc by definition and
because the peak densities normally satisfy ρh(0)<ρc(0)
(as the peak density is typically monotonically decreas-
ing with both the interaction strength and temperature).
In order to gain positive net work from such an engine,

one has to still have g
(2)
h (0, 0)/g

(2)
c (0, 0)>1, but this con-

dition is no longer sufficient, unlike the previous case of
a uniform system. Instead, one must satisfy a more de-

manding condition g
(2)
h (0, 0)/g

(2)
c (0, 0)>ρc(0)/ρh(0) > 1

(for bh = bc), which reduces the parameter space over
which the net work is positive. In a calculation beyond
the approximations of Eq. (4), all these conclusions are
implicitly embedded in the original exact expression for
the net work Eq. (1), expressed in terms of the aver-

age correlation G
(2)
h(c), which can be evaluated numeri-

cally using the Yang-Yang thermodynamic Bethe ansatz
(TBA) and the local density approximations (LDA) (see
Appendix A and Refs [73, 74]).
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FIG. 3. Net work and efficiency of the same harmonically
trapped system shown in Fig. 2 (c) and (d) but here under
a finite particle flow from the hot to the cold reservoir of
∆N = 200 (with Nh =Nc + ∆N = 2200), where net work is
normalized to Nc = 2000. Panels (a) and (b) show analytic
approximation of the engine performance, whereas in panels
(c) and (d), we demonstrate the exact numeric evaluation of
performance via the Yang-Yang TBA.

Net work and efficiency of a harmonically trapped 1D
Bose gas in a weakly interacting quasicondensate regime
are shown in Fig. 2 (c) and (d), where we used the
Thomas-Fermi approximation for the density profile, in
combination with analytic approximations for the atom-
atom correlation function (see Appendix A). Here, the
working fluid contains N = 2000 atoms, with the cold
thermal state C of the cycle defined by an interaction
strength, gc=0.6, and temperature T c=100, here writ-
ten in natural units of the longitudinal harmonic oscil-
lator frequency ω [91]. We observe a similar behaviour
as seen in the uniform gas for large temperature and in-
teraction strength ratios. However, for the harmonically

trapped gas, the total correlation, G
(2)
h , is directly depen-

dent on the central density which scales as ρh(0)∝g
−1/3
h

(in the quasicondensate regime under consideration), re-
sulting in a decreased range of the interaction strength
ratio over which the engine operates with W/N > 0.

Performance boost under particle exchange.—We now
demonstrate how the performance of the interaction-
driven Otto cycle can be further increased by allowing
for a particle exchange ±∆N between the system and
the hot and cold reservoirs, i.e. the case where Nh ̸=Nc

in Eq. (4). Given the number of particles in the sys-
tem, Nc, in the cold thermal equilibrium state C and in
the unitary compression stroke C→D, we now allow for a
flow of ∆N particles from the hot reservoir to the system
in the thermalization stage D→A (see Fig. 1) [92]. This

means that the hot thermal equilibrium state A and the
unitary expansion stroke A→B now has Nh =Nc+∆N
particles. We further assume that the excess of particles,
∆N , is then dumped into the cold reservoir during the
thermalization stage B→C, so that the system returns to
having the original number of particles Nc for the cycle
to repeat. We immediately see in Eq. (4) that Nh >Nc

acts as an additional factor that may compensate for the
unfavorable relation of ρh(0)<ρc(0), that we already dis-
cussed in the Nh=Nc=N case, and hence can increase
the engine performance.

Performance of the quantum Otto cycle under a finite
particle exchange of ∆N=200 is demonstrated in Fig. 3,
where the cold equilibrium state is the same as that in
Figs. 2 (c) and (d). Analytic evaluation of the net work
and efficiency is shown in panels (a) and (b), respectively.
We observe here an increase in both maximum net work
and the range of parameters over which the net work is
positive due to the dependence of Eq. (4) on Nh. Utiliz-
ing next Eq. (1), in combination with the LDA and the
numerically exact Yang-Yang TBA, we evaluate the per-
formance of this cycle without approximation, results of
which are shown in Fig. 3 (c) and (d). Disagreement be-
tween the approximate analytic and TBA results under
increasing temperature ratio arises here due to the limits
on the applicability of the analytic approximations used
in Eq. (4) (see Appendix B). However, the agreement
between analytic and TBA results is excellent around
Th/Tc = 1 [86], where we note that the quantum Otto
cycle for this ratio of temperatures corresponds to the
finite temperature extension and sudden quench limit of
the ‘Feshbach engine’ cycle investigated in Ref. [39].

Summary.—We have proposed a sudden interaction-
quench Otto cycle operating in a quantum many-body
system using a 1D Bose gas as a working fluid. Extract-
ing positive net work from such an engine was shown
to be enabled by atom-atom correlations that generally
have nontrivial dependence on the interparticle inter-
action strength and temperature of the system. Ad-
ditional particle exchange between the system and the
reservoirs during the thermalization strokes was shown
to further enhance the engine performance. Both these
effects counter the unfavorable temperature dependence
of the peak density of the harmonically trapped gas that
can hinder the extraction of positive net work from the
engine. Outside the applicable regimes of analytic ap-
proximations involved in Eqs. (4)–(5), we have evaluated
the engine performance using the Yang-Yang thermody-
namic Bethe ansatz, for experimentally realistic param-
eters. Even though our specific results for the net work
and the efficiency were calculated for a 1D Bose as an
example, the broad conclusions arrived at here on the
basis of equations (1)–(4) are applicable to other related
systems, such as ultra-cold 2D and 3D Bose gases, and
should aid the tests and realization of quantum thermo-
dynamic concepts in laboratory settings.
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Appendix A: Interaction-driven Otto cycle in a
quasicondensate regime.—In the weakly interacting
thermal quasicondensate regime of the 1D Bose gas, dom-
inated by thermal (rather than quantum) fluctuations,
and corresponding to γ ≪ τ ≪ √

γ [73], the normalized
local two-body correlation function may be approximated
for a uniform gas as [73, 74, 93]:

g(2)(0)≃1 +
1

2

τ√
γ
+

ζ(1/2)√
π

√
τ − 2ζ(−1/2)√

π

γ√
τ
, (5)

where ζ(s) is the Riemann zeta function of s∈R. This is
the expression that was used in combination with Eq. (3)
to generate the example of W/N in Fig. 2 (a). For eval-
uating the engine efficiency, we additionally used an ap-
proximate analytic expression for the total internal en-
ergy of the gas, given in this regime by [93]:

⟨Ĥ⟩ = N
ℏ2ρ2

2m

(
γ +

ζ(3/2)

4
√
π

τ3/2 +
ζ(1/2)

2
√
π

τ1/2γ

− 3ζ(−1/2)

2
√
π

τ−1/2γ2

)
. (6)

For a harmonically trapped gas in the same thermal
quasicondensate regime the density profile is well ap-
proximated by the Thomas-Fermi (TF) parabola, ρ(z)=
ρ(0)

(
1− z2/R2

)
, for |z| < R, and ρ(z) = 0 other-

wise, where ρ(0) =
(
9mN2ω2/32g

)1/3
is the peak den-

sity and R=
(
3Ng/2mω2

)1/3
is the TF radius [88, 89].

From this, we derive the constant dimensionless factor
bh≃ bc= b=4/5 in Eq. (4) [86]. The TF density profile,
along with Eq. (5), where γ and τ are replaced by their
values at the trap center [74], may then be combined with
Eqs. (2) and (4), producing analytic expressions for the
net work and efficiency of the cycle. This prescription
was used to produce Figs. 2 (c)-(d), and Figs. 3 (a)-(b).

Appendix B: Experimental considerations.—
Experimental realization of a harmonically trapped 1D
Bose gas often falls outside the asymptotic regimes where
analytic approximations such as Eq. (5) are applicable.
In such situations, we may utilize the exact Yang-Yang
TBA [44, 45], in combination with the LDA [74, 86], to
evaluate the equilibrium properties of the gas required for
calculating W and η via Eqs. (1) and (2). This approach
is utilized in Figs. 3(c) and (d). Here, large net work is
obtained under a small temperature ratio, as a small dif-
ference in temperature will ensure that the peak density
is not greatly reduced due to the increased population
in the thermal tails. The difference between the cycle
performance based on analytics, shown in Figs. 3(a)-(b),
and that based on numerics, shown in Figs. 3(c)-(d), is
due to the crudeness of approximations used in Eq. (4)

(as opposed to the exact Eq. (1)) for the cycle parame-
ters, which neglected the dependence of the peak density
on the temperature due to the assumed Thomas-Fermi
approximation.
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ing Collective Oscillations in a Trapped 1D Gas, Phys.
Rev. Lett. 91, 250402 (2003).

[51] B. L. Tolra, K. M. O’Hara, J. H. Huckans, W. D.
Phillips, S. L. Rolston, and J. V. Porto, Observation
of Reduced Three-Body Recombination in a Correlated
1D Degenerate Bose Gas, Phys. Rev. Lett. 92, 190401
(2004).

[52] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling,
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We briefly review the Lieb-Liniger model of the one-
dimensional (1D) Bose gas with contact interactions in
Sec. I, along with the relevant analytic formulas utilized
in the main text. In Sec. II we present further results
related to Fig. 3 of the main text, elaborating on the
limiting case of engine operation under Th = Tc with fi-
nite particle exchange ∆N . In Sec. III we explore sudden
quench Otto cycle operation between different (rather
than within the same) asymptotic regimes of the 1D Bose
gas.

I. THE ONE-DIMENSIONAL BOSE GAS

The uniform 1D Bose gas with repulsive contact inter-
actions is one of a class of integrable models, solvable via
the Bethe ansatz, with its ground state first obtained by
Lieb and Liniger in 1963 [S1]. This model is described
by the second-quantized Hamiltonian

Ĥ = − ℏ2

2m

ˆ

dzΨ̂† ∂2

∂z2
Ψ̂ +

g

2

ˆ

dzΨ̂†Ψ̂†Ψ̂Ψ̂, (S1)

where m is the atomic mass, g is the strength of the con-
tact interactions, and Ψ̂†(z) and Ψ̂(z) are the bosonic
field creation and annihilation operators, respectively.
Ground state solutions to this model are dependent
only on a single dimensionless interaction strength, γ =
mg/ℏ2ρ, where ρ = ⟨Ψ̂†Ψ̂⟩ = N/L is the linear density
for N particles in a system of size L [S1]. Finite tem-
perature solutions for this model were later discovered
by Yang and Yang in 1969 [S2], where they pioneered
the thermodynamic Bethe ansatz (TBA), also known as
Yang-Yang thermodynamics [S3].

In the early 2000’s, rapid development of experimental
methods allowed for direct realization of the 1D Bose gas
in highly elongated cylindrical traps [S4–S15]. This in
turn spurred progress on the theoretical understanding of
such systems. A particular focus, due to its experimental
relevance [S11, S15], was on calculation of the two-point
correlation function [S16–S20], which may be generally
defined through

g(2)(z, z′) =
⟨Ψ̂†(z)Ψ̂†(z′)Ψ̂(z′)Ψ̂(z)⟩

ρ(z)ρ(z′)
, (S2)

where, for a uniform or translationally invariant system
(with ρ(z′) = ρ(z) = ρ), this g(2)(z, z′) depends only on
the relative distance |z−z′|, i.e. g(2)(z, z′)=g(2)(|z−z′|).
If one is interested in the same point (z=z′) correlation
function, as utilized in the main text for calculation of

the net work and efficiency of the quantum Otto cycle,
this in turn becomes g(2)(0).
Based on the analysis of this normalized local (same

point) atom-atom correlation function, Kheruntsyan et
al. found that this model can be characterized by six
distinct asymptotic regimes [S18]. These regimes are de-
fined over a parameter space in terms of the dimension-
less interaction strength, γ, and a dimensionless temper-
ature, τ = 2mkBT/ℏ2ρ2. Approximate analytic formulas
for the g(2)(0) function were obtained in Refs. [S16, S18]
in each asymptotic regime, along with numerical means
to calculate them via the TBA over the entire parameter
space. Further, all analytic thermodynamic quantities, in
particular the total energy ⟨Ĥ⟩, were obtained recently
for each asymptotic regime in Ref. [S21].
As described in the main text, the local second-order

correlation function may be rearranged and integrated
for the total correlation function,

G(2) ≡
ˆ

dz⟨Ψ̂†(z)Ψ̂†(z)Ψ̂(z)Ψ̂(z)⟩

=

ˆ L

0

dzg(2)(0)ρ2.

(S3)

Utilizing the linear density, ρ = N/L, this may be ex-

pressed as G(2) = Nρg(2)(0), which is utilized in Eq. (3)
of the main text for expressing the exact net work of the
uniform 1D Bose gas.
In the presence of an external trapping potential, V (z),

such as the harmonic confinement considered in the main
text, the Hamiltonian given in Eq. (S1) is modified to in-

clude an additional term,
´

dzV (z)Ψ̂†(z)Ψ̂(z). Inclusion
of such a trapping potential generally breaks the integra-
bility of the system [S22]. However, the solutions derived
for a uniform gas may still be utilized within the context
of a local density approximation (LDA), which treats the
gas as locally uniform, thus remaining amenable to the
TBA [S20]. In this approach, both the local correlation
function, g(2)(z, z), and the density, ρ(z), are dependent
on the position coordinate z.

When calculating the total correlation, G(2), for a har-
monically trapped system, it was shown in Ref. [S20]
that, as the local correlation function is multiplied by the
density squared which vanishes rapidly towards the edges
of the system, and since the g(2)(z, z) function varies

slowly near the trap centre, the function G(2) can be well
approximated by

G(2) ≃ g(2)(0, 0)

ˆ

dzρ(z)2, (S4)
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FIG. S1. Analytic and numeric evaluation of chemical en-
gine performance for a harmonically trapped working fluid.
Panels (a) and (b) demonstrate performance of the system
shown in Fig. 3 of the main text at Th = Tc. The approxi-
mate analytic results for net work (solid black line) are seen
to agree with their corresponding exact numerical TBA eval-
uation (blue diamonds). In panels (c) and (d), we show the
performance of a chemical engine within the strongly interact-
ing (near Tonks-Girardeau) regime (γ0≫1, τ0≪1) [S20, S21]
under a particle transfer of ∆N =5, and with Nc =20. The
cold thermal equilibrium state is defined by a dimensionless
interaction strength gc = 20, and temperature T c = Th = 1,
corresponding to γ0,c=8.56 and τ0,c=0.37.

where g(2)(0, 0) is the local atom-atom correlation func-
tion at the trap centre, z = 0. Further, as introduced in
the main text, the integral over the squared density may
parametrized via

´

dzρ(z)2=bNρ(0), where

b =

´

dzρ(z)2

Nρ(0)
. (S5)

The numerical value of this constant can be evaluated nu-
merically using the TBA, or approximated analytically
using, e.g., the Thomas-Fermi density profile (see Ap-
pendix A of the main text). We note here that, in all
asymptotic regimes where an analytic density profile of
the 1D Bose gas may be formulated, the b parameter may
be expressed as a constant of order one. Through this,
we arrive at an approximate form for the total correla-

tion function in a harmonic trap, G(2)≃Nbρ(0)g(2)(0, 0),
which is utilized in the approximate expression for net
work given in Eq. (4) of the main text.

II. CHEMICAL ENGINE PERFORMANCE

For a quantum Otto cycle utilizing diffusive system-
reservoir contact, one may consider the case of a purely
chemical engine [S23, S24], where there is no net heat flow

between the system and reservoirs over the time that they
are in contact, therefore corresponding to Th=Tc. Such a
chemical engine may be realized within the context of the
harmonically trapped 1D Bose gas described in Eq. (4) of
the main text, achieving positive net work via the linear
scaling with Nh and Nc (see also Ref. [82] of the main
text).
Net work and efficiency of a chemical engine for a har-

monically trapped 1D Bose gas in the weakly interacting
quasicondensate regime [S20, S21] (γ0 ≪ τ0 ≪√

γ0) are
demonstrated in Fig. S1 (a) and (b), respectively, and
represent the Th/Tc=1 limit of Fig. 3 in the main text.
Here, we see excellent agreement between the approxi-
mate analytic results, shown as solid black lines, and the
exact TBA numerics, shown as blue diamonds. Positiv-
ity of the net work shown Fig. S1 (a) over a certain range
of the ratio of interaction strengths stems from the en-
hancement of net work under a finite particle exchange
(i.e. Nh ̸= Nc in Eq.(4) of the main text). The even-
tual turnover and approach to zero net work emerges due
to the scaling of the peak density of the Thomas-Fermi

parabola for the hot thermal state, ρh(0) ∝ 1/g
1/3
h (see

Appendix A of the main text), which inevitably reduces
the net work to zero for a large enough quench.
Similarly to Figs. S1 (a) and (b), chemical engine

performance for a harmonically trapped gas, but in
the strongly interacting near Tonks-Girardeau regime
[S20, S21] (γ0≫1, τ0≪1) is demonstrated in Figs. S1 (c)
and (d), for Nc = 20 particles, and ∆N = 5. The net
work for this engine cycle is nearly an order of magnitude
lower than that for the weakly interacting gas due to its
dependence on the peak density, ρ(0)≃

√
2N/π2 [S20],

which is independent of both temperature and interac-
tion strength, and is an order of magnitude smaller than
the peak density of the weakly interacting gas due to the
lower atom number of the working fluid that we consider
in this regime. (The lower total atom number consid-
ered is consistent with typically low atom numbers that
used in experimental realizations of the Tonks-Girardeau
regime [S10, S15, S25]).
Positivity of net work for the strongly interacting gas

at Th = Tc, as for the weakly interacting gas, is enabled
by the finite particle exchange. However, as the peak den-
sity is independent of interaction strength, the eventual
turnover and convergence to zero net work stems instead
from the dependence of the net work on the local second
order correlation function, which can be approximated as
[S20, S21]:

g(2)(0, 0) ≃ 4

3

(
π

γ0

)2 [
1 +

τ20
4π2

]
, (γ0≫1, τ0≪1). (S6)

Here, the scaling with interaction strength as g
(2)
h ∝1/g2

reduces the net work to zero for a smaller ratio of inter-
action strength than observed in the weakly interacting
case. We again observe that the approximate analytic
evaluation of both net work and efficiency of the cycle is
in excellent agreement with the exact TBA numerics.
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FIG. S2. Inter-regime operation of the interaction-driven
quantum Otto cycle with a uniform 1D Bose gas as a working
fluid. Panels (a) and (b) demonstrate operation of the Otto
cycle with a weakly interacting working fluid. Here, the cold
thermal equilibrium state is the same as in Figs. 2 (a) and
(b) of the main text, and the hot thermal equilibrium states
are in the decoherent quantum regime (

√
γ≪τ≪1) [S18]. In

panels (c) and (d) we show an engine cycle with a strongly
interacting working fluid. For this cycle, the cold thermal
equilibrium state is in the strongly interacting (near Tonks-
Giraradeau) regime (γ≫1, τ≪1), with a dimensionless inter-
action strength γc=8.56, and temperature τc=0.37. The hot
thermal equilibrium states of this cycle lie within the asymp-
totic regime of high-temperature fermionization (1≪τ≪γ2)
[S18].

III. INTER-REGIME OPERATION WITH A
UNIFORM WORKING FLUID

Thus far, investigation of the sudden quench quan-
tum Otto cycle has been restricted to operation entirely
within a single asymptotic regime. However, thanks to
the generality of the formulas for net work and efficiency,
we may additionally consider the possibility of investigat-
ing operation between these regimes. Transitioning be-
tween the various asymptotic regimes typically requires a
large quench of interaction strength, a large temperature

difference, or a combination of the two. This makes oper-
ation between non-adjacent regimes physically unfeasible
for realization in the laboratory. Additionally, we note
that, at low temperatures, the local second-order correla-
tion function in the quasicondensate regime (taken to be
at gc) is given by g(2)(0)≃ 1 to lowest order, whereas in
the strongly interacting Tonks-Girardeau regime (taken
to be at gh), it is reduced to g(2)(0)≃ 0. This results in
no positive net work for a uniform system under a large
ratio of interaction strength, according to the analysis
presented in the main text. For this reason, we consider
only inter-regime operations with a large temperature ra-
tio in conjunction with an interaction strength ratio of
order one.

Inter-regime operation of the sudden quench Otto cy-
cle is explored in Fig. S2 for a uniform working fluid.
Panels (a) and (b) demonstrate performance for a cycle
with a cold thermal equilibrium state C with the same
parameters as that in Fig. 2(a) and (b) of the main text.
Hot thermal equilibrium states A, on the other hand, are
chosen such that they lie within the adjacent decoherent
quantum regime (

√
γ≪τ≪1), where g(2)(0)≃2−4γ/τ2

[S18]. For both net work and efficiency, we observe a sim-
ilar structure when comparing with that of the cycle lying
entirely within a single regime, shown in Fig. 2(a) and (b)
in the main text, with this inter-regime cycle generating
greater net work due to the increased temperature ratio
for inter-regime operation.

Performance of an inter-regime engine cycle with a
strongly interacting uniform working fluid is shown in
Fig. S2 (c) and (d), where the cold thermal equilibrium
state lies in the Tonks-Girardeau regime, and the hot
thermal equilibrium states are chosen to fall within the
neighboring regime of high-temperature fermionization
(1≪ τ ≪ γ2), where g(2)(0)≃ 2τ/γ2 [S18]. We see that,
for a similar ratio of both interaction strength and tem-
perature, inter-regime engine operation with a strongly
interacting working fluid produces larger net work than
that observed in the weakly interacting regime at the cost
of a reduction of parameter space over which positive net
work is possible. This suggests that, in contrast to the
operation of an engine cycle that remains entirely within
a single asymptotic regime, if one can afford pursuing
an engine cycle operating under a large temperature dif-
ference, a strongly interacting gas may be capable of a
greater net work than a weakly interacting one with the
same efficiency.
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