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Dynamics of thermalization of two tunnel-coupled one-dimensional quasicondensates
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We study the nonequilibrium dynamics of two tunnel-coupled one-dimensional quasicondensates following a
quench of the coupling strength from zero to a fixed finite value. More specifically, starting from two independent
quasicondensates in thermal equilibrium, with initial temperature and chemical potential imbalance, we suddenly
switch on the tunnel-coupling and analyze the postquench equilibration in terms of particle number and energy
imbalances. We find that, in certain parameter regimes, the net energy can flow from the colder quasicondensate
to the hotter one and is governed by the surplus of low-energy particles flowing from the cold to the hot system
relative to the high-energy particles flowing in the reverse direction. In all cases, the approach to the new
thermal equilibrium occurs through transient, damped oscillations. We also find that, for a balanced initial state,
the coupled quasicondensates can relax into a final thermal equilibrium state in which they display a thermal
phase coherence length that is larger than their initial phase coherence length, even though the new equilibrium
temperature is higher. The increase in the phase coherence length occurs due to phase locking which manifests
itself via an increased degree of correlation between the local relative phases of the quasicondensates at two

arbitrary points.
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I. INTRODUCTION

The relaxation of isolated quantum many-body systems
has been the subject of intense theoretical and experimental
activity in recent years [1]. In particular, much interest has
been devoted to the understanding of how quantum many-
body systems evolve after a quantum quench (i.e., an abrupt,
nonadiabatic change in a system parameter). Generic systems
have typically been found to relax to a canonically distributed
thermal state, while integrable systems relax to a state de-
scribed by a generalized Gibbs ensemble [2,3].

An important physical platform that enabled fundamental
advances in this research area has been that of ultracold atomic
gases. These have allowed for the experimental realization of
some paradigmatic many-body Hamiltonians, in addition to
allowing for a high degree of control over system parameters
and dynamics [4,5].

The advances made in this research area are now foster-
ing the growth of intriguing new research frontiers such as
nonequilibrium quantum thermodynamics [6,7]. In traditional
thermodynamics, the simplest building block of a thermo-
dynamic process consists of a dynamical system coupled to
a large nondynamical bath. In quantum thermodynamics, on
the other hand, one is often concerned with the dynamics
of both the system and the bath, with both being treated
quantum mechanically and both being not necessarily large.
Examples of open questions include how quantum correla-
tions and fluctuations of the bath, as well as the strength of the
coupling between the bath and the system, affect the system
dynamics and thermodynamics. Thus, a typical setting for
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quantum thermodynamics can be realized by considering two
coupled quantum many-body systems treated dynamically as
a combined closed system.

In this paper, we study a simple example of such a setting—
a pair of tunnel-coupled one-dimensional (1D) Bose gases in
the quasicondensate regime, which is characterized by sup-
pressed density fluctuations but a fluctuating phase and hence
absence of a true long-range order [8—10]. This system has al-
ready been studied extensively, both theoretically [11-14] and
experimentally [15-22], in the scenario in which an initially
single 1D quasicondensate was coherently split into two qua-
sicondensates and was allowed to relax through dephasing.'
(For related studies of elongated three-dimensional Bose-
Einstein condensates, see, e.g., Refs. [23-25].) In particular, in
the experiment of Hofferberth et al. [15], the authors observed
a fast, subexponential decay of relative coherence in the com-
pletely decoupled case [26,27]; the dephasing between the
two quasicondensates occurred on the order of milliseconds.
However, in light of subsequent experiments of Ref. [17], this
fast dephasing has been reinterpreted as relaxation to a qua-
sistationary prethermal state (that displays equilibrium-like
properties [28]) rather than to the final state of a true thermal
equilibrium. Furthermore, in Ref. [20], it has been shown that

!Coherent splitting here refers to the actual experimental splitting
of the transverse confinement from a single- to a double-well config-
uration using radio-frequency adiabatic dressed potentials, whereas
in theoretical studies this is usually modeled by assuming a certain
initial state of the already split system.
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the steady state reached by the system due to prethermaliza-
tion is described by the generalized Gibbs ensemble. Related
experimental and theoretical studies have also shown that
during the evolution to a prethermalized state, thermal corre-
lations emerge locally and propagate through the system in a
light-cone-like evolution [19,29]. After reaching the prether-
mal state, the system then continues to dephase in a slower
second light-cone-like evolution to its final thermal state [30].

Here we consider the opposite dynamical scenario: rather
than coherently splitting a single quasicondensate into two,
we instead consider two initially independent (uncoupled)
quasicondensates that are suddenly tunnel-coupled at time
t =0 and then relax to a new common equilibrium state.
More specifically, we study two parallel harmonically trapped
1D quasicondensates with an initial imbalance in their
equilibrium temperature and chemical potential. The quasi-
condensates are then driven out of equilibrium by quenching
(at time t = 0) the tunneling strength from zero to a finite
value J. Using finite-temperature c-field (or classical field)
techniques [31], we simulate the subsequent rephasing of the
coupled system and characterize its relaxation to the final
equilibrium state in terms of real-space density and momen-
tum distributions, energy and particle number imbalances, and
phase coherences. The rephasing of such a system at zero
temperature has been previously studied in Ref. [32].

This type of a system, where two subsystems are coupled
via tunneling, typically gives rise to Josephson oscillations
[33]. Josephson oscillations in Bose-Einstein condensates
(BECs) have been studied previously both theoretically and
experimentally [34-45]. An interesting effect that has been
predicted and observed in such tunnel-coupled systems is the
phenomenon of macroscopic self-trapping [36,43]. In phase
fluctuating 1D quasicondensates [11,40,46,47], however, such
an effect has been predicted to break down [47] due to the ab-
sence of true long-range order and the enhanced role of quan-
tum fluctuations as compared with three-dimensional (3D)
systems. Here, in the finite-temperature version of the system,
we also observe the absence of macroscopic self-trapping, as
expected, because of the same lack of true long-range order,
albeit due to thermal fluctuations in this case.

The paper is organized as follows: In Sec. II we introduce
the theoretical model describing two tunnel coupled 1D quasi-
condensates and outline the details of the c-field methods used
to simulate the preparation of the initial thermal equilibrium
state of the system and the subsequent real-time dynamics
after a sudden switching on of the tunnel coupling. In Sec. III
we present the results of our simulations, concentrating
specifically on the discussion of the dynamics of the en-
ergy and particle imbalances during relaxation of the system
(Sec. IIT A), particle currents in momentum space (Sec. 11l B),
characterization of the final relaxed state (Sec. III C), and the
phase coherence properties of the relaxed quasicondensates
(Sec. III D). We summarize our findings in Sec. I'V.

II. SYSTEM AND C-FIELD METHOD
A. The model

A system of two harmonically trapped 1D Bose gases
coupled via tunnel-coupling can be described by the following

second-quantized Hamiltonian:

2
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Here, ¥ j(x, ) is the annihilation operator of the jth (j = 1,2)
Bose gas, satisfying equal-time bosonic commutation rela-
tions [W;(x, 1), WI(x',1)] = 8;;8(x —x'), and m is the mass
of a single particle. The quantity w is the longitudinal trap
frequency which we assume is the same for both gases, g is the
1D coupling strength (given by g = 2hw, a [48] in the absence
of confinement induced resonances, assuming the transverse
confinement of both gases is also harmonic with frequency
w, , with a being the 3D s-wave scattering length), and J > 0
is the strength of the tunnel-coupling between the two gases.

A uniform 1D Bose gas with linear density p; at
temperature 7; can be completely characterized by two dimen-
sionless parameters: the dimensionless interaction strength
yj = mg/(F*p;) and the dimensionless temperature 7; =
ZEZkBTj /(mg*) [49-52]. In the case of a harmonically trapped
1D Bose gas, the longitudinal trap frequency w serves as
an additional parameter needed to characterize the system.
Since the density of the harmonically trapped system becomes
position dependent, the interaction parameter becomes locally
defined, y;(x) = mg/ [thj(x)]. The temperature 7;, on the
other hand, remains a global parameter for the system. For
a given chemical potential 1 ; and temperature 7;, the density
at the center of the trap pp ; = p;(0) can be used to define a
dimensionless interaction strength yy ; = mg/ (7 po, ), which
can then serve as a global interaction parameter.

In this work, we restrict ourselves to the weakly interacting
regime of the coupled 1D Bose gases, which corresponds
to the condition yy ; < 1. Moreover, we are concerned with
characteristic temperatures most readily attainable in current
ultracold atom experiments (see, e.g., Refs. [10,53-55]), at
which the highly occupied modes with energies up to a
certain cut-off energy are dominated by thermal rather than
vacuum fluctuations and hence can be described by the clas-
sical c-field approach [31,56] (see below). This requirement
is satisfied, in particular, in the temperature interval goo ; <
ksT; < «/)/T,jth&jﬂm [51,52,56,57], corresponding to the
phase-fluctuating quasicondensate regime, where pg ; is the
peak density in the trap center.” The phase fluctuations here
can be characterized by thermal phase coherence length

2In terms of dimensionless parameters used in Refs. [51,52], the
quasicondensate regime gp K kgT < ﬁh2p2 /2m for a uniform
gas at density o would correspond to y < 7 K ﬁ or y" LT K
y 32, and was referred to as the GPb regime (where the equilib-
rium density-density correlation function can be described within the
Bogoliubov theory); equivalently, in the crossover phase diagram of
Fig. 1 of Ref. [10], it was referred to as a “thermal quasicondensate”
regime. Here, the dimensionless temperature t is defined according
to T = T /Ty, where T = Ii*p? /2mkg is the temperature of quantum
degeneracy (note that T depends on density p, whereas 7 = 7/y?
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167} = 21 po, ; /mkyT; [58-60], which is the length scale over
which the first-order correlation function displays exponen-
tial decay at long relative distances. At these temperatures,
and within the c-field approach, a single quasicondensate can
in fact be described not by two independent dimensionless
parameters, 7; and yp ;, but by a single dimensionless pa-
rameter, which is a nontrivial combination of 7; and yy ; (see
Refs. [56,58] and [61,62] for additional details),

X0 =3 T )

In terms of the original physical parameters, xo,; can be
rewritten as xo,; = ks7;/[hip;o0+/gpj0/m].

For two tunnel-coupled quasicondensates, each having a
characteristic phase coherence length of l(d’), there is an
additional length-scale in the problem associated with the
coupling strength J. It is given by [Y) = /ii/(4mJ) [11] and
represents the typical length scale at which the tunnel cou-
pling restores a spatially constant relative phase A¢(x,1) =
d1(x,t) — ¢a(x, t) [16]; in the strong cross-coupling regime,
corresponding to V) « 1 (‘/’j) the two quasicondensates are
phase locked. This means that the distribution of A¢ is peaked
around zero, while the local phase in each quasicondensate
remains fluctuating [40].

is density independent). The lower bound on the temperature in
this thermal quasicondensate regime is the same as the condition
of applicability of the c-field approach, kg7 >> ||, where u is the
chemical potential, approximately equal to p >~ gp. For a trapped
(inhomogeneous) gas, these conditions are to be understood with
respect to the peak density of the gas near the trap center. On the
other hand, in the tails of the density distribution, where the density
p is lower and hence the local dimensionless interaction parameter
y is larger, the applicability of the c-field approach stems from the
fact that as the density of the gas is reduced at constant temperature
T, the local regime of the gas [in the local density approximation
sense, with the local chemical potential given by p(x) = u — V(x)
[52]] crosses over from the thermal quasicondensate to the highly
degenerate nearly ideal Bose gas regime, ﬁthz /2m L kgT <K
i2p?/2m, or a “decoherent quantum” (DQ) regime y % « T <«
y~2 [10,51,52]. In the degenerate nearly ideal Bose gas regime,
the absolute value of the local chemical potential can be approx-
imated by |u| ~ m(ksT)?/2h*p* [56,57]. Hence, the condition of
applicability of the c-field approach, kg7 > || can be rewritten as
ksT <« 2h2p?/m, which we note gives (ignoring numerical factors
of the order of one) the temperature upper bound of the degenerate
nearly ideal Bose gas regime. We further note that these crossover
boundaries between the different regimes of a weakly interacting
1D Bose gas, which are dominated by thermal rather than quantum
fluctuations, were identified through the properties of short-range
density-density or second-order correlation function. If, however,
one is concerned with the behavior of the first-order or phase correla-
tion function at large relative distance, or equivalently the momentum
distribution at low momenta, then the lower bound on the tempera-
ture, in which the physics is dominated by thermal fluctuations, is
reduced down to gpe™2"/v¥ « kT ; for further details, see footnotes
59 and 63 of Ref. [58].

B. The c-field method

To study the dynamics of the coupled quasicondensates we
use the classical c-field method, which is a proven approach to
study degenerate Bose gases at finite temperatures [31,56] (for
specific applications of the c-field approach to 1D Bose gases,
see, e.g., Refs. [27,31,56,61-70]). In this method, the quan-
tum field operator ‘i'j(x, t) is decomposed into two regions,
a c-field region and an incoherent region. The c-field region
contains highly occupied low-energy modes and is described
by a single classical field w}c)(x, t) for respective (j = 1, 2)
quasicondensates. On the other hand, the incoherent region
contains sparsely occupied high-energy modes that act as
an effective thermal bath, treated as static, with temperature
T; and chemical potential u; governing the thermal average
number of particles in the c-field region. The boundary be-
tween these two regions is defined by an energy cutoff s(cm).
For initially uncoupled (J = 0) quasicondensates, each clas—
sical field wj(.c)(x, t) obeys the following stochastic projected
Gross-Pitaevskii equation (SPGPE) [31], for finding the initial
thermal equilibrium configuration:

i
dy©n) = PO = 2Ly

L) W)
+FTj(“j_£f )v (x,t)dt—l—dej(x,t)}.

3)

Here, P(©) is the projection operator which sets up the high-
energy cutoff for the classical field region, and L'E.C) is the
Gross-Pitaevskii operator:

© hZ 82
LY = ~5-5:3 + V(%) + g| ¥
with V;(x) = —ma)jx2 being the trapping potential (where
w| = wy = w in this work). In addition, I'; is the growth rate,
whereas the last term dWr,(x, 1) is the associated complex
white noise, with the following nonzero correlation:

“4)

(dWE (x, dWr, (x, 1)) = 2T ;8(x — x')d. 5)

Evolution of each stochastic trajectory (initiated from a
random initial noise) according to the SPGPE, for a suffi-
ciently long time, corresponds to sampling the canonically
distributed Gibbs ensemble, according to the ergodic hypothe-
sis. Calculating expectation values of physical quantities then
corresponds to evaluating ensemble averages over a large
number of independent SPGPE trajectories.

In Eq. (3), the numerical value of the growth rate I'; is
somewhat arbitrary and can be chosen for numerical con-
venience as it has no consequence for the final equilibrium
configurations [56,61]. Furthermore, while the inclusion of
an energy cutoff through the projection operator P© is im-
portant in higher dimensions in order to prevent a divergence
of the atomic density, its role is less crucial in 1D. This is
because the classical field predictions for the atomic density
do not diverge in 1D, even in the absence of energy cutoff.
For this reason, our simulations were carried out without im-
posing the projection operator P©), in which case the cutoff
is imposed merely by the finite computational basis itself. For
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a sufficiently large cutoff, our results did not strongly depend
on the exact value of this cutoff.

Once the SPGPE is evolved to its final thermal equilibrium
configuration, we turn on the tunnel-coupling J and simulate
postquench dynamics by evolving each stochastic realization
of the c-field in real time according to the coupled Gross-
Pitaevskii equations (GPEs),

v Ox, 1) i .

IT = _ﬁ,cﬁchp,@(x, 0+ iy, 1),
81#2(6)0“) I ), © 1 (C)
Tz_ﬁ@ W, (x, 1) + iy (x, t). (6)

In the Appendix we show how to arrive at the dimen-
sionless form of the SPGPE, which (for a single condensate,
say j = 1) can be written in terms of the earlier introduced
dimensionless parameter xo i, Eq. (2) (see also Ref. [62]).
For a harmonically trapped system, a second parameter,
the dimensionless trap frequency @, is needed to character-
ize the system; this is introduced via @ = wty, where t) =
(7° /mg?kiT?)'? is the timescale defined using the tempera-
ture 7} of the first quasicondensate. For two tunnel coupled
quasicondensates, we also need a dimensionless coupling
strength, J = Jto, in addition to specifying the temperature
and chemical potential imbalances, which we characterize via
the ratios

T.
a== and g=12. 7
T 1

With these parameters, the dimensionless parameter xo»
for the second quasicondensate is related to xo; via
X02 = (a/ﬁ3/2))(0,1, in the Thomas-Fermi limit [71,72], in
which the mean interaction energy per particle dominates the
kinetic energy, so that t; = gpo,; and therefore xo2/x0,1 =
(T2/Ti)(po.1/p02)? = (Ta/T) (1 / 2)? = o/ B> (see
also the Appendix).

All numerical simulations reported below were per-
formed with the software package XMDS2 [73], using
the adaptive time-step Runge-Kutta (ARK45) integration
algorithm.

III. RESULTS AND DISCUSSION

A. Energy and particle exchange

We now consider a pair of 1D quasicondensates in parame-
ter regimes that can be realized in ultracold atom experiments
(see, e.g., Ref. [21]). The initially uncoupled (J = 0) qua-
sicondensates are prepared independently, with generally
different equilibrium temperatures 7; (j = 1, 2) and different
chemical potentials w;, at time t = 0. We characterize these
initial differences by the respective ratios, as in Eq. (7).

At time ¢ = 0, the tunnel coupling J is suddenly switched
on to a nonzero value J # 0. This establishes thermal and
diffusive contact between the two systems implying that the
two systems can now exchange energy and particles while
evolving to the new equilibrium state with a new common
temperature and chemical potential. We characterize this ex-
change by the dynamics of the energy and particle number

(a) (b) (c)
Ty >Ts T >T, T >T,
M1 = 42 pa < ph2 < p2
1 2 1 2 1 2
FEq (0) >E2(0) FEq (O) %EQ(O) Fq (O) <E2(0)
Nl(O)%NQ(O) N1(0)<N2(O) N1(0)<N2(0)

FIG. 1. Three different initial conditions of the quasicondensates
1 and 2, considered in the examples of Fig. 2.

imbalances,
_ E@t) — Ex(1)
Elmb(t) == E](l) +E2(l)’ (8)
N (1) = 0 = a0) 9)

Ni(t) + M (t)

where E;(t) (j = 1, 2) are calculated as the stochastic means
of the Hamiltonians for each system, in which the quan-
tum mechanical creation and annihilation field operators
are replaced by the respective complex c-fields, E;(t) =
(Hj (e, ), By, ) = (B, 0, 919 (x, 1)), and
similarly for N;(t) = [ dx(¥] (e, )¥;(x, 1)) = [ dx(|y(©
(x,1)|?). We recall here that, even though the coupled qua-
sicondensates evolve according to the deterministic GPE after
the quench of the tunnel coupling, the stochastic averag-
ing here is required because each stochastic realization (that
evolves deterministically according to the GPE) starts off from
a random initial condition attained after the SPGPE stage.

We consider three nontrivial scenarios illustrated in Fig. 1,
all of which have initial temperatures 7; > T, (with the same
ratio of temperatures, @ = 15 /77 = 0.25), whereas the initial
chemical potentials | and p, vary from being approximately
equal to increasingly imbalanced, with p; < w,. The evolu-
tion of the energy and particle number imbalances, Ein(?)
and Niyp(¢) for these three scenarios are shown in Fig. 2.

In the example of Fig. 2(a), the initial chemical poten-
tials of the two quasicondensates are approximately the same,
1 = uo. This means that the respective initial total number
of particles are also approximately the same, Ny >~ N,. Indeed,
in the quasicondensate regime that we study here the density
profiles are well approximated by the Thomas-Fermi inverted
parabolas, for which u; = gpo ; and the peak densities can be
expressed directly through the total atom numbers as N; using
po,j = (9mw2Nj2 /32g)'/3 (see the Appendix). This means that
particle number imbalance is completely determined by the
chemical potential imbalance, and therefore for w; >~ w,,
the initial total particle numbers will also be approximately
the same so that the initial particle number imbalance is zero,
Nimp(0) = 0. This in turn implies that, after switching on the
tunnel coupling J, the net particle transfer from one system
to the other will remain zero in the long-time limit, i.e., when
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(a) 1 6 1 1 1 1 1
b = Nimb
S e Eimb
129% P »
= p 1R pho
X 3
= g4 i .-. ]
E B
5 B -
2 4] : L
5

(b)

Nimb: Eimb [%]

(¢ - —
STy e B, | [
g 0 A e
= T,>T,
=l
R=] 1 <2
= -10 : . ' ‘ r
15 L
0 0.5 1 1.5 2 2.5 3
wt

FIG. 2. Time evolution of the particle number and energy imbal-
ances between the two quasicondensates, Ny, (¢) (full, black line)
and Ejy,p (7) (dotted, orange line), after quenching the tunnel coupling
from J =0 to J = 3&. The initial dimensionless parameters are
Xo1 2 0.138 (or fi; = 1/xg =3.74) and & ~ 3.40 x 1072 in all
cases; the initial ratio of temperatures is « = 0.25; whereas the ratios
of the initial chemical potentials are (a) g = 1.008, (b) 8 = 1.152,
and (c¢) B = 1.273. The red and blue ellipses illustrate the quasi-
condensates 1 and 2 from Fig. 1, where we additionally show the
direction of the initial (ini) and net final (fin) flow of energy by gray
arrows. In all cases, the standard errors of the means are smaller than
the thickness of the lines and are not shown.

a new equilibrium is established and the transient oscillations
in the imbalance subside back to zero. [In the examples of
Fig. 2(a), this long-time limit corresponds to approximately
ty ~ 3/w, which is the final time in the time-window shown.]
However, the initial temperatures and energies are different,
with 7} > T, and E1(0) > E»(0) [Eimp(0)] > 0], implying that
a net energy exchange will occur on the way to the new
equilibrium. In this scenario, the only way the two systems
can settle into a new thermal equilibrium (at a common new
temperature, with zero energy imbalance in the long-time

(@) dn' (k, t)/dt, —dn (k, t)/dt 2.5
1 2
T
S 1575
= 0 =
< 13
X
1 0.5
0
S x1078
1 {o
T
B
X
- 4
() dn (k,t)/dt !
1 o
|
g g
£ 01 . -1
X
14 I B
: . . : A
d . L . . .
(d) dnl (k, t)/dt 0
] 4 L
T
= Ll 1-5 2
£ o] i E
X
-11 " -10
0 0.2 0.4 0.6 0.8 1
wt

FIG. 3. Evolution of the cross- and intrawell components of the
momentum distribution currents dn;(k, t)/dt versus dimensionless
momentum (kly,, with L, = +/i/mw being the harmonic oscilla-
tor length) and dimensionless time wt: (a) cross-well component
of the current due to tunneling of particles between the two qua-
sicondensates, dn(lc)(k, t)/dt = —dngc)(k,t)/dt, in the low energy
band; (b) cross-well component of the current in the high energy
band; (c) intrawell component dngi)(k,t)/dt due to internal dy-
namics within quasicondensate (1); and (d) intrawell component of
dn;i)(k, t)/dt due to internal dynamics within quasicondensate (2).
Initial parameters are as in Fig. 2(b). The high frequency cross-
well oscillations in the low energy band occur approximately at the
Josephson plasma frequency w;, whereas the cross-well oscillations
in the high energy band occur at a lower, Rabi frequency wy (see
text).

limit), while maintaining the net zero particle transfer due
to the already equal chemical potentials, is if low-energy
particles predominantly tunnel from the colder system 2 to
the hotter system 1, whereas the same number of high-energy
particles tunnel predominantly in the opposite direction. (See
also the discussion of Fig. 3 in the next section.) As we see
from Fig. 2(a), such a net energy transfer from the initial
Eimp(0) > 0 to final Ejp,(¢7) 2 O takes place through transient
damped oscillations. Similar transient oscillations are seen in
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the particle number imbalance, even though both the initial
and final imbalances are zero, implying absence of any net
particle transfer as expected.

In the example of Fig. 2(b), the system 1 is initially slightly
hotter than the system 2 (7} > T3), but the initial chemical
potentials satisfy p; < p, and are chosen in such a way
that the energies of the two systems are approximately equal,
E;(0) = E»(0), whereas the particle number imbalance is neg-
ative, Nimp (0) < 0 [N1(0) < N>(0)]. In this scenario, once the
tunnel coupling is switched on, the energy initially flows from
the colder system 2 to the hotter system 1, with subsequent
transient damped oscillations; however, the net energy flow in
the long-time limit is approximately zero as both the initial
and final energy imbalances are nearly zero. The net particle
flow, on the other hand, is from system 2 to system 1, as
expected from p; < puy. The only way this can happen is if
a larger number of low-energy particles flows from the colder
system 2 to the hotter system 1 compared with the number of
high-energy particles flowing from the system 1 to system 2,
leading to a net particle number flow from system 2 to system
1, while balancing out the net zero energy flow between the
two systems.

Finally, in the scenario of Fig. 2(c) the chemical potential
imbalance (u; < up) is larger than in the previous exam-
ple, such that there is now an initial energy imbalance too,
E1(0) < E»(0). In this case, both the initial and long time
net energy flow, as well as the particle number flow, is from
the cold system 2 to the hot system 1, wherein the energy
is carried by a much larger number of low-energy particles
flowing from system 2 to system 1, compared with the number
of high-energy particles flowing from system 1 to system 2.

To summarize, in all three nontrivial examples, the low-
energy particles flow predominantly from the colder system
2 to the hotter system 1, whereas the reverse is true for the
high-energy particles. The net energy flow in each example
depends on the overall number of low-energy particles flowing
from system 2 to system 1, compared with the overall number
of high-energy particles flowing in the opposite direction.

B. Dynamics of particles in momentum space

To gain further insights into the dynamics of the
low- and high-energy particles, we now analyze the
local change of the momentum distribution with time,
dnj(k,t)/dt, in each quasicondensate (j =1,2), where
nj(k, 1) = [[ dxdx'e* =) (¥l (x, )¥;(x',1)). (Here and
hereafter, we refer to k as the momentum, even though it is in
wave-number units, whereas the true momentum is p = #k.)
As the dynamics of particles in each quasicondensate will
generally contain contributions from the internal dynamics
and tunneling of particles from the other quasicondensate,
the local rate of change dn;(k,t)/dt or momentum currents
can be further decomposed into intrawell [(i)] and inter- or
cross-well [(¢)] components,

dn(k, 1) dn (k. 1) . dn' (k. 1)
e dt dt

with the understanding that the cross-well components have
to balance each other, dn'”(k,1)/dt = —dn{’(k,1)/dt, due
to the particle number conservation. An explicit expression

(10)

for dnj(k,t)/dt can be calculated by using the Fourier
components of the field operators, li’()c, t) =
% [dka(k,t)e*™, and the equation of motion
iha\ilj(x, t)/ot = [\i—’j(x, t), H], with the Hamiltonian H
given in Eq. (1). From this, the intrawell component is given
by

EnE”(k,t): ——J;(k, )+—//de/< Gk, k, k', 1),

—3an
which takes the form of a continuity equation for n;’)(k, 1)
with a nonvanishing source term (second term on the right-
hand side). Here,

2
Tk, 1) = %ImRAT(k p 28k 1) (’; ’)ﬂ (12)

is the momentum distribution flux at momentum k, whereas
gj(k7 K, K/v t)

= Bl (k, 0aT( + ' — K, (e, D (€
== a;(k,na;(k +« JOaj(k, )aj(k’, t))]
(13)

represents the scattering of two particles with initial momenta
k and «’ and final momenta k and « 4+ «’ — k. In fluid dy-
namics, the second term in the right-hand side of Eq. (11)
represents creation of a particle with momentum k, hence the
name—the source term. The cross-well components, on the
other hand, are given by

n\O(k, 1) = 2J Im[(a) (k, )a (k, )],

d—n;”(k, 1) = 2J Im[(a] (k, D (k, )], (14)
with dn' (k, 1)/dt = —dn{ (k,1)/dt, as expected.

In the c-field approach, the momentum currents defined
above are calculated using stochastic averages over the
Fourier components of c-field complex amplitudes in place of
quantum mechanical expectation values of field operators, just
like we did in the calculation of mean energies and particle
numbers in Egs. (8) and (9).

In Fig. 3, we plot the cross- and intrawell components of
dnj(k,t)/dt for two coupled quasicondensates with the same
parameters as in Fig. 2(b). [For the parameters of Figs. 2(a)
and 2(c), these components have similar features as those
shown in Fig. 3 and are not plotted.] We can see here that
immediately after turning on the coupling between the two
quasicondensates particles start to flow across to the other
quasicondensate, as well as within the same quasicondensate.
Initially, there is a large flow of particles with low momenta
from quasicondensate 2 to quasicondensate 1 due to the
initial chemical potential difference (u, > ). This can be
seen in F1g 3(a) as a positive valued peak in the cross-well
current dn'” (k, 1)/dt [with dn'\”(k, 1)/dt = —dn " (k, 1)/d1]
emerging approximately at ¢ >~ 0.05/w. The range of mo-
menta shown here indeed corresponds to low-energy particles,
whereas the same cross-current dynamics in a higher energy
band is shown in Fig. 3(b) where we see that the initial flow
of particles is from quasicondensate 1 to quasicondensate 2,
with dnﬁ")(k, t)/dt < 0. Figures 3(c) and 3(d), on the other
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hand, show that, in addition to cross-currents, there is a redis-
tribution of particles within each quasicondensate. This is seen
as a nontrivial pattern of alternating regions of positive and
negative intrawell currents in dnﬁ’)(k, t)/dt and dn;’) (k,t)/dt,
which eventually subside to zero with time.

The oscillations in dn'(k, t)/dt and dn'" (k, t)/dt at low
momenta, shown in Fig. 3(a), decay quickly, as soon as the
particle numbers of the two quasicondensates become close to
each other. These oscillations coincide with what we observed
in Fig. 2(b) as high-frequency oscillations in the total particle
number imbalance, which reside on top of lower frequency
oscillations. The lower-frequency oscillations occur at high
momenta [as per Fig. 3(b)] and add up to a significantly
larger oscillation amplitude when integrated to give the cor-
responding oscillations in the total particle number imbalance
of Fig. 2(b).

The way the low- and high-energy particles tunnel at dif-
ferent frequencies can be understood by revisiting the theory
of a bosonic Josephson junction between two Bose-Einstein
condensates [11,34-40,43,44,46] and extending it to a pair
of uniform 1D quasicondensates. Within the linearized the-
ory of modulational instabilities of Josephson oscillations
[where there is a small particle imbalance |Niy,(#)| < 1 and
a small relative phase |[A¢(x, 1)| = |1 (x, 1) — ¢da(x, 1) K 1],
the particles oscillate between the quasicondensates with fre-
quency given by wiin = [(2800.t0tJ/h) + 4J%11/2 [34], where
Po.tot = Po,1 + po2. Here, we can see that if the intrawell
interaction energy is sufficiently large such that gog (o1 > AJ
the particles will oscillate between the two quasicondensates
at a rate given by the Josephson plasma frequency w; =
V2J8po.1ot/h [11,74]. As this condition in our inhomogeneous
quasicondensate is satisfied in the high-density bulk of the
system, which is also where the low-energy particles are
localized, we do indeed observe that the low-k components
shown in Fig. 3(a) oscillate approximately at the said plasma
frequency wy, which is the high-frequency component. In the
opposite limit where interaction between particles is negligi-
ble, i.e., for high-energy tails of the momentum distribution
in our system, the particles undergo a Rabi-like oscillations
with frequency given by wg = 2J [34,36], which is the low-
frequency component shown in Fig. 3(b).

C. Equilibrium chemical potential and
temperature after relaxation

We now characterize the final relaxed state of the two
tunnel-coupled 1D quasicondensates. More specifically, we
let the system evolve until it relaxes at some final time ¢t =
tr and then compute the final chemical potential and final
temperature of both quasicondensates by comparing the mo-
mentum distribution of the relaxed state with that of a thermal
Gibbs distribution. Given that the initial state of the system
(before the coupling J is turned on) is an excited state with
respect to the coupled system at J # 0, we expect the two
coupled quasicondensates to relax to a final equilibrium state
at a higher temperature.

Given the peak density p;(x = 0,1) = pgj ) of the final re-
laxed state, the global equilibrium chemical potential of each
quasicondensate can be estimated as Mjf )= gp((){? in the trap
center, using the Thomas-Fermi approximation. The tempera-

ture of the final relaxed state Tl(f ) = Tz(f ), on the other hand,
is obtained by fitting the momentum distributions n;(k, t;)
of the relaxed state to an equilibrium thermal momentum
distributions n?h) (k). The thermal momentum distributions

n'™ (k) are obtained by performing SPGPE simulations of two
initially coupled quasicondensates according to Egs. (3) with
an added tunnel coupling term as in the GPE (6) (i.e., by mod-
eling the respective thermal equilibrium state after cooling
down two precoupled quasicondensates in a transverse double

well) with chemical potential ,u(lf ) = u%f ) = @ and scanning

for different values of temperature Tl(f ) = Tz(f ) = Ty, until the
obtained equilibrium SPGPE momentum distributions match
the momentum distributions of our final (time-evolved) re-
laxed state.

To quantify the proximity of n(lth)(k) to the final relaxed
momentum distribution, n{(k, tr) = na(k, t7), we calculate the
Bhattacharyya statistical distance [75]

Dp = —In[B(P, P)], (15)

where B(P, P') is the Bhattacharyya coefficient given by

B(P,P)=) PP (16)
[\

Here, P(y) and P’(y) are two normalized probability
distribution functions of a discrete variable y within the same
domain, which are being compared. As P(y) approaches
P’(y), the Bhattacharyya coefficient tends to unity, B(P, P') —
1, which gives a distance of Dg = 0 indicating a complete
overlap of the two distributions. In our case, the roles of
the two distribution functions are taken by the normalized
momentum distributions of the relaxed state, Pi(k,1r) =

ni(k,tg)/ Z’;’:_ g M1 (ks 1p), and  similarly for the ther-
mal equilibrium state, Pl(‘h)(k) = nith)(k)/ Zlg“ n?m(k),

where the summations are over the discrete coéinf;utational
lattice points in momentum space.

In Fig. 4, we plot the momentum distribution n;(k,t)
of the first quasicondensate of a system with two ini-
tially uncoupled but fully balanced quasicondensates, i.e.,
with T1 =T, (@ =1) and pu; = up (B = 1), and therefore
Nimp(0) = 0 and Ej;;,,(0) = 0. [The momentum distribution
for the second quasicondensate is essentially the same,
my(k,t) = ny(k,t), in this balanced case.] The curves plot-
ted are the momentum distribution before coupling, n;(k, t =
0-), and at time t; = 200/w, ni(k,t; = 200/w), when the
coupled system has already fully relaxed.® The relaxed
distribution (red, full line) is fit with the momentum distri-
bution at thermal equilibrium of an equivalent precoupled
system with the same number of particles (black, dashed

3The reason for such a long relaxation time is that the relatively
strong interwell coupling, which is J = 3& in this example, ex-
cites breathing mode oscillations within each quasicondensate. These
breathing oscillations damp out on a much longer timescale than
the characteristic timescale of ~3/w for interwell dynamics seen in
Fig. 2. For a weaker coupling (corresponding to a smaller value of J),
the observed relaxation time of breathing mode oscillations within
each quasicondensate was shorter.
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FIG. 4. Momentum distributions of two initially independent but
fully balanced (¢ = 1, B = 1) 1D quasicondensate before and after
relaxation, for J = 3&. We show only the momentum distribution
of the first quasicondensate n;(k,t), with the understanding that
ny(k, t) = ny(k, t) in this fully balanced case. The dimensionless mo-
mentum k/p, for the horizontal axis is defined as in Fig. 3. The initial
parameters are @ = 0.0857 and xo,; = 0.0341, with the respective
dimensionless chemical potentials given by fi; =1/ X(i/f = 9.50,
according to Eq. (A4) of the Appendix, and fi, = fi; (for g = 1).
The two initially uncoupled quasicondensates [blue, dashed-dotted
line, with ny(k,t = 0_) = ny(k,t = 0_)] evolve in a coupled setup
and eventually relax to a new equilibrium state, with the respec-
tive momentum distribution n; (k, t; = 200/w) = ny(k, t; = 200/w)
(i.e., after 200 oscillation cycles) shown as red full line. The dashed
black line is an actual thermal (Gibbs) equilibrium distribution of
precoupled 1D quasicondensates fit to the time-evolved, relaxed
distribution; the best-fit temperature for this thermal distribution
corresponds to @ = 0.0712 (recall that & o sz/ 3), which means that
the temperature of the relaxed state is higher than the initial tempera-
ture 7; by a factor of 1.32 [corresponding to (0.0857/0.0712)%2].
The new (relaxed) value of the parameter xo; is also a factor of
1.32 larger than initially, according to xo; = 4ﬁkBT1/(3N1hw).
The threshold for Bhattacharyya distance used here to terminate the
search for the best-fit temperature between the relaxed and thermal
distributions is Dy = 0.0001. We also show for comparison (green
dotted line) the momentum distribution of a thermal equilibrium state
of an initially coupled system, but at the same initial temperature
@ = 0.0857 as the prequenched (lower temperature) uncoupled sys-
tem; the distribution is narrower than that of the final relaxed state
of the quenched system, as expected. The light shaded areas on all
curves indicate the standard errors of the means.

line), but at a higher temperature than the initial temperature
of our system. As we see, the relaxed and best-fit thermal
distributions are in excellent agreement with each other (the
corresponding Bhattacharyya distance here is Dg = 0.0001),
implying that the initially uncoupled quasicondensates have
relaxed to a higher temperature thermal equilibrium state; the
best-fit equilibrium temperature for the relaxed distribution
corresponds to @ = 0.0712 (where we recall that @ o< T72/3),
whereas the initial value of this parameter was @ = 0.0857.
We thus conclude that the final relaxed state of the coupled
system is described by the thermal Gibbs ensemble, character-
ized only by the global temperature and the global chemical

potential. In addition, we also plot the momentum distribution
at thermal equilibrium of a precoupled system at the same
temperature as the initially uncoupled system. As expected,
this distribution is narrower than that of the final relaxed states
as it corresponds to a lower temperature thermal equilibrium
state.

D. Equilibration and thermal phase coherence

In this section we characterize the coherence properties of
the coupled quasicondensates before and after relaxation. As
we saw in Fig. 4, the final relaxed state of each quasicon-
densate is characterized by the momentum distribution that is
narrower and has a higher population of the low-momentum
modes around k = 0O than the respective initial momentum
distribution before the coupling J is switched on. This ob-
servation suggests that the condensate fraction (as per the
Penrose-Onsager criterion [76]), and hence the phase coher-
ence of both quasicondensates, increase despite the fact that
the quasicondensates have relaxed to a thermal equilibrium
state at a higher, rather than lower, temperature. To confirm
this, we compute the normalized first-order correlation func-
tion for each quasicondensate

(Bl (1)
Vil D 1)

and check whether the phase coherence length indeed in-
creases after relaxation.

As a guide to evaluating the phase coherence length, we
note that for a uniform equilibrium quasicondensate it can be
extracted from the first-order correlation function. The latter
can be calculated using the density-phase representation of
bosonic field operators (see, e.g., Refs. [59,60,77] and [58]
for additional details), wherein one treats only the long wave-
length excitations, for relative distances much larger than the
healing length lj(,h) = nh/,/mgp;, and ignores density fluctua-
tions. The resulting normalized first-order correlation function
decays exponentially as a function of the relative distance,

gV x 1) = (a7

— =/
;

gl x)=e —X>1" a8)
with l;"’) = 2h*p;/mkpT; defining the thermal phase coher-
ence length of the jth quasicondensate at density p; and
temperature T;.

Adopting this result for our nonuniform system within the
local density approximation and evaluating g(jl)(x, X', t) in the
trap center, i.e., at ' = 0 and as a function of x, we expect
to observe exponentially decaying correlation functions, with
the phase coherence length léfpj) evaluated at the peak density
po,j and the respective temperature of the system 7;. More
specifically, we calculate g(jl)(x, x'=0,t)attime ¢ = 0_ and
at t = ty once the system has relaxed. The results of SPGPE
simulations for the initial correlation g(jl)(x, X' =0,t=0_),

and SPGPE plus GPE simulations for the final g(jl)(x, X =
0, t = ty) correlation, are shown in Fig. 5 for the same initially
fully balanced quasicondensates and same parameters as in
Fig. 4. [The first-order correlation function for the second
quasicondensate, g(zl)(x, x' =0, t), is essentially the same in
this balanced case, within the statistical noise and is not
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FIG. 5. First-order correlation  function g(ll)(x, x'=0,t1),
Eq. (17), before (t =0_, J =0, blue dash-dotted line) and
after (t =t;, J = 3@, red full line) relaxation, for two initially
independent but fully balanced quasicondensates. All parameters
are the same as in Fig. 4. We also show (by the green dotted line)
the thermal equilibrium correlation function g(l”(x, x" = 0) for an
initially coupled system if it were prepared (cooled down in a
transverse double well) at the same temperature as the two initially
independent 1D quasicondensates. The light shaded areas on all
curves indicate the standard errors of the means.

plotted for clarity.] We observe a notable increase of the
thermal phase coherence length of the quasicondensates after
relaxation (red, full line) compared with that of the initial
lower temperature state (blue, dash-dotted line). The numer-
ical values for lé"? = l(()g) shown on the figure are extracted
from exponential ’ﬁts, Eq. (18), to the respective curves within
the range x /Iy € [0, 10] covering the bulk of the quasicon-
densate. For comparison, we also plot (green, dotted line) the
thermal equilibrium first-order correlation function of initially
precoupled quasicondensates at the same temperature as the
initially uncoupled system, calculated in the same manner
as the thermal momentum distribution n(.th)(k) in Fig. 4, i.e.,
using tunnel coupled SPGPEs. The coherence length of such a
system is larger than that of the relaxed state of the postquench
coupled system, reflecting the fact that the postquench state,
immediately after turning on the tunnel coupling J, is an
excited state of the transverse double-well potential, which
relaxes to a new higher temperature equilibrium state of that
potential.

The increase in the phase coherence length after relaxation
of the coupled system to a new thermal equilibrium state at a
higher temperature can be explained by the fact that the tunnel
coupling between the condensates is equivalent to an intro-
duction of an effective additional degree of freedom, which
generally favors establishment of long-range order. This in
turn is similar to the general trend that mean-field theories
perform better when going from lower- to higher-dimensional
systems or when increasing the coordination number in a
many-body system.

From the microscopic dynamical viewpoint, the increase
in the phase coherence within each relaxed quasicondensate
can be attributed to the phase correlation established between
the quasicondensates by the tunnel coupling. A quantitative
measure of such a cross-correlation, namely, between the

1 ‘\ 1 1 1 1 1
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FIG. 6. Two-point correlation function C(x, x' = 0, ¢) as a func-
tion of distance x from the trap center (x' = 0), for two initially
independent but fully balanced quasicondensates, and the same pa-
rameters as in Fig. 4. The different curves correspond to different
time instances: before the switching on the tunnel coupling (blue
solid line, ¢+ = 0_) and after the coupled system has relaxed (dashed
red and dotted yellow lines, r = 200/w) for two different coupling
strengths as indicated by the labels. The light shaded areas indicate
the standard errors of the means. The inset shows the evolution
of C(x,x’ =0, t) with dimensionless time wt (for J = 3®) at sev-
eral fixed points x, starting from x = 2.4/, (topmost curve) to x =
14.41;,, (bottommost curve) with an increment of Ax = 2.41,,.

phases of the two quasicondensates, is given by the following
two-point second-order correlation function [12,20]:
(B e W] e W] (0 B 1)

C(x,x',t) =
p1(x, Dp2(X', 1)

19)

The cross-correlation C(x, x’,t) characterizes the degree of
correlation between the complex-valued Bose fields \ill(x, 1)
and W, (x, 1) at two arbitrary points x and x” along the length
of the quasicondensates, and is experimentally measurable
[20]. In the quasicondensate regime considered throughout
this work, wherein the density fluctuations are suppressed and
can be neglected, the two-point correlation function C(x, x’, t)
simplifies to

C(x, x', 1) ~ (expliAg(x, 1) — iAp(X', 1)]), (20)

where Ag(x,t) = ¢1(x, 1) — ¢a(x, t) is the relative phase be-
tween the two quasicondensates. As such, it quantifies the
degree of correlation between the local relative phases of
the two quasicondensates at two arbitrary points x and x’
[11,16,19]. For all example systems treated in this work, both
Egs. (19) and (20) gave quantitatively very similar results,
confirming that the density fluctuations in our systems are
indeed negligible and hence implying that the presence of
any correlation in Eq. (19) can be attributed purely to phase
correlation or phase locking due to the tunnel coupling.

In Fig. 6, we plot the initial equilibrium (¢ = 0_) and
final relaxed (+ =1;) correlation functions C(x,x" =0,t),
for initially fully balanced quasicondensates (i.e., the same
initial parameters as in Fig. 4) and for two different val-
ues of the tunnel-coupling strength J: one corresponding
to a strong cross-coupling regime with J = 3& satisfying

023320-9



BAYOCBOC JR., DAVIS, AND KHERUNTSYAN

PHYSICAL REVIEW A 106, 023320 (2022)

1V« l(gfpj) (dotted yellow line) and the other to an intermedi-

ate cross-coupling regime with J = @/4 (dashed red line). We
recall that the length scale [ = /ii/(4mJ), associated with
the coupling strength J, represents the characteristic distance
over which the tunnel coupling restores a spatially constant
relative phase A¢(x, ) = ¢1(x, 1) — ¢da(x, 1). As we see from
the figure, the tunnel coupling establishes stronger correlation
between the relative phases of the two relaxed quasiconden-
sates at time ¢y = 200/w, which can be referred to as phase
locking, A¢ = 0[16,21]. The correlation has larger amplitude
on a longer range for stronger tunnel-coupling as expected.
The correlations eventually decay in all cases as soon as the
relative distance approaches the size of the cloud, which is
well approximated by the Thomas-Fermi radius and which is
equal to R\")"”) > 14.81,, in this example.

Returning to the phase coherence length within the relaxed
quasicondensates, we point out that an increasingly stronger
tunnel-coupling does not necessarily lead to an increasingly
longer phase coherence length within each quasicondensate.
This is because of the simultaneous increase in the tempera-
ture of the relaxed coupled system: higher temperatures would
generally reduce the phase coherence length, however, in the
coupled setup such a reduction competes with the increase of
phase coherence length due to phase locking so that the overall
effect will depend on system parameters.

As a final note, in the inset of Fig. 6 we plot the rela-
tive phase correlation function C(x,x’ = 0,¢) as a function
of time, monitoring it at six different fixed positions x from
the trap center, starting from x = 2.4/, (topmost curve) to
x = 14.41l,, (bottommost curve). All these positions (relative
distances) are within the bulk of the quasicondensates, with x
being smaller than the Thomas-Fermi radius RETZF )~ 14.81,.
As we see, the correlation functions C(x,x’ = 0,¢) for the
shorter relative distances, where the phase locking is stronger,
reach their equilibrium values by approximately r < 7/w. For
larger relative distances, the correlations appear to reach their
thermal equilibrium values somewhat earlier, but the correla-
tion strength (or the strength of phase locking) here is much
weaker regardless. This short relaxation time in the bulk of
the quasicondensates, where the low-energy particles reside,
further confirms our earlier observation that any residual dy-
namics seen in Ejpp(¢) and Ny (¢) past this time (as in Fig. 2)
is due to the high-energy particles that occupy the tails (rather
than the bulk) of the quasicondensates, where phase locking
is essentially absent.

IV. SUMMARY

In conclusion, we have studied the relaxation dynamics of
two initially independent (uncoupled) 1D quasicondensates
following a sudden quench of the strength of tunnel coupling
between the quasicondensates from zero to a constant finite
final value. We observe that the coupled quasicondensates
relax to a final higher-temperature equilibrium state described
by a thermal Gibbs ensemble.

The dynamics of the particle number imbalance between
the quasicondensates is characterized by the flow of low-
energy particles from the colder to the hotter quasicondensate
and the flow of high-energy particles in the opposite direction.

If the number of particles in these opposite flows is equal to
each other, there will be net energy flow from the hot qua-
sicondensate to the cold one, as expected. This situation was
illustrated in the example of Fig. 2(a). If, however, the number
of low-energy particles flowing from the colder to the hotter
quasicondensate exceeds the number of high-energy particles
flowing in the opposite direction, one can have a balanced
situation with no net energy flow between the quasiconden-
sates even though the initial temperatures were different. This
scenario was illustrated in Fig. 2(b). Finally, as in the example
of Fig. 2(c), if the number of low-energy particles flowing
from the colder to the hotter quasicondensate significantly
exceeds the number of high-energy particles flowing in the op-
posite direction, we observed net energy flow from the colder
quasicondensate to the hotter one. In all instances, where the
energy flows in the seemingly counterintuitive direction (i.e.,
from the colder system to the hotter one), it is identified as
chemical work (rather than heat) governed by the difference
in the initial chemical potentials. Similar seemingly counter-
intuitive flows have been observed by the ETH Zurich group,
who have investigated transport between two reservoirs of a
degenerate Fermi gas with different chemical potentials and
temperatures coupled by a channel [78-80].

We also analyzed the phase coherence properties of the
coupled quasicondensates and found that, even though the
final temperature of the system is higher (which for the same
independent quasicondensates would imply a shorter ther-
mal phase coherence length within each quasicondensate),
the coherence length of the relaxed coupled quasicondensates
can become larger than the initial coherence length. This is
explained by the fact that the tunnel coupling acts a phase
locking mechanism and is equivalent to an additional degree
of freedom in the system, which generally favors establish-
ment of phase coherence over a longer range. The effect is,
however, in competition with the trend of reduction of phase
coherence length with temperature.

It would also be interesting to incorporate a tunnel-coupled
system like the one studied here into a full thermodynamic
cycle of a prototype quantum gas heat engine and simulate
its performance. In such a setup, it would be preferable to
consider large particle number imbalance between the two
quasicondensates so that the smaller quasicondensate can be
regarded as the working fluid, whereas the larger quasicon-
densate as the heat bath with which the working fluid equili-
brates after the work strokes in, e.g., an Otto engine cycle.
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APPENDIX: DIMENSIONLESS FORM OF
THE STOCHASTIC PROJECTED
GROSS-PITAEVSKII EQUATION

To arrive at the dimensionless form of the SPGPE,
which will then depend explicitly on the earlier introduced
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dimensionless parameter xo,;, Eq. (2), for the jth quasicon-
densate (see Ref. [62] for further details), we introduce the
dimensionless coordinate & = x/xy, time T = t/ty, and field
pi&, )= wj(.c)(x, t)/vo with the corresponding length, time,
and field scales in terms of the temperature of the first quasi-
condensate:

1/3 1/3
i / mx(z) w
0\ ger) 0T Th T \mgr)
B 11 mg kgl

1/6 12
Wo = mkéle / = i / .
ﬁzg tog

With these scaling factors, and the role of the energy scale
taken by Ey = h/ty, the SPGPE [Eq. (3) of the main text]
acquires the following compact form:

do; = P—iL; + Rn(ft; — L)]g;dT + dW;},
where the dimensionless nonlinear operator £; is obtained
from Eq. (4) via L; = E;C) /Eo and is given by

(AL)

L= 19 1 ~252 2
,j——za—‘gz+§w§ + l@jl”
Here, @ = wty is the dimensionless trap frequency, whereas
fi; = pj/Ep is the dimensionless chemical potential of the jth
quasicondensate. In addition, &y, = A"y /kgT) is the rescaled
growth rate, where we have used the freedom of choice of
the numerical value of the growth rate I'; to relate it to
I'y via I'y = TN, where o = T,/T; is the ratio of tempera-
tures of the two quasicondensates. The terms dAW, = dw, /Yo
and dW, = JadW; are complex white noises satisfying
(AW (&, T)dWi (&', 1)) = 2knd(§ — &)d T, from Eq. (5).
The dimensionless form of the coupled GPEs (6), on the
other hand, reads as

(A2)

% = —iL1¢1(€, )+ iJga(€, 0),
%ﬁ»” = —ilypy(E. 1) +iJpiE. ). (A3)

where J = iJ/Ey = Jt, is the dimensionless tunnel coupling.
In the above dimensionless form of the SPGPE and GPE, the
nonlinearity constant in front of the |g; |> term in Eq. (A2) is
always equal to unity [unlike the respective term in Eq. (4),
proportional to the interaction strength g], and the normal-
ization condition that gives the total number of particles
in the jth quasicondensate reads N; = f(W](.C)(x, H%)dx =

VixoN;, where N; = [(lg; (&, T)|*)dE.

In the Thomas-Fermi (TF) limit of an inverted parabolic
density profile, the chemical potential of a harmonically
trapped quasicondensate is given by u; = gpo,j, and thus
the dimensionless chemical potential fi; can be expressed in
terms of the dimensionless parameter xo 1, Eq. (2), as

f=1/x7%- (A4)

According to this relation, the dimensionless chemical po-
tential ft; can be interchanged with 1/ X(i/13~ This implies then
that the SPGPE for a single quasicondensate depends on a
nontrivial combination of both the dimensionless interaction
strength (yp,;) and temperature (7;), rather than on two in-
dependent parameters. Given that the full density profile in
the TF approximation is given by p; (x) = (i — tmw?x?)/g,
for |x| < RITE) [and p;(x) = 0 otherwise], where RiTF) =
(2/1,1/ma)2)}/2 is the TF radius and p; = gpo,1 is the global
chemical potential, the peak density pp; can be evaluated

TF
from the normalization condition N; = f R,L(T)F) p1(x)dx.This

1
gives po.1 = (9mw?N;}/32g)!/3, and therefore the dimension-
less parameter xo; from Eq. (2) can be explicitly rewritten
as xo.1 = 4v2kgTi /(3N fiw) [using Ni = Y2xoN; and Ny =
421" |(3d) = 4/2/(Bx0.1@)], and similarly for xo, =
4\/§kBT2 /(BN hw). Beyond the TF limit, the dimensionless
chemical potential fi; can still be interchanged with xo as
an input parameter, with the understanding that the simple
relationship p; = gpo,1 between ) and the TF peak density
0o.1 1s now only approximate, whereas the exact relationship
has to be determined numerically a posteriori, using p;(x) =
(|1p1(c)(x, 1)?). We note, however, that in all our numerical
examples, the equilibrium peak densities were always very
close to the TF peak density of py | = 11/g.

Recalling that for two independent condensates, we had
to introduce two additional dimensionless parameters for the
ratios of the initial temperatures and chemical potentials, @ =
T>/Ty and B = u, /1, we thus conclude that the initial state
of our (uncoupled) system can be completely characterized by
just four dimensionless parameters, xo.; (or fi; =1/ Xé/f), ,
a, and B. In doing so, we further note that, as ;; = gpo, ; in the
Thomas-Fermi limit, one has xo» = («/ B3 2))(0, 1 (with fi, =
Bi1), and therefore the value of xg, is determined by o 1,
o, and B. The postquench dynamics of the coupled quasicon-
densates, on the other hand, requires a fifth parameter—the
dimensionless tunnel coupling J.
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