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Abstract 

We present an exact quantum theory of a model of a paretically driven dissipative anh~onic oscillator. The model 
describes a Kerr interaction of an intracavity signal mode which is p~e~cally excited by a strong driving field via the 
process of frequency down conversion. Our analysis deals with the nonlinear treatment of light quantum fluctuations and 
hence allows to study quali~tive effects in the transition from slightly perturbed classical behavior to a manifesdy quan~m 
mechanical behavior. We fmd an exact analytical steady-state solution of the Fokker-Planck equation in complex 
P-representation and calculate (i) normally ordered operator moments and (ii) the photon number probability distribution 
function of the generated signal field. The critical role of quantum noise in the nonlinear dynamics and in the quantum 
statistical properties of the signal field is demonstrated. The disappearance of characteristic threshold behavior is shown in 
the case of large nonlinearities or of increasing quantum noise strength. The ability of the nonlinear system to produce 
quadrature-squeezed and sub-Poissonian states is demonstrated as well. 

1, Intr~uction 

Nonlinear optical systems leading to the genera- 
tion of nonclassical light are cu~ently the subject of 
much theoretical and experimental attention in quan- 
tum optics. One of the central problems in this field 
of research is understanding the role of quantum 
noise in nonlinear dynamics and in the quantum 
statistical properties of generated light fields. In most 
theoretical works, however, the nonlinear systems 
are usually described within the linear treatment of 
light quantum fluc~ations, i.e. they are considered to 
be only slightly perturbed from the classical behav- 
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ior. It is clear that such an approach has a limited 
range of applications. In p~icul~, it does not de- 
scribe the behavior of nonlinear systems in critical 
(threshold, turning, in~~bili~, etc.) regions and in 
the case of quantum noise of arbitrary strength. 

A more adequate description of quantum optical 
nonlinear systems can be achieved within the frame- 
work of an exact nonlinear treatment of quantum 
fluctuations via the solution of the Fokker-Planck 
equation for a quasiprobability distribution function_ 
This approach gives the possibility to refine the 
results of linearized theories qu~titatively, as well 
as to predict new quali~tive phenomena. However, 
the de~vation of qu~iprobabili~ dis~bution func- 
tions for realistic models of nonIine~ interactions 
including dissipation effects is a difficult problem, 
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which was solved for a few simple models (see, e.g., signal mode is excited via the X(*)-nonlinear process 
Refs. [l-6]). Among these models the most attrac- of parametric frequency down conversion under the 
tive and well-known ones are the degenerate para- influence of a strong driving field at frequency o 
metric oscillator and anharmonic oscillator models (such that o/2 = wc ). Assuming single-pass effects 
[1,3,4,6-g]. They are responsible, in particular, for in the driving field to be negligible, we employ the 
the process of intracavity parametric frequency down undepleted pump approximation and treat the ampli- 
conversion and for nonlinear interaction in a Kerr tude of the driving field as a classical constant. In 
medium leading to dispersive optical bistability, re- addition, we assume that the generated signal mode 
spectively. Many quantum optical predictions have undergoes also a Kerr interaction, namely the self- 
been made using these nonlinear systems, and some phase modulation, due to the x3-nonlinearity. This 
of them have also been verified with experiments nonlinear system can be modeled by the following 
[1,4,6-151. effective interaction Hamiltonian: 

On the other hand, interesting results have been 
predicted recently for a model of a parametrically 
driven anharmonic oscillator [16,17]. This model can 
be formulated just as a combination of the usual 
parametric oscillator and of anharmonic oscillator 
models. Being applied to optics it can describe a 
Kerr interaction of a mode of an electromagnetic 
field which is parametrically driven in the process of 
frequency down conversion. Considering combina- 
tions of various nonlinear optical processes with 
Kerr interaction can lead to some advantages, in 
particular with respect to quantum optical effects and 
to new qualitative results [16,18-201. It should be 
pointed out, however, that in Refs. [ 16,171 special 
cases were considered of a pulsed parametric oscilla- 
tor combined with a Kerr nonlinearity and of a 
parametrically driven anharmonic oscillator without 
accounting for the effects of dissipation and quantum 
fluctuations. 

hk 
Heff= --(a2E* eiwf + a+2E eeiwr) + !f,,,,,, 

(1) 
where u+ and a are boson creation and annihilation 
operators of the signal mode tic, k and x are 
coupling constants proportional to the second- and 
third-order susceptibilities x(*) and xc3’, respec- 
tively, and E is the amplitude of the driving field. 

It is the aim of this paper to present an exact 
quantum theory of a parametrically driven dissipa- 
tive anharmonic oscillator. We find an exact steady- 
state solution of the Fokker-Planck equation in the 
complex P-representation. Using this solution we 
calculate analytically the normally ordered operator 
moments of the generated signal field and study the 
behavior of the signal field intensity, the second-order 
correlation function, the photon number and quadra- 
ture amplitude fluctuations, as well as the photon 
number probability distribution function. 

Starting with the effective Hamiltonian (1) and 
accounting for the decay of the cavity mode we then 
use standard procedures [21,22] to obtain a master 
equation for the density operator of the signal mode 
in the interaction picture. Then we transform this 
master equation into a Fokker-Planck equation for 
the quasiprobability distribution function P(cr, p) 
in the complex P-representation [2,21]. The resulting 
Fokker-Planck equation has the following form: 

aP(a, P) 

2. Nonlinear system and Fokker-Planck equation 

The nonlinear system under consideration com- 
bines xt2)- and xc3) -nonlinearities in a single-mode 
ring cavity of resonant frequency 0,. The intracavity 

Here A = w/2 - wc is the cavity detuning, y is the 
cavity damping constant, and we have neglected the 
thermal fluctuations. (Y and /3 are independent com- 
plex variables corresponding to the operators a and 
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a+, such that the normally ordered operator moments 

are obtained via 

(a +man) = 
// da d/3 a”p”P( a, P), (3) 

c C’ 

where C and C’ are appropriate integration paths in 

the individual complex planes for (Y and p. 

3. Semiclassical steady-state intensity 

Before proceeding with the exact steady-state so- 
lution of the Fokker-Planck equation, we present the 

results of the analysis of stable semiclassical solu- 

tions (Y,,, /3,, ( PO = al ) for the amplitude of the 
signal mode. They can be easily obtained from 

stochastic differential equations [Zl] equivalent to (2) 

by dropping time derivatives and by ignoring the 
noise terms. This corresponds to setting the drift 
terms in Eq. (2) equal to zero. Carrying out also a 
standard stability analysis with respect to small fluc- 
tuations, we obtain that there exist two stable 
steady-state solutions with (~a = 0 and CQ # 0, which 
describe the below-threshold and the above-threshold 
regimes of oscillations, respectively. In terms of the 
intensity no = 1 a0 1 2 (in photon number units) and 

the phase (pO of the signal mode ( CQ = nk” exp(i ++,)) 
the stable above-threshold solution is determined by 
the following expressions: 

no= ?[d+(J- 1y21, 

sin(@-2q,) =J-‘12, (5) 

where @ is the phase of the driving field E = 
Z’i2 exp(i@), and we have introduced the following 
dimensionless parameters describing the relative cav- 
ity detuning and the driving field intensity: 

(6) 

The threshold value of J is 

J,= 1 +d2. (7) 

The zero-amplitude solution is stable in the region 
J < J,, whereas the above-threshold solution is stable 
in the region J > J, for the case d < 0 and in the 
region J > 1 for the case d > 0. Hence, we find a 
bistable behavior of n, versus J in the case of 

T 

J 

Fig. 1. The normalized mean intensity of the signal mode 
(x/27)(n) plotted against the pump intensity parameter J. 
Curves(i) and (ii) arc related to the semiclassical result ( X/2y)n, 
for the cases A/y = 2 and A/y = - 2, respectively. The broken 
part of the curve (i) describes the unstable steady-state solution. 
Curves (iii)-(v) represent the exact quantum mechanical result 
for: A/y = -2, x/y = 0.1 (iii); A/y = 2, x/y = 0.1 (iv); 
A/y = 2, x/y = 2 (VI. 

positive detunings. Note that in the bistability regime 
the unstable bunch of the steady-state intensity is 
described by Eq. (4) with a minus sign before the 
term (J - 1)‘12. Examples of the curves for the 
normalized semiclassical intensity ( x/2y)n0 are 
represented in Fig. 1. 

It should be pointed out that occurrence of the 
stable above-threshold regime of oscillation in the 
undepleted pump approximation becomes possible 
due to addition of anharmonicity (self-phase modula- 
tion) to the parametric oscillator model Hamiltonian. 
The self-phase modulation changes the phase of the 
generated signal mode and hence destroys the phase 
matching condition for subsequent parametric xc2)- 
interaction. This prevents the nonstationary increase 
of the signal intensity beyond the threshold and 
makes the parametric amplification inefficient. As a 
result of such a cancellation, the signal mode inten- 
sity becomes stabilized at a value determined by Eq. 

(4). 

4. Exact quantum mechanical results and discus- 
sion 

Now we shall give the results of the exact 
steady-state analysis of our nonlinear system. This 
analysis is based on the steady-state solution of the 
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Fokker-Planck equation (2) and on a calculation of 
various moments of the signal-mode operators by 
means of Eq. (3). Our study will include also an 
analysis of the photon number probability distribu- 
tion function p(n) = (n I p I n), which is expressed 
in terms of the complex P-representation as follows: 

p(e) = ~~~~, da d/3 a’!@’ e-“‘P( fy, P). 

(8) 

The exact steady-state solution of the Fokker- 
Planck equation (2) can be found using the method 
of potential solutions [ 1,231. This yields 

&(a* P) 

=N(~cu~+2kE)~(,#~+2kE*)*’ 

Xexp(2~~), 

where 
(9) 

A=-l-Z_!-i--_, 2Y 

x x 
(10) 

and N is the no~ali~tion constant. 
Substituting solution (9) into (3) and expanding 

the exponential term we find that the contour inte- 
grals are identical to those in the definition of the 
~~-unction [24]. Thus we obtain 

(a 
Mnl” +man) = - 
M, ’ 

where 

X[l +(-l)““] 

( 

I+n-i-l 
XB /++I, 

2 

( 

I+m+l 
XB A’ f 1, 

1 2 ’ WI 

ad J&g, = &,+,+,. 
Similarly, for the photon number dis~ibution (8) 

we obtain 

(13) 

where 

The results of the numerical calculations of the 
normalized quantum mechanical mean intensity of 
the signal mode ( x/2Y){ n) ({n) = (&a)> versus 
J are represented in Fig. 1 for different values of 
dimensionless parameters d = A/y and x/y. We 
see that whereas the semiclassical result exhibits 
hysteresis-cycle behavior in the case d > 0 (curve i), 
the corresponding quantum mechanical result, which 
accounts for the influence of quantum noise, shows a 
gradual evolution, It is also seen that the characteris- 
tic threshold behavior, determined by a drastic in- 
crease of the intensity in the transition region, disap- 
pears as the relative nonlinearity x/y increases. 
Note that large values of x/y correspond to an 
increase of the quantum noise strength (see the diffu- 
sion terms in Eq. (2)). We note also that the semi- 
classical solution for ( x/ZY)n, does not depend on 
x/y, in contrast to the quantum mechanical result. 

Characteristic properties of threshold behavior are 
also seen from the analysis of the Fano parameter 

I;_ (Gw2) 3422 M 

(n> 
_l+_-li 

Ml, Mm ’ 
(l-9 

which describes dispersion of photon number fluctu- 
ations {(Anj2) = (n2> - (nj2, normalized to the 
level of fluc~ations for coherent fields (n}. For 
small values of x/y, the Fano parameter has a 
well-localized sharp peak in the transition region, 
showing a critical increase of fluctuations (see Fig. 
2). Its location can be identified with quantum me- 
chanical ‘“threshold”, however, the peak becomes 
both smaller and broader as x/Y increases, and 
hence the threshold is no longer well defined for 
increasing strength of quantum noise. 

Analysis of the Fano parameter shows also the 
occurrence of the nonclassical effect of reduction of 
photon number fluctuations below the coherent level 
(((An)‘) < (n)), i.e. it shows the formation of 
sub-Poissonian photon statistics. This effect occurs 
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Fig. 2. Dependence of the Fano parameter F on J for: A/y = 2, 

x/y = 0.1 (full curve), A/y = 2, x/y = 2 (dotted curve); A/y 

= - 2, x/y = 0.01 (broken curve). 

beyond the threshold region and in the case d > 0. 
The effect of reduction is destroyed with the increase 
of x/y and it is increased with the increase of d. 
For example, in the case d = 2 and x/y = 0.1 the 
minimal value of the Fano parameter is F = 0.81, 
while in the case d = 10 and x/y = 0.1 this value 
decreases to F = 0.61. Far above the threshold the 
photon number fluctuations become ((An>’ > = ( n). 

Another quantum statistical characteristics we an- 
alyze is the normalized second-order correlation 
function 

(2) = 
(a+a+aa) ~~*~~~ 

g =- 
(a+a)’ Mf, ’ 

(16) 

Although the g (2)-function is connected with the 
Fano parameter by a simple relation gC2” = 1 + (F - 
l)/(n), it shows, however, some peculiarities (see 
Fig. 3). In particular, the sharp peak in the threshold 
transition region occurs in the behavior of the g(‘)- 
function in the bistable regime (d > 0) only, while 
such a peak is absent in the case d < 0. We recall 
that in contrast to this, the peak in the Fano parame- 
ter occurs in the threshold region for both cases 
d > 0 and d < 0. Hence the peaked behavior of the 
g(2)-~nction is not just a direct reflection of en- 
hanced photon number fluc~ations, but is connected 
with the bistability phenomenon. 

In the below-threshold region the g@)-function 
shows superbunching (gC2’ Z+ I), reflecting the pair 
creation of photons in the process of parametric 

down conversion. Above the threshold region and in 
the case d > 0 we find a small amount of nonclassi- 
cal effect of photon antibunching (g(*’ < I), which 
disappears (g@’ + l), however, with the increase of 
J. 

More detailed information on the quantum statisti- 
cal properties of the signal mode can be obtained 
from the analysis of the photon number probability 
dis~ibution function p(n). Examples of curves for 
the ~(~)-function are plotted in Fig. 4. In correspon- 
dence with the bistable behavior of the semiclassical 
steady-state intensity in the case d > 0, we find a 
bimodal (double-peaked) structure of p(n) in the 
transition region. This bimodal structure becomes, 
however less pronounced with the increase of x/y, 
i.e. with the increase of the quantum noise level. As 
is known (see, e.g., Ref. [25]) the locations of ex- 
trema of the p(n)-function, i.e. the locations of the 
most and least probable values of n, may be identi- 
fied with the semiclassical stable and unstable steady 
states in the limit of small quantum noise level 
( x,/r -C 1). With the increase of x/y , due to the 
multiplicative character 1261 of the noise in our 
nonlinear system, the curve of locations of these 
extrema as depending on J becomes shifted from 
the corresponding semiclassical curve for n0 (see 
Fig. 5). Another interesting result in the behavior of 
the p(n)-function consists in the possibility of coex- 
istence of two local maxima even in the case d < 0 
(see Fig. 4b), when the semiclassical steady-state 
intensity is always monos~ble. In this case the corre- 
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Fig. 3. Second-order correlation function g(‘) plotted against J 
for: A/y = 2, x/y = 0.1 (full curve); A/y = -2, x/y = 0.01 
(broken curve). 
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Fig. 4. Photon number distribution function p(n). (a) Case A/y 
=2 with X/y=O.l, J=1.84 @ull curve), X/y=O.l, J=3 
(broken curve), X/y = 2, J = 3 (dotted curve) (b) Case A/y = 
-2 with X/y=O.l, J=5 (fult curve), X/y=O.l, J=7.2 

(broken curve). 
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Fig. 5. Dependence of the most and least probable values of n in 

the p(n)-function (locations of the maxima and the local mini- 

mum) on J for the case A/y = 2 with X/y =O.l (A) and 

X/y = 2 (0). The curves are scaled by a factor X/2y, and the 
corresponding semiclassical result for normalized intensity 

( X/2y)n, is plotted for comparison. 

spondence between the most probable values of n 
and the semiclassical steady state is absent. The 
transition from the shape of the p(n)-function with 
zero most probable n-value to the shape with nonzero 
most probable n-value, leading to an essentially 
nonzero mean intensity of the signal, takes place at 
the intensities J larger than the semiclassical thresh- 
old J,. 

Finally we present the result of the calculation of 
the minimal dispersion of fluctuations of the phase- 
dependent quadrature amplitude of the signal mode 

((AX’)*),in= 1 +2 M,,- iM, +9 (17) 

where X’=aexp(-i8)+a+exp(i8)isthequadra- 
ture amplitude operator, with 8 being the phase of 
the local oscillator. The dependence of ((A Xe)2)min 
on J is represented in Fig. 6 for different values of d 
and X/y. We find that a nonclassical effect of 
squeezing of quantum fluctuations (((A X8)*&” < 
1) occurs in our nonlinear system. A substantial 
reduction of fluctuations takes place in a wide region 
of J in the case of absence of bistability and for 
relatively small values of X/y. The maximal 
squeezing effect of about 50% is reached in the 
vicinity of threshold. In the bistable regime the 
squeezing effect occurs in the below-threshold re- 
gion only. Note also that with the increase of x/y 
the squeezing is destroyed. 

, 

Fig. 6. Minimal dispersion of quadrature amplitude fluctuations 

((AX@)*)min plotted against J for A/y=2, x/y =O.l (full 

curve) and A/y = - 2, X/y = 0.1 (broken curve). 
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