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Abstract 

We present an exact quantum treatment of the generalized model of a degenerate parametric oscillator, in which we allow 
for self-phase modulation of the signal mode. Using the steady-state solution of the Fokker-Planck equation in the complex 
P-representation we obtain an exact analytical result for the Wigner quasiprobability distribution function. The obtained 
Wigner function allows us to give an explicit phase-space description of the nonlinear system under consideration, including 
the critical transition behavior in the monostable and bistable (with respect to the signal mode intensity versus the pump field 
intensity) operation regimes and in the threshold region. The competitive effects influenced by the self-phase modulation and 
the phase-space tristability are analyzed. Nonclassical effects of quadrature squeezing and quantum superposition are 

discussed as well. 

1. Introduction 

Recently the Wigner function W(a), which is a joint 
quasiprobability distribution for the position .Y = Recu and 

the momentum x = Imcu of a quantum system, became a 
subject of increasing interest in quantum optics. It has a 
number of advantages when compared with other 
quasiprobability distributions. In particular, it is never 
singular and describes best nonclassical states of light in 

phase space [l-3]. Moreover, the Wiener function can be 
tomographically reconstructed from experimental data by 
measurements of a set of probability distributions of the 

light quadrature-phase amplitudes [4-61. Nevertheless, very 
little work has been devoted to the calculation of the 
Wigner function for realistic quantum optical models in- 
cluding particular nonlinear interactions and dissipation. 

In this paper we present an exact analytical result for 
the steady-state Wigner function describing the model of a 

degenerate parametric oscillator (PO) (in the sub-harmonic 
generation configuration), which is well known as one of 

the most fundamental devices in quantum optics. In our 
analysis we include the pump depletion and arbitrary 
cavity detunings which lead to a rich variety of phase 
transitions and dynamical behavior. They have been stud- 
ied at the semiclassical level in a number of works (see. 
e.g., Refs. [7-91). In addition, our model combines the 
effect of self-phase modulation @PM) of the signal mode 
due to the XC”-susceptibility of the nonlinear medium. 

The quantum dynamics and nonclassical properties of 
the PO have been extensively studied in the literature (see, 
e.g., Refs. [7,8,10,1 I]). The studies show, in particular, 
that the main interesting features of PO can be described 
within the ranges of linear approximation of light quantum 
fluctuations. However, to obtain the most complete and 
precise predictions, applicable in all possible regimes of 
operation including the threshold region, one needs to deal 
with the exact nonlinear treatment of quantum fluctuations. 
In this field of research the most detailed analysis of the 

PO has been carried out [ 12,131 with the use of the 
solution of the Fokker-Planck equation in the positive 
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P-representation. It should be pointed out, however, that 
the results obtained on the basis of the positive P-represen- 
tation are related to the case of zero cavity detunings and 
hence they do not describe the PO in the regime, when the 
signal mode intensity is bistable. 

The general solution of the Fokker-Planck equation in 
the complex P-representation, describing the PO in the 
unified sub/second-harmonic generation configuration has 
been obtained for the first time in Ref. [7b]. As to the 
Wigner function for PO, its approximate calculation has 
been presented, in particular, in Ref. [13] on the basis of 
the corresponding truncated Fokker-Planck equation and 
for the case of zero cavity detunings. Calculation and 
analysis of the Wigner function for nondetuned PO have 
been given also in Ref. [14] on the basis of the positive 
P-representation. We note also that an exact quantum 
treatment of the process of SPM of a cavity mode which is 
parametrically driven via the process of subharmonic gen- 
eration, has been presented in Ref. [ 151. 

In the present paper we develop an exact quantum 
theory for the generalized model of PO, which combines 
the processes of sub-harmonic generation and the SPM of 
the signal mode. Possible nonzero cavity detunings are 
taken into account. We find the steady-state solution of the 
Fokker-Planck equation in the complex P-representation. 
The Wigner function is then calculated analytically with 
use of its relation with the complex P-representation. The 
final result for the Wigner function has a rather simple 
form. We use this result to study the behavior of our 
nonlinear system in the phase space. In particular, we 
analyze the critical-transition phenomena in the mono- and 
bi-stable operation regimes and discuss the peculiarities of 
the quadrature squeezing effect. The oscillatory behavior 
of the Wigner function, which is known as an indicative of 
quantum superposition and interference, is discussed as 
well. 

2. Model Hamiltonian and Fokker-Planck equation 

We consider a doubly resonant cavity which supports 
two resonant modes - the signal and the pump modes at 
frequencies w, and wp (w, z 2 wJ, respectively. The 
pump mode is driven by an external classical driving field 
at frequency we = wp, while the signal mode is excited, 
via a nonlinear medium with ,$“-nonlinearity, through the 
parametric process of frequency down-conversion. In addi- 

tion, the signal mode is allowed to undergo the process of 
SPM (Kerr interaction) via the x(3’-nonlinearity. The sig- 

nal and the pump modes suffer losses due to cavity losses. 
We adopt the following model Hamiltonian: 

H = He + H,,, + HI,,, > 

where 

(1) 

+ + H,,=hw,a a+fiw,b b, (2) 

hk 
H,,, = it(a+=b - b+a’) + ih(Ee-‘“‘t>‘b+- E* e’“tt’b) 

fiX 
+ Ta+‘a’, (3) 

H ,osh = <+a + a’$ + r,‘b + b’r,. (4) 

Here a (a+) and b (bf) are annihilation (creation) 
operators for the signal and the pump modes, k and x are 
the coupling constants proportional to the x”‘- and xr3’- 
susceptibilities, and E is the driving field amplitude. The 
three terms in Hint describe the parametric interaction, the 
coherent driving of the pump mode, and the SPM of the 
signal mode, respectrvely. HLosa is responsible for linear 
losses of the signal and the pump modes due to coupling 
with reservoirs, with [,, r;’ and rp, r,’ being the usual 
reservoir operators giving rise to the cavity damping rates 

x and Y,. 
We follow the standard procedures (see, e.g., Refs. 

[1,2]) to eliminate the reservoir operators and to obtain a 
master equation for the reduced density operator p of the 
signal and the pump modes. The master equation is then 
transformed into a Fokker-Planck equation in the complex 
P-representation [2]. Assuming at this stage that the pump 
mode has high cavity losses (r, B- ~$1 and hence may be 
eliminated adiabatically, one can obtain the following 
Fokker-Planck equation for the signal mode: 

cr,cy+) = 
i 

-$[-ya+(#-on’)rr+] 

-+&*a++( E** - .*(Y++] 

+f-&-v*‘] 

+- ; --$[ p* - .*cr+=]}P(a,a+). 
(5) 

Here LY and ru+ are independent complex c-number 
variables corresponding to the operators a and u+, respec- 
tively, and we have introduced the following notations: 

kE k’ ,y 
p=x-, vs-++--_ k’r, 

YP VP 2 *I$* 

(6) 
71 ys-id,, yp=yp-iAp, (71 

where A, = era/2 - o, and A, = o,, - wp are the cavity 
detunings for the signal and the pump modes, p is the 
parametric coupling coefficient, and v is the resulting 
nonlinearity coefficient containing the contributions from 
the back action of the pump mode on the signal and from 
the process of SPM. We see that the contribution from 
SPM changes the imaginary part of v as compared to its 
value in the case of pure PO. 
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3. Steady-state solution of the Fokker-Planck equation 
and the Wigner function 

To analyze the behavior of our nonlinear system within 
the ranges of exact nonlinear treatment of quantum fluctua- 
tions we use the solution of the Fokker-Planck equation (51 
in the steady-state regime. The steady-state solution can be 
found using the method of potential equations [1,2]. This 
yields 

P,(a,a+) =N(!. _ $)*-‘( $ _ a+i)*- 

where 

Xexp(2acu+), 

A=?= 
y, Rev-- A, Imv 

___- 

IV? 
i 

y, Imv+ il,Rev 

I# ’ 
(9) v 

and N is the normalization constant. 
We note that the complex quasiprobability P-function 

18) coincides formally with that of the pure PO [7b]. The 
difference consists in the definition of the parameter v: if 
we neglect the contribution from the SPM and take x = 0, 
we obtain the known result for pure PO. On the other 
hand, the form (81 of the f-function coincides with that of 
a more simplified version of our present nonlinear model. 
This simplified model has been studied in Ref. [15] and 
has been called parametrically driven anharmonic oscilla- 

tor (PDAOI. It is related to complete neglecting the pump 
depletion and describes the process of SPM of the signal 
mode which is driven via a direct parametric pumping by a 
classical field. The results for the PDAO model can be 
obtained from the present ones by setting p = /&/~a and 
v= ix/2. 

The steady-state solution (8) is sufficient to calculate 
normally ordered operator moments and to study various 
quantum statistical characteristics of the signal mode in 
terms of the mean values of the quantities of interest. For 
the simplified PDAO model particular results have been 

presented in Ref. [ 151. However, in the present paper we 
are interested in the phase-space description of our gener- 
alized model. We shall display and analyze the phase-space 
properties in terms of the Wigner function: 

W((y) = $/d'yTr( peYa’-Y‘a)ey’u-yu’, (‘0) 

We calculate the Wigner function using its relation 
with the complex P-representation of the density matrix 

p. Writing down the definition of p in terms of the 
complex P-function 

// 
IP>(p+*l 

P= dPdB+ (p,p+*) P( P*P’)* (“1 
CC’ 

where C and C’ are appropriate integration paths for p out the standard linearized stability analysis one can arrive 

and p’ variables, we then transform in Eq. (IO) to the at the following results. We express them in terms of the 

normal ordering of operators and, using the correspon- parameters A and r, introduced in Eqs. (9) and (14). 

dence between the normally ordered operator averages and 
the c-number averages in f-representation, we arrive at 
the following relation: 

dP dP+ f’( P,P+ ) 

Xe’” * p+.?ap+-2pp+ (‘2) 
Substituting the steady-state complex P-function (8) 

into (12) we see that the exponential term exp( - 2 p/3’ 1 in 
(12) cancels the term exp(2 pp’) in P ( /3, /3’ 1. This leads 
directly to a separation of the integral variables, that 
simplifies the integrations substantially. Noting also that 
the integrals become identical to those in the definition of 
the Bessel-function J,(Z) [16], with C (C’) being an 
eight-shaped contour encircling the points + 1 on the 
complex plane, we obtain the following final result for the 
steady-state Wigner function: 

where N, is the corresponding normalization constant, and 
we have introduced the following notations 

r=IcLI/lvl, *=f(r+&-4”). (14) 

with 4 and 6” being the phases of the parameters 
p = / plexp(i 4) and v = ( v (exp(i I$_ ). 

As is known the Wigner function W(a), being a joint 
quasiprobability distribution for the position .x = Rear and 
the momentum y = Im (Y of a quantum system, can take 
negative values for some x and y. The negativeness of the 
Wigner function is one of the indicatives of nonclassical 
properties of the state of the system [2,3]. In relation with 
this, we point out that for our nonlinear system the steady- 
state Wigner function (13) is always positive. This prop- 
erty is originated from the specific form of our interaction 
Hamiltonian. It contains only quadratic terms with respect 
to the signal mode creation and annihilation operators a+ 
and u, implying that in our system we deal only with pair 
transformations of photons of the signal mode. 

4. Semiclassical steady states and competition effects 

To proceed with further analysis we shall present now 
the semiclassical steady-state solutions and stability prop- 
erties of the nonlinear system under consideration. The 
equation of motion that governs the behavior of the signal 

mode amplitude in the semiclassical approximation is 

da/dr= --Y(Y+(II.-vc+‘. (15) 

Solving this equation for the steady states and carrying 
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The trivial zero-amplitude solution (Y,, = 0, which de- 
scribes the below-threshold regime of oscillation, is stable 
in the region 

In terms of the pump intensity (El’, the oscillation 
threshold can be rewritten in the following explicit form: 

r < rth, T,,, = /Al, (16) 
,Eth,2= (x2+4)(Y;+q 

k" 
with rth being the threshold value of the amplitude of the while the condition of bistability occurrence (Reh < 0) 
relation p/v. becomes 

The nonzero above-threshold solutions, expressed in 
terms of the intensity n, (in photon number units) and the 
phase #+, of the signal mode (cu, = 6 exp(i&)) are 
determined by the following expressions: 

k’( 454, - YJ,,) + x4,( Y; + 4;) > 0. (22) 

n, = - ReA + b/r2 - (Im A)’ , (17) 

Considering an application of the above results to the 
case of pure PO we notice, in particular, that in this case 

( x = 0) the bistability condition becomes A,4, > y,y, 
[8,9]. As to the case of the simplified PDAO model, in 
which the pump depletion and hence its back action on the 
signal is completely neglected (v = ix/2), this condition 
is simplified to A, > 0 [15]. 

ImA 
sin(2&-&+Q1,)=-y. 

The minus sign in front of the square root in Eq. (17) 
corresponds to the unstable solution. The solution with 

plus sign is stable in the following domains 

r > r,h, if ReA > 0, (‘9) 

r > IIm Al, if Reh < 0. (20) 

We see that the signal intensity n, depending on the 

intensity parameter of the pump field r’ shows bistable 
behavior in the case Reh < 0. The bistability domain for r 

is Jim Al < r < rth. On the other hand, Eqs. (17) and (18) 
imply that in the above-threshold regime there exist actu- 
ally two stable steady states, which have equal intensities 
no but opposite phases &, and & + n-, i.e. we observe a 

phase bistability. 
The general behavior of the signal mode intensity n, 

depending on the scaled pump intensity parameter r2 is 
represented in Fig. 1. 

5. Critical transition behavior of the Wigner function 

and squeezing effects 

‘\ . 
‘. 

-. 
--__ 

-- 
---__ 

--__ 

Fig. I. The semiclassical steady-state intensity of the signal mode 

u,) plotted against the intensity parameter r’ of the pump field for 

IReAl/ [Im A( = 2. The dashed parts of the curves are related to the 

unstable unphysical steady-state solutions. 

In the general case, we conclude that the inclusion of 

SPM into our generalized PO model leads to competition- 
like effects and gives us an additional possibility to control 

the behavior of the system. In particular, in the case 
4,4, > 7, y,, and if 4, > 0 the SPM can make the bistable 
behavior of the signal intensity more pronounced. More- 
over, it can lead to bistability occurrence even in the case 

of relatively small detunings 4,A, < y,y,, when the pure 
PO is not bistable. In this case we obtain also another gain, 
that the absolute threshold (21) becomes smaller. If how- 
ever 4, < 0, the influence of the SPM is towards to the 
monostable behavior of the signal intensity. The origin of 
the competitive influence of the SPM becomes clear also 
from the observation that the imaginary part of the result- 
ing nonlinearity coefficient v (see Eq. (6)) acquires an 
additional possibility to be varied due to the contribution 
of the x coefficient. 

We turn now to the quantum statistical treatment of the 
critical transitions in our generalized PO model. We con- 
sider the steady-state Wigner function (13) and plot it in 
Cartesian coordinates x = Recu and !: = Im (Y for both 
monostable and bistable cases of the behavior of the signal 
mode semiclassical intensity. 

As it has been shown in the previous section, the 

bistable behavior of the steady state intensity n, takes 
place for Reh < 0 and the bistability domain is determined 
by ]Im A/ < r < rr,,. In Fig. 2 we plot the Wigner function 
for the case A = - 20 - IOi and scan the parameter r, 
which characterizes the scaled amplitude of the pump 
field. We see that below the bistability domain the Wigner 
function is single-humped and centered at x = J = 0 (see 

Fig. 2al. This hump corresponds to the below-threshold 
semiclassical steady state (n, = 0). With increasing r we 
enter into the critical transition (b&ability) domain and 
observe the occurrence of two additional side-humps. They 
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correspond to the above-threshold steady states with equal 
intensities and opposite phases. Hence, we see explicitly 
that in this domain the behavior of our nonlinear system is 
actually tristable (see Fig. 2b). With further increase in r. 
the central hump disappears, while the side-humps increase 
and we turn to a manifestly above-threshold oscillation 
regime when we observe (Fig. 2~) only phase bistability. 
We note that the critical domain of variation of the param- 

eter r, in which the coexisting three humps acquire com- 
mensurable heights and each of them can be clearly visual- 
ized on the same plot in a proportional scale, is much 
narrower (I3 I r 5: I4 for h = - 20 - I Oi) than the corre- 
sponding semiclassical bistability domain (Im A = IO < r 
< rth 5 22.36). 

To illustrate the competitive effects discussed in the 
previous section we give now particular specifications of 

Fig. 2. The steady-state Wigner function W,C x. y) in the presence 

of b&ability (referred to no versus r’) for A = - 20- IOi CT‘,, G 

22.36) and 0 = r. The parameter r is scanned to demonstrate the 

critical transition behavior of W,(x,y) in the bistability domain: 

(a) r = 6.25: (b) r = 13.32: Cc) r = 16. The corresponding marginal 

distributions Pt I) and P(x) are shown in the backgrounds. 

Fig. 3. The steady-state Wigner function and the marginal distri- 

butions in the absence of bistability for A = 20- IOi CT,,, 3 22.36) 

and H = V: (a) r = 16: (b) r = 33. 

the relevant parameters, giving rise to the h = - 20 - I Oi 

value of Fig. 2. For example, this A value can be realized 
by considering the following two limiting cases: (i) simpli- 
fied PDAO model, in which we set v = ix/2 (Rev = 0) 
and choose A,,/ y, = 2 and x,/3-y, = 0.1: (ii) pure PO 
model ( x = O), in which one may set J,/y, = - 3. J,,/ yp 
= - I and Rev/y, = 0.02. 

Fig. 3 shows the Wigner function for the case h = 20 
- IOi, when the semiclassical intensity of the signal is 
monostable. In contrast to the case of Fig. 2. now we just 

change the sign of Reh, retaining rth = 22.36. We see 
explicitly the change of the critical transition scenario. In 
the below-threshold domain the Wigner function is single- 
humped. However, while transiting the critical threshold 
point, this hump just splits into two humps which corre- 
spond to the above-threshold steady states of equal intensi- 
ties but opposite phases. 

In Fig. 4 we give examples of the Wigner function for 
pure PO ( x = 0) with A = 100 (in this case the semiclassi- 
cal intensity is monostable, and we choose for simplicity 
d, = L$ = 0 and Rev/y, = 0.01). Similar result for the 

Wigner function in the case of nondetuned PO has been 
obtained in Ref. [14] using positive P-representation. It 
should be pointed out also that the Wigner function for the 
below-threshold PO, emitting a quadrature squeezed sig- 
nal, has been tomographically reconstructed in the experi- 
ment [6] from a set of measured quadrature-phase ampli- 
tude probability distributions. We note that our correspond- 
ing result is in qualitative agreement with that of the above 

experiment. 
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The squeezing effects can be revealed from our results 
by considering the quadrature amplitude probability distri- 
butions. They are plotted in the backgrounds of Figs. 2-4. 
The probability distribution P(x,@> for any quadrature 
amplitude operator X+ = [ aexp( - i 4) + a+exp(i $)I/2 
can be obtained by integrating the Wigner function over 
the conjugate quadrature [4]: 

a- 

P(x&) 
‘j 
T- 25 

= 
/ 

+=dp W( xcos4-psin4, xsin4+pcos+). 
-x 

(23) 

In Figs. 2-4 we plot the marginal distributions P( x.) = 0 i 
f’ 

P( x,0) and P( ,v> = P( x,77/2). The squeezing properties 
of the quadrature distributions and of the Wigner function 
are clearly seen in the figures. They relate to reduced/in- 

” 10 20 30 43 5C 

r 

Fig. 5. Minimal dispersion of the quadrature amplitude fluctua- 

tions ((A X+)‘)m,n plotted against r for A = - 20- 1Oi (curve (i)) 

and A = 20 - 1Oi (curve (ii)). The coherent level of fluctuations 

and the squeezed noise reduction correspond, respectively, to l/4 
and to <(AX,?> < l/4. 

creased widths of the distributions and the humps in 
appropriate phase space directions or phase angles. In Fig. 
5 we represent also the result for minimal (with respect to 
the phase angle 4) dispersion of the quadrature amplitude 

fluctuations ((A X,)2)min. which is obtained using 
P( x, 4). The same result is obtainable if the calculations 
are carried out on the basis of the operator moments (see 
Ref. [15] for the details applied to the simplified PDAO 
model). We note that the squeezing properties in the cases 
of the monostable and bistable behavior of the semiclassi- 
cal intensity of the signal mode are essentially different. In 

particular, in the bistable operation regime (which is actu- 
ally tristable in the phase-space), the squeezing effect is 
realized in the below-threshold region only, before the 
formation of the side-humps in the Wigner function. In the 
monostable regime the squeezing effect is realized in both 
the below- and above-threshold regimes. It should be 
pointed out, that we speak of the squeezing effect within 
the ranges of the exact nonlinear treatment of quantum 

fluctuations. In this case the squeezing is referred to the 
dispersion of quadrature fluctuations with respect to all 
humps. It is clear, that the minimization of that dispersion 
is achieved at the phase angle for which the locations of 
the humps become coincident. However, in the general 
case this minimal dispersion does not demonstrate reduc- 
tion of fluctuations below the shot-noise level. In contrast, 
in the linearized treatment of quantum fluctuations the 

squeezed noise reduction is referred to the fluctuations 
with respect to one of the humps. Of course, an individual 

Fig. 4. As in Fig. 3 but for the case of pure PO model with 

A = 100 (rth = 100) and 0 = n/4: (a) r = 56.25 (below-threshold 

regime): (b) r = 100 (threshold regime); (c) r = 121 (above- 
threshold regime). 

hump may demonstrate squeezed fluctuations at a particu- 
lar phase angle. However, this angle does not coincide in 

the general case with the angle which corresponds to the 
minimal dispersion in the nonlinear quantum theory. 
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We note that, when considering the steady-state squeez- 
ing or other results of the linearized and nonlinear theories 
with respect to a particular experimental situation, one 
needs to take into account the corresponding characteristic 
times of approaching this steady-state regime. The related 
problem is the characteristic switching times associated 
with the transition from one steady state to another due to 
quantum fluctuations. Although, the evaluation of these 
times for our nonlinear system is beyond the framework of 
the present paper, the qualitative aspect of the problem is 
of general character and is well studied for other optically 
bistable systems (see. e.g., Refs. [17,18]). Actually, the 
results of the linearized theory correspond to the properties 
of one of the steady states and to time scales smaller than 
the characteristic switching times, while the switching 
times must be exceeded in order to approach the steady 
state from the strictly statistical viewpoint and to observe 
the predictions of the nonlinear theory. 

6. Oscillatory behavior of the Wigner function in the 
strong quantum noise limit 

The examples of the Wigner function represented in 
Figs. 2-4 have been given for the case of weak quantum 
noise strength 1 v1,/\~1 -c 1 (IAl >> I). In this case the 

Wigner function does not demonstrate oscillatory behavior 
or interference fringes, which are known to be indicatives 
of quantum superposition states (see Ref. [3], and refer- 
ences therein). The oscillatory properties of our Wigner 
function become revealed in the limit of strong quantum 
noise. In order to illustrate these properties we consider for 
simplicity the case A = 1 with r = p/u being real. In this 

case the Wigner function (13) turns out to be expressed in 
terms of elementary functions, yielding 

_ 2e-2’J- ?,2 cos(4rv)]. (24) 

We see here explicitly the appearance of the oscillating 

term. In order to distinguish the oscillations from the 
contributions of the first two terms in (24) one needs to 
consider large r values. In this case, however, the oscillat- 
ing term becomes extremely small compared with the first 
two terms. We note also that in the case of h - 1 the 

system is still dissipative and hence the quantum coher- 
ence properties cannot reveal themselves purely. 

In the extreme quantum regime with A + 0, corre- 

sponding to vanishing dissipation or very strong coupling, 
one can obtain from Eq. (13) the following result: 

w,(X,v) = Ne.-?‘~[e-?“-“: + e-” r+r$ 

+ 2e-“J-+OS(4rv), (25) 

By comparing this result with the Wigner function for 
the pure superposition of two coherent states 1 I-> + ( - r > 

+2em”‘cos(4ty)]. (26) 

we see that the oscillating term in Eq. (25) contains an 
additional exponential multiplier exp( - 2 r7 1. This expo- 
nent becomes close to unity in the limit Y < 1, and the 
result (25) approaches in this limit the Wigner function 

(26) for the superposition of two coherent states. An 
important difference, however, is that our Wigner function 
is always positive, while Fq. (26) assumes negative values 
for arbitrarily small but finite I values. Hence, even in the 
limit r 4 1 the state of the signal mode cannot be thought 
of as being in a pure superposition of two coherent states 
[19]. as it has been mentioned in Ref. [ 121 for the case of 
pure PO model. This conclusion is in agreement with that 

of Ref. [14], where a confirming analysis of the corre- 
sponding quadrature probabilities has also been carried 
out. In contrast, the results of the present paper for the 
generalized PO model allow to provide similar analysis 
using explicit analytical expressions. Indeed, by using Eq. 
(23) one can obtain the following simple results for the 
P(x) and P(v) quadrature probability distributions, corre- 
sponding to the Wigner function (25): 

P,(r) ,,-r.r-,-,’ +e-“‘+“? + 2e-a’z-A’z, 

Ps( p) a eeZV’ [ 1 + e-“‘cos(4~)]. 

(27) 

(28) 

Similarly to the case of the Wigner function (25). our 
P,(X) and P,(y) functions contain an additional exp( - 2 r’) 
multiplier in the last terms, as compared with the corre- 
sponding expressions for the pure superposition state. This 
multiplier is of crucial importance, when expecting to 

observe indicatives of quantum superposition - oscillatory 
behavior or interference fringes. Actually, it masks the 
cosine oscillations in P,(y) and the resulting shape of the 
P,( v&function does not contain interference minima and 
maxima. 
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