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Abstract 

We present a quantum theory of intracavity third harmonic generation. Third-order noise is included into the 
consideration and the corresponding Langevin equations of motion for the stochastic amplitudes of the interacting modes are 
derived. Semiclassical steady-state solutions are found, linear stability analysis is carried out, and self-pulsing temporal 
behavior of the fundamental and third harmonic modes is found in the instability domain beyond the critical point. 
Quadrature amplitude squeezing spectra are calculated, and it is shown that perfect squeezing is approached in both the 
fundamental and the third harmonic modes in the vicinity of the critical point. Higher-order moments of the field operators 
and manifestations of the third-order noise in photon correlation phenomena are also discussed. 

1. Introduction 

Generation of third harmonics in crystals or atomic 
gases placed inside a cavity represents an interesting 
example for investigating quantum noise and insta- 
bility in nonlinear optical processes. It is known that 
a consistent quantum theory of nonlinear interaction 
of radiation field modes in the cavity is based on the 
Fokker-Planck equation for a quasi-probability dis- 
tribution or on equivalent Langevin equations for 
stochastic amplitudes. For a number of processes, 
such as second harmonic generation, parametric os- 
cillation, four-wave mixing and several others, the 
mentioned approach turned to be very effective due 
to utilization of the concept of second-order noise 
sources. For the latter ones only the two-time corre- 
lators, which are proportional to a &function in the 
case of white noise, do not vanish (see, for example, 
Ref. 111). However, for higher order nonlinear pro- 

cesses it is necessary to deal with the concept of 
higher-order noise, which is not well studied in 
quantum optics. 

In the present work we are going to examine this 
problem for the process of third harmonic generation 
CII-IG) in a xt3) nonlinear medium placed in a 
cavity. Another purpose of the work is to investigate 
the squeezing and the temporal instability effects in 
the THG. Note that both these effects are well 
known for the process of second harmonic genera- 
tion (SHG). The instability in SHG and self-pulsing 
behavior of the intensities of the fundamental and 
second harmonic modes have been predicted in Ref. 
[2]. Second harmonic generation was also one of the 
first processes which were considered for the produc- 
tion of squeezed light. Among the recent works we 
note Refs. [3,4], where 52% squeezing in the funda- 
mental mode and 30% squeezing in the second har- 
monic mode in a doubly and singly resonant cavity 
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configuration, respectively, have been obtained. Al- 
though it is obvious that the experiments for the 
THG are considerably harder, due to low xc3’ non- 
linearities and phase matching difficulties, however, 
recent results [5,6] indicate definite progress and 
increasing interest in this subject. 

2. Basic equations; third-order noise 

We consider a doubly resonant THG in which 
three photons of frequency wt in the fundamental 
mode a, can annihilate to produce a photon of 
frequency o2 = 3 w , in the third harmonic mode ~1~. 
The fundamental mode is resonantly driven by an 
external classical field. The interaction of the funda- 
mental mode with that of the third harmonic in a 
nonlinear xc3’ medium is described by the following 
Hamiltonian: 

H=iio,a:a, f3hw,az+u2+Hinr+Hloss, 

Hint = ihX(afa2+ - UNDUE) 

+ ih( Ee-““l’a: - E*eiwl’ul), 

H loss =u,r; +a:r, +a,r; +a;r,, (1) 
where x is the resulting coupling constant propor- 
tional to the third-order susceptibility xc3), E is the 
amplitude of the driving field at the frequency wi, 
and rj, r (i = 1, 2) are reservoir operators for the 
fundamental and third harmonic modes, which will 
give rise to the cavity damping constants y, and y2, 
respectively. 

Using the standard technique, we first eliminate 
adiabatically the reservoir operators and derive the 
master equation for the density operator p of two 
modes of the radiation field in the interaction picture. 
This equation is then transformed into a Fokker- 
Planck equation for the quasi-probability distribution 
function P( x> in a generalized P-representation 
[1,7], which we write in the general form introducing 
a four-component variable x = (x,, x2, x3, x4> = 

(a,, p,, az, p*): 

apt xl -= 
at 

Quantities CY,, PI, a2 and & are independent com- 
plex variables corresponding to the operators a,, a: , 
a2 and al, respectively. The elements of the drift 
vector are equal to 

A,=E-y,q-3xP:+, 

A,=E* -yIP,-3x~:Pz, 

A,= -YZ+-~a:, A,= -y&+xP:, (3) 

and the nonvanishing noise terms are 

D,, = -6xPto2, D,, = - 6xa, Pz > (4) 

C III = -6~~2, C222 = -6x&. (5) 

Eq. (2) has a complicated form due to the third- 
order derivatives. We can obtain stochastic equations 
of motion which are equivalent to Eq. (2), following 
the method of Ito (see, for example Ref. [l]). This 
method, when applied to Eq. (21, is not so simple 
and well known as in the case of diffusion equations 
without the tensor Cijk, and it leads naturally to the 
concept of third-order noise sources. For the one-di- 
mensional problem, the stochastic equation approach 
containing third-order noise has been developed by 
Gardiner [ 11. For the general multi-dimensional case 
of Eq. (2), it can be shown that the system of 
equivalent stochastic equations for x,-variables has 
the following form: 

axi 
x = Ai( X> + C Bij( XI Sj( f) 

i 

+ C Rinm( x)%m( ‘13 (6) 
n,m 

where the noise terms .5;(t) and q”,,,(t) correspond to 
the contributions, artsmg from the second- and 
third-order derivatives, respectively, in the Fokker- 
Planck equation (2). The nonvanishing correlation 
functions for them are 

(5,(r)~j(r’))=sijs(t-f’), 

(77im(f)rljn(f’)77kl(~)) 

= Sij6,,6,.S,,6(t-r’)6(t’- I”). (7) 

Coefficients Bij and Dim,, of the system of equations 
(6) are obtained from the relations 

FBikBj,=D;j, C Rinm Rjnm Rknm = ‘ijk’ 

n.m 

(8) 
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Eqs. (2), (6) and (7), (8) are written in a general 
fotm. For the case of THG Eqs. (3)-(5) with account 
of Eq. (8) give 

and lead to the following Langevin equations: 

aff, 
ar =A, +\i=-6%&(t) +a_6X”2’?,,(& 

W, 
at =A, + /-6Xa,~z(“) +~6XPz%(r), 

3% -= 
at 

A,, 

at32 
YE A 

at 4’ 
(10) 

3. Semiclassical steady states and instability 

To analyze the system of equations (10) it is 
convenient to transform them to the photon number 
and phase variables of the modes: 

1 
nj = ffjpj, 

“i 
Pj=iln K 

( 1 
(j= 1,2). 

(11) 

It can be shown that the variable change formula 
(Ito form) in the case of stochastic equations with 
third order noise terms is 

-= 

In the variables (1 I) the equations of motion become 

a*, 
- = 2 1 E ( n112 

at 
cOs(cp- P,) - bv, 

- 6,yn:/2n~‘2 cos(350, - qo2) + T(t), 

3% 
- = -2yzn2 +2xn~/2n~/2 COS(39, - (p2), 
at 

acp, IEI 
v= -Mcp- cp,) 

at 6 

+ (3xnj/2ni/2 - 3jyn;‘/2ni/2 

+2Xn;3/2ni/2 ) sin(3cp, - v2) + Q(t), 

a92 
- = Xn:/2n; 1/2 sin(3cp, - (p2), 

at 
(13) 

where cp is the phase of the driving field E = 

) E ( exp(i cp), and the noise terms are 

r(r) = P,B,, 51(t) + L,i22t2(t) 

+P,R,A,(~) + G2227722(9. 

G(t) =; :5,(r) - ( I 

fw 
I 

2xI 

Fig. 1. Semiclassical steady-state photon numbers for the funda- 
mental and third harmonic modes np (curve 1) and ni (curve 2) 
versus the pump intensity parameter c2 for k= IO-’ and r = I. 
The solid parts of the curves correspond to the stable solutions, 
while the broken parts describe the unstable region. 
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Analysis of the steady-state solutions ny and (pj” 
(j = 1, 2) of these equations in the semiclassical 
approximation and of conditions of their stability 
with respect to small fluctuations (linear stability 
analysis) leads to the following results: 

(Pp = &3 = cp, 3k( .y)5’2 + (n:)“* = 8, 

Tr; = $(np)‘, (15) 

where we have used the following notations: 

r= y2/yIV k=x2/m+t .s-= I El/y,. 

(16) 

This solution is stable if E < ec, where 

CC=&1 +r) “4 + f( 1 + r)S’4] (17) 

is the critical point. The critical photon number in 
the fundamental mode is 

1 + r ‘I* 
nc= - I 

i 1 6k ’ (18) 

and the dependence of TIN and ni on I e I ’ is shown 
in Fig. 1. Beyond the critical point (& > E,), i.e. for 
sufficiently strong driving field, the real parts of the 
eigenvalues of the matrices of the linearized equa- 

tioc 

6CO 

z 
7 40:: 
c 

2GC 

1 

Fig. 2. Demonstration of self-pulsing behavior of the fundamental 
and third harmonic photon numbers n,(t) (curve 1) and n,(r) 
(curve 2) versus y, t: numerical solution of Eqs. (10) in the 
semiclassical approximation for k = 10e5, r = 1, E = 60 and ini- 
tial conditions a,(O) = 1 + i, (~~(0) = 0. 

tions of motion (see Eqs. (19), (20)) become nega- 
tive leading to instability. In the instability region the 
intensities of the third harmonic and the fundamental 
modes exhibit self-pulsing temporal behavior. The 
mode dynamics depends on the initial conditions and 
is illustrated in Fig. 2 for a particular realization. 

4. Linearized treatment of quantum fluctuations 
and squeezing 

The linearized equations for small deviations Snj 

= nj - ny, 8cpj = ‘pj - cp,? from the steady states, 
which are applicable in the region E < .CT~ and under 
the condition ny Z+ 1, are 

;(;:;)=-A$:;)+(;“)* 

:(:;;)=-AV(:;;)+(“o’iP 

where the matrices A,, and A, are 
/ 

7, + !$(nP)2 372 

A,= 

(19) 

(20) 

1. (21) 

The nonzero noise correlators are obtained with 
use of the Eqs. (14), (7) to be equal to 

<P(t)P(/)>= -L2$n:)lS(r-t7, 

W(t)@yt’)) = 3X2,Fsp f’), 
Y2 

(r”(t)ro(t)~O(f)~ 

= -l*~(np)is(f-f’)s(r’-l.), 
(I-“( t)@“( f’)QO( f)> 

3x2 
= -n~s(t--f)CY(t’-/‘). 

Y2 
(22) 



444 XT. Gevorkyan et al/Optics Communications 134 (1997) 440-446 

Let us now turn to the problem of squeezing of 
quantum fluctuations in the quadrature phase ampli- 
tudes Xp = ai exp(- irYi) + u+ exp<iai,> of the fun- 
damental and the third harmonic modes (i = 1, 2). 
We calculate the corresponding squeezing spectra 
S,(w) and S*(o) using the standard approach (see, 
for example, Ref. [S]>. As our calculations show, the 
squeezing effect is maximal for the amplitude fluctu- 
ations, i.e. when the squeezing spectra Si(w) are 
expressed in terms of the photon number fluchiations 
and turn out to be equal to 

S,(w) = 1 + $-?6n,(-w)6n,(w)) 

= 1 _ 24+Y)2[r2+(~/~1)2] 

d*(w) ’ 

S,( 0) = 1 + $(Sn,(-w)sn,(o)) 

= 1 _ 216k2(n?)4 
d,(o) ' 

(23) 

where Sn,(w> are Fourier components of the photon 
number fluctuations 6ni(r>, and the quantities 
d,,2(~) are 

+[1 +r+6k(np)2]2(w,r,)2, 

d2@)=[ 1 + 15k( $)’ - r( o/y2)212 

+[1 +r+6k(n~)2]2(w,y2)Z. (24) 

The maximal reduction of quantum fluctuations 
below the shot-noise level (Sic w> < 1) is achieved in 
the vicinity of the critical point, in accordance with a 
number of works dealing with other nonlinear optical 
processes (see, for example, Ref. [8]). If r -C 1, 
perfect squeezing is approached in the fundamental 
mode at the sideband frequencies, which are, how- 
ever, very close to the zero frequency (w/y, Z 0) in 
the limit r + 0. In contrast, if r * 1 the perfect 
squeezing is approached in the third harmonic mode 
at the sideband freauencies w z + Y+ / fi. For the 

1 -#‘I . 

(4 

5 
-T= 
G? 

6 

4 

2 

0 
-10 -5 0 5 10 

-10 -5 0 5 10 

w, 

Fig. 3. Amplitude squeezing spectra Si(w) versus o/yi for the 
fundamental (a) and third harmonic modes (b), respectively, at the 
critical point. (a) r = 0.1 (I), r = 1 (2). (b) r = 10 (I), r = 1 (2). 

values of parameters represented in Fig. 3 by curves 
1, we see that the noise reduction effect exceeds 
90%. We note that the third-order quantum noise 
does not contribute to the squeezing spectra (23) in 
the lowest order with respect to small fluctuations. 
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5. Higher-order moments and third-order noise in 
photon correlations 

This section concerns with a discussion of the role 
of the third order in physical quantities. As it may be 
expected, the third-order noise effects will be mani- 
fested in higher-order operator moments, which de- 
scribe, in particular, the photon correlation phenom- 
ena. 

At first let us consider this question in the small 
time approximation t 4 7;:. For this purpose we 
turn to the solution of stochastic equations of motion 
(10) for small time intervals in the case of vacuum 
initial conditions ai(f = 0) = Pj(r = 0) = 0 (i = 
1, 2). Writing down the amplitudes of the fundamen- 
tal mode in the form 

a,(t) =af(r) +F,(t), 

Pd t) = PP( t) + F2( f) 3 (25) 
where we separate the noise contributions F,,, from 
the deterministic parts of and fip, we use then the 
Euler iteration method. This yields, in the third order 
of iteration: 

2 

fff(T) = p;(T) = ET- + 

+& ( 7 3 7’ 

3 1 - 4kr&5T + 

where r = y, I and we have chosen E * = E for 
simplicity. V;(T) and Wj(r) are the noise sources of 
the second and the third order, respectively, which 
are connected with ti(r) and Q,,(?> by 

t;(r) dt= Vi(t)&, qii( t) dt = Wi( t)k. 

(28) 

Their nonzero correlators are 

(V;( f)2) = (wj( f)3) = ” (29) 

Using the results (26)-(29) we calculate the sec- 
ond- and the third-order correlators for the funda- 
mental mode. The normalized second-order correla- 
tor 

gj2) = G+)‘4) 
<u:a,>’ ’ (30) 

in the lowest approximation in T contains a contribu- 
tion from the second-order noise source and is deter- 
mined by 

(2) - 1 
2059 

g, =-&g=: (31) 

We see that the quantity gi2’ - 1 is proportional to 
the squared amplitude of the driving field and that 
the pair correlation of photons is of antibunched 
character. 

As to the normalized third-order correlator 

(3) _ w>‘~:) g, - <u:u,>’ ’ (32) 

the leading contribution, in the lowest order in 7, 
arises from the third-order noise source. Indeed, with 
use of the solutions (26), (27), we obtain 

g, 
(3) - 1 = +,F;, +~cx:(F:)) 

(cG>’ 

= -d~~(S)2-*klE2(3)4+..., (33) 

where the first term is originated from the third-order 
noise source W,, while the second one is determined 
by the second-order noise source V,. Note that the 
correlation of photons, described by gi3’, is also of 
antibunched character. 

For the case of the third-harmonic mode one may 
arrive at similar conclusions on the role of the 
third-order noise, but the corresponding results for 
gp’ and gi3’ are more complicated to be reproduced 
here. 

For completeness of our discussion, we turn also 
to the results, containing the effects of the third-order 
noise, in the steady-state regime. We calculate, in 
particular, the so-called coefficient of asymmetry, 
which is determined, in the lowest order of linear 
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approximation of quantum fluctuations, by the fol- 
lowing expression: 

((&$ - (Q+~i>)3> = np 1 + - I 3(&r:) + C&r:> 
- 

np I ny . 

(34) 
The quantities ( Sn: > and ( Snl> may be calculated 
with use of the solution of the linearized equations of 
motion (19) in the steady-state limit t r~ r,j: 

Here the matrix A, is determined by Eq. (2 l), I 
. . 

is the identity matrix, and h,,2 are the eigenvalues 
of A,,. 

To illustrate our results we give here relatively 
simple expressions obtained for the third harmonic 
mode: 

(Sn:> 
- = - 1275 

[( f%)*,12 

n: 2A,A,(A, + A,) ’ 
(SnZ> K ‘%M 3 -= 

4 - 12yz (A, - A2)2 

(36) 

x (2A, +A,)(2A, +A,) 3A,A, ’ 

(37) 

i 

3 1 
-- 

Direct numerical analysis of these results indi- 
cates that the relation ( Sni>/( Sni >, evaluated, for 
example, in the neighborhood of the critical point, is 
of order 0.05. Hence, the third term in Eq. (34) may 

not be neglected if we set on the precision smaller 
than the magnitude of this relation. We note also that 
the second- and third-order correlators of the noise 
term I’,(i) (see Eq. (22)), which have been used to 
calculate ( Sni > and ( Snz), respectively, are of the 
same magnitude. As a consequence, the small values 
of the ratio ( Sni >/( Sn$ > originate from the kine- 
matics of the coefficients in Eq. (35). 

In conclusion, we note that the third-order noise 
(along with the second-order one) is expected to play 
an essential role in the instability domain of the 
THG, as well as in the exact nonlinear treatment of 
quantum fluctuations. The research on this subject is 
in progress now. 
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