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In quantum many-body theory, all physical observables are described in terms of correlation functions
between particle creation or annihilation operators. Measurement of such correlation functions can
therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate
this paradigm by measuring multiparticle momentum correlations up to third order between ultracold
helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-
body momentum microscope. Our measurements allow us to extract a key building block of all higher-
order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record
violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring
multiparticle momentum correlations could provide new insights into effects such as unconventional
superconductivity and many-body localization.
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In quantum physics, fully understanding and character-
izing complex systems, comprising a large (often macro-
scopic) number of interacting particles, is an extremely
challenging problem. Solutions within the standard frame-
work of (first-quantized) quantum mechanics generally
require the knowledge of the full quantum many-body
wave function. This necessitates an exponentially large
amount of information to be encoded and simulated using
the many-body Schrödinger equation. In an equivalent
(second-quantized) quantum field theory formulation, the
fundamental understanding of quantum many-body sys-
tems comes through the description of all physical observ-
ables via correlation functions between particle creation
and annihilation operators. Here, the exponential complex-
ity of the quantum many-body problem is converted into
the need to know all possible multiparticle correlation
functions, starting from two-, three-, and increasing to
arbitrary N-particle (or higher-order) correlations.
From an experimental viewpoint, an operational solution

to the quantum many-body problem is therefore equivalent
to measuring all multiparticle correlations. In certain cases,
however, knowing only a specific set of (few-body or
lower-order) correlations is sufficient to allow a solution of
the many-body problem to be constructed. This was
recently shown for phase correlations between two coupled
one-dimensional (1D) Bose gases [1]. Apart from facili-
tating the description of physical observables, characteriz-
ing multiparticle correlations is important for introducing
controlled approximations in many-body physics, such as
the virial- and related cluster-expansion approaches that
rely on truncation of the Bogolyubov-Born-Green-
Kirkwood-Yvon hierarchy [2,3]. Momentum correlations

up to sixth order [4] and phase correlations up to eighth [1]
and tenth order [5] have so far been measured in ultracold
atomic gases. More generally, multiparticle correlation
functions have been used to experimentally characterize
the fundamental properties of various systems, such as
thermal Bose and Fermi gases [6], weakly and strongly
interacting 1D Bose gases [7–9], tunnel-coupled 1D tubes
[1,5], collision halos [10–12], and phenomena such as
prethermalization [13] and transverse condensation [14].
Correlations between multiple photons are also routinely
used in numerous quantum optics experiments including
ghost imaging [15,16], defining criteria for nonclassicality
[17,18], analyzing entangled states generated by parametric
down conversion [19], and characterizing single photon
sources [20].
Here, we demonstrate an experimental solution of the

many-body problem as outlined above by measuring
second- and third-order correlations between momentum-
correlated atoms in a collisional halo between two Bose-
Einstein condensates (BECs). The halo is generated by
spontaneous s-wave scattering of two colliding BECs
[10,12,21], creating a spherical shell of pair-correlated
atoms (see Fig. 1). After a time-of-flight expansion, we
detect the positions of individual atoms, which are mapped
back to the initial momenta of the atoms directly after the
collision [47]. This means that we reconstruct momentum
correlation functions from the momenta of individual atoms
with full 3D resolution. Thus, our detector setup can be
regarded as a quantum many-body momentum microscope,
complementary to the quantum gas in situ microscopes
created using optical lattices [48–53] or arrays of optical
tweezers [54]. We characterize and compare all possible
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back-to-back and collinear atomic correlation functions for
two and three atoms, showing the relationship between the
different correlation functions and demonstrating a record
violation of the classical Cauchy-Schwarz inequality
between the peak values of correlation functions.
The experiments start with a BEC of ∼106 4He� atoms

magnetically trapped in the mJ ¼ þ1 sublevel of the long
lived metastable (23S1) state [55]. The s-wave scattering
halos of correlated pairs are produced via a two-step
process. First, we transfer ∼95% of the BEC atoms to
the untrapped mJ ¼ 0 sublevel with a Raman pulse, giving
the atoms a downward (i.e., along the ẑ direction) momen-
tum of K ¼ −

ffiffiffi

2
p

k0ẑ [21] in wave number units, where
k0 ¼ 2π=λ and λ ¼ 1083.2 nm is the wavelength of a
diffraction photon. The untrapped BEC is then diffracted
using a second pulse into two or more diffraction orders,
using either Bragg or Kapitza-Dirac diffraction [21].
Adjacent pairs of diffracted condensates then collide,
producing spherical halos of spontaneously scattered atom
pairs via s-wave collisions [10]. Each halo has a radius in
momentum space of kr ≈ k0=

ffiffiffi

2
p

and a radial Gaussian
width of w ≈ 0.03kr. The average mode occupancy in each
halo ranges from n ¼ 0.0017ð17Þ to n ¼ 0.44ð2Þ. As the
scattering in our experiment is always in the spontaneous
pair-production regime [21], the scattering halo can be

approximated by an overall quantum many-body state that
is the product of independent two-mode squeezed vacuum
states analogous to those produced by parametric down-
conversion in quantum optics.
The expanding halos then fall ∼850 mm (time of flight

[TOF] ∼416 ms) onto a multichannel plate and delay-line
detector. Because of the 19.8 eV internal energy of the 23S1
state, the individual positions of atoms can be reconstructed
in 3D, with a spatial resolution of ∼120 μm in x, y
(momentum resolution ∼0.0044kr) and a temporal reso-
lution along z of ∼2 ns (≡8 nm or 3 × 10−7kr). As we are
interested in correlations between atoms in different
momentum modes, we convert position and time to
momentum centered on each halo [21].
From the reconstructed momentum for each atom, we

construct various momentum correlation functions from
coincidence counts between atoms within each experimen-
tal run that are averaged over all runs [21]. First, we
look at momentum correlations between three atoms with
momenta k3, k1 ¼ −k3 þ Δk1, and k2 ¼ −k3 þ Δk2,
i.e., the second two atoms on the opposite side of the
halo to the first [see Figs. 2(a)–2(c) for illustration]. We

define the relevant correlation function as ḡð3ÞBBðΔk1;Δk2Þ
and refer to it as back-to-back (BB), which is averaged
with respect to k3 over the halo and spherically integrated
with respect to the directions of vectors Δk1 and Δk2.
Thus, it is a function of the absolute values Δk1 ¼ jΔk1j
and Δk2 ¼ jΔk2j [21].
Figure 2(g) shows a typical surface plot of

ḡð3ÞBBðΔk1;Δk2Þ for the s-wave halo generated by
Kapitza-Dirac orders l ¼ ð−2;−3Þ. This surface plot also
contains other many-body correlation functions within it,
shown schematically in Figs. 2(a)–2(c). WhenΔk2 ¼ 0, we

can plot ḡð3ÞBBðΔk1; 0Þ [red line in Fig. 2(g)], which will

asymptotically approach ḡð2ÞBBð0Þ—the two-particle correla-
tion function with one atom on each side of the halo—for
Δk1 ≫ σBB, where σBB is the two-particle back-to-back
correlation length. Taking Δk2 ≫ σBB, we can also plot

ḡð3ÞBBðΔk1;Δk2 ≫ σBBÞ (blue line), which is equivalent to

ḡð2ÞBBðΔk1Þ and approaches the uncorrelated case of

ḡð2ÞBBðΔk1 ≫ σBBÞ ¼ 1 for large values of Δk1 (see [21]
for a full discussion of the relationship between various
correlation functions).
We also measure the collinear (CL) three-atom correla-

tion function [shown in Figs. 2(d)–2(f)], defined analo-

gously as ḡð3ÞCLðΔk1;Δk2Þ, where now Δk1 ¼ jk3 − k1j and
Δk2 ¼ jk3 − k2j. A surface plot of this function, measured
for the Bragg halo with maximum mode occupancy, is

shown in Fig. 2(h). Like ḡð3ÞBBðΔk1;Δk2Þ, this full correla-
tion function also contains other many-body correlations:

for example, ḡð3ÞCLðΔk1; 0Þ [red line in Fig. 2(h)] will

asymptotically approach ḡð2ÞCLð0Þ (the two-atom collinear
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FIG. 1. Atomic momenta as measured by the quantum many-
body momentum microscope. Individual momenta of detected
atoms are reconstructed in 3D momentum space, with the main
image showing the collision halo, with dense (yellow) patches on
the north and south poles showing unscattered atoms from the
pair of colliding condensates. The highlighted balls and arrows
are an illustration of the underlying microscopic interactions—
the binary s-wave collisions. The 2D histograms below show an
equatorial slice through the experimental data, where the red
arrows k1, k2, and k3 indicate three arbitrarily chosen momenta
for which, e.g., three-atom correlations can be analyzed via
coincidence counts. Experimental data from ten runs is shown,
which approximates the density present in a single halo, given our
detection efficiency of ∼10%. Individual atoms can be seen in the
magnified inset, represented as 2D Gaussians with a width equal
to the detector resolution. The size of the balls representing the
individual atoms on the main 3D image are not to scale.
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correlation function), while ḡð3ÞCLðΔk1;Δk2 ≫ σCLÞ (blue

line) will yield ḡð2ÞCLðΔk1Þ [21]. Figures 2(g) and 2(h)
therefore show a full characterization of the hierarchy of
all three-body and two-body correlation functions present
in our system.
Our collisional halo is an example of a quantum many-

body system which, in the spontaneous scattering regime,
satisfies Wick’s factorization scheme [21]. This requires
knowledge of both the normal and anomalous second-
order operator moments in momentum space, nk;kþΔk ¼
hâ†kâkþΔki and mk;−kþΔk ¼ hâkâ−kþΔki, with â†k and âk
being the respective mode creation and annihilation oper-
ators, and the diagonal element of nk;kþΔk giving the
average mode occupancy nk ≡ nk;k. Knowledge of these
quantities is sufficient to reconstruct all higher-order
correlation functions and thus, completely solve the
many-body problem for our system. Here, the anomalous
occupancy mk ≡mk;−k (related to the anomalous Green’s
function in quantum field theory) describes the pairing
field amplitude between atoms with equal but opposite
momenta and is similar to the expectation value of the
Cooper pair operator in the Bardeen-Cooper-Schrieffer
theory of superconductivity, although in our case, the
pairing is between two identical bosons.
To examine these factorization properties further, we

analyze the dependence of peak correlation amplitudes on
the peak halo mode occupancy nk0

and compare them with

theoretical predictions. The theory relies on the relationship
between the peak anomalous occupancy jmk0

j and nk0
:

jmk0
j2 ¼ nk0

ðnk0
þ 1Þ [21]. In Fig. 3(a), we plot the

measured peak back-to-back correlation amplitude between

two-atoms ḡð2ÞBBð0Þ, for values of average mode occupancy

n≃ nk0
that span more than 2 orders of magnitude. ḡð2ÞBBð0Þ

is extracted by fitting ḡð2ÞBBðΔkÞ with a Gaussian (for details

and plots, see [21]). From analytic theory, we expect ḡð2ÞBBð0Þ
to scale with n as [21]

ḡð2ÞBBð0Þ ¼ ðn2k0
þ jmk0

j2Þ=n2k0
≃ 2þ 1=n: ð1Þ

This relation is plotted as the dashed line in Fig. 3(a), which
matches the data well considering that it is a no free
parameters fit. For comparison, we also plot the peak

collinear correlation between two atoms, ḡð2ÞCLð0Þ, shown by
squares in Fig. 3(a) and extracted from ḡð2ÞCLðΔkÞ in the same

way as ḡð2ÞBBð0Þ. We see values of ḡð2ÞCLð0Þ≃ 1.5, seemingly
independent of the mode occupancy. This trend is expected
theoretically, although in the limit of perfect resolution, we

would expect ḡð2ÞCLð0Þ ¼ 2 (as in the Hanbury Brown–Twiss
effect [10,56]) for all values of n.
From the measured ḡð2ÞBBð0Þ and ḡð2ÞCLð0Þ at each n, we are

able to extract the key nontrivial component of all higher-
order correlations in the scattering halo—the absolute value
of the average anomalous occupancy jmj≃ jmk0

j. This is
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FIG. 2. Three-body momentum correlation functions. The various back-to-back (a)–(c) and collinear (d)–(f) correlation functions
between three atoms in the scattering halo, with the maximum expected value of each correlation function indicated. (g) Surface plot
showing the correlation function between two collinear and one back-to-back atom ḡð3ÞBBðΔk1;Δk2Þ is shown for the s-wave halo that has
a mean occupation of n ¼ 0.010ð5Þ atoms per mode. The red and blue solid lines show cases (a) and (b), respectively [21], while the

green solid line is the 1D Gaussian fit used to extract ḡð3ÞBBð0; 0Þ. (h) The correlation function between three collinear atoms

ḡð3ÞCLðΔk1;Δk2Þ is shown for the s-wave halo with n ¼ 0.44ð2Þ. The red and blue solid lines show cases (d) and (e), respectively, while

the green solid line is the 1D Gaussian fit used to extract ḡð3ÞCLð0; 0Þ [21]. Insets show visual representations of the relevant cases at four
selected points on each plot.
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found through the relation jmk0
j2=n2k0

¼ 2C2 − 1, where

C2 ≡ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ. Using the data of Fig. 3(a) to
calculate C2, we plot ð2C2 − 1Þ1=2 ≃ jmj=n in Fig. 3(b).
A value of jmj > n is necessary for any system to exhibit
nonclassical (quantum) behavior, such as two-mode quad-
rature squeezing, Einstein-Podolsky-Rosen quadrature-
entanglement [57], and Bell inequality violation [58].
The fact that we measure values of jmj=n > 1 for all n
(with jmj=n ≫ 1 for smallest n) is a further demonstration
of the strong quantum nature of our system. Since all order
correlation functions for this system can be expressed as a
function of n and jmj, measuring these parameters is
essentially equivalent to solving the many-body problem
for the collisional halo.
Following a similar analysis for the peak three-atom

back-to-back correlation amplitude [21], extracting

ḡð3ÞBBð0; 0Þ from Gaussian fits to ḡð3ÞBBðΔk;ΔkÞ, we plot these
peak values as a function of n in Fig. 3(c). Theoretically, we

expect ḡð3ÞBBð0; 0Þ to scale with jmj and n as [21]

ḡð3ÞBBð0; 0Þ ¼ ð2n3k0
þ 4nk0

jmk0
j2Þ=n3k0

≃ 6þ 4=n: ð2Þ

This reflects the enhancement in the correlation amplitude
due to both the back-to-back and collinear correlations
[21]. In Fig. 3(c), we plot Eq. (2) as a dashed green line,
which agrees quite well with the experimental data.

Additionally, we can construct ḡð3ÞBBð0; 0Þ from our

measured values of C2, through the relation ḡð3ÞBBð0; 0Þ ¼
8C2 − 2. We plot these values in Fig. 3(c), which match the
theory well. This is a direct demonstration of how lower-
order correlation functions can be used to construct higher-
order correlation functions, showing that measuring a finite

number of correlation functions can be operationally
equivalent to solving the many-body problem.
The low probability associated with four or more atom

coincidence events means that we are unable to perform a
full, quantitative analysis of the hierarchy of fourth-
and higher-order correlation functions. However, we are
able to measure the back-to-back correlation function

ḡð4ÞBBðΔk1;Δk2;Δk3Þ for four atoms, two on each opposite
side of the halo [21], for n ¼ 0.31ð12Þ. This yields

ḡð4ÞBBð0; 0; 0Þ ¼ 70ð40Þ, compared to the theoretically

expected value of ḡð4ÞBBð0;0;0Þ≃24þ24=nþ4=n2≃143
for this mode occupancy [21].
An important feature of our BEC collision experiments

compared to previous work [10,11] is that we are able to
explore a much larger parameter space, including relatively
low values of n and small correlation lengths [21]. Because

of this, the values of ḡð2ÞBBð0Þ that we measure greatly exceed
the maximum possible collinear correlation value of

ḡð2ÞCLð0Þ ¼ 2. Thus our results are the first measurements

in the regime ḡð2ÞBBð0Þ ≫ ḡð2ÞCLð0Þ. This is a violation of the
simplest formulation of the Cauchy-Schwarz inequality [11]
for our system, which dictates that classically, we would

be restricted to ḡð2ÞBBð0Þ ≤ ḡð2ÞCLð0Þ. All previous similar
measurements with ultracold atoms were limited to peak

correlation amplitudes ḡð2ÞBBð0Þ≃ ḡð2ÞCLð0Þ [10,11].
This meant that they were only able to show a violation
of the Cauchy-Schwarz inequality for volume-integrated
atom numbers, rather than bare peak correlations [21].

Therefore, our measurement of ḡð2ÞBBð0Þ ≫ ḡð2ÞCLð0Þ, with

C2 ¼ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ > 100, represents a more straightfor-
ward and much stronger violation of the Cauchy-Schwarz
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FIG. 3. Peak two- and three-atom correlation amplitudes and anomalous occupancy jmj vs halo mode occupancy n. (a) The measured

peak two-atom back-to-back and collinear correlation amplitudes ḡð2ÞBBð0Þ (blue circles) and ḡð2ÞCLð0Þ (grey squares), respectively, plotted
against the average halo mode occupancy (n) for different halos. The dashed (blue) line shows the analytic prediction of Eq. (1). We

expect theoretically that ḡð2ÞCLð0Þ ¼ 2 for all n, but due to the finite resolution of the detector and the bins used to calculate the correlation

function, this is reduced slightly. The dotted line shows the mean value of ḡð2ÞCLð0Þ. (b) The quantity ð2C2 − 1Þ1=2 ≃ jmj=n [where

C2 ≡ ḡð2ÞBBð0Þ=ḡð2ÞCLð0Þ], with jmj the anomalous occupancy, is plotted against n along with the theoretical prediction (dashed red line) of
jmj=n ¼ ð1þ 1=nÞ1=2. The horizontal dotted line at unity is drawn for reference, showing that jmj > n for all our data points.

(c) ḡð3ÞBBð0; 0Þ vs n, with green diamonds showing experimental data [extracted from fits to ḡð3ÞBBðΔk;ΔkÞ, as shown by the green line in
Fig. 2(g)] and the dashed line showing the theoretical prediction of Eq. (2). Red circles are reconstructed using experimental data for C2.
Error bars for all three plots show the combined statistical and fit uncertainties [21].
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inequality (cf. the maximum value of the corresponding
correlation coefficient C2 ≃ 1.2 measured in Ref. [11]). In
fact, to the best of our knowledge even for optical experi-
ments the largest value measured is C2 ≃ 58 [21,59],
meaning that our result of C2 > 100 is a record for any
source.
The Cauchy-Schwarz inequality can also be formulated

for higher-order correlation functions. For three-atom cor-
relations in our system, it states ḡð3ÞBBð0; 0Þ ≤ ðḡð2ÞCLð0ÞÞ3=2
[18]. Again, we violate this inequality for all data in Fig. 3,
with a maximum violation of ≃100.
To summarize, we have used a quantum many-body

momentum microscope to analyze the spontaneous s-wave
scattering halos of correlated atom pairs with a range of halo
mode occupancies n spanning over 2 orders of magnitude.

We measured the third-order correlation functions ḡð3ÞBB and

ḡð3ÞCL and confirmed the nontrivial many-body nature of the
correlations present. Unlike previous similar measurements,
we were able to extract the absolute value of the anomalous
occupancy jmj as a function of n. jmj and n are all that is
required for understanding and predicting all higher-order
correlation functions in this system, hence solving the
quantum many-body problem in this case. We have also
demonstrated a high degree of violation of the classical
Cauchy-Schwarz inequality for both two and three atom
correlations. This is the first measurement for three atoms,
while our two atom result beats the only previous experiment
with atoms [11] by nearly 2 orders of magnitude.
This demonstrated ability to measure higher-order quan-

tum correlations in a complex many-body system (an s-wave
scattering halo) means that a momentum microscope will be
a valuable tool for probing other many-body effects in
quantum simulators that possess nontrivial correlations
(although this may require additional considerations [21]).
Such effects include many-body localisation and glassy
dynamics [60], unconventional superconductivity [61], uni-
versal three-body recombination, and Efimov resonances
[62]. Other possible applications include the use of such a
microscope as a direct dynamical probe of nonequilibrium
many-body effects in TOF expansion.
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SUPPLEMENTAL MATERIAL FOR: SOLVING THE
QUANTUM MANY-BODY PROBLEM VIA CORRELATIONS

MEASURED WITH A MOMENTUM MICROSCOPE

1. THEORETICAL BACKGROUND AND CONNECTION TO
EXPERIMENTAL QUANTITIES

In many-body theory, multi-particle correlations are char-
acterised by the N -th order (N -point) correlation function
which, in the normalized and normally-ordered form, can be
expressed in terms of the creation and annihilation quantum
field operators, Ψ̂†(x) and Ψ̂(x), as

g(N)(x1,x2, ...,xN ) =
〈 : n̂(x1)n̂(x2)... n̂(xN ) : 〉
〈n̂(x1)〉〈n̂(x2)〉... 〈n̂(xN )〉

=
〈Ψ̂†(x1)Ψ̂†(x2)...Ψ̂†(xN )Ψ̂(xN )...Ψ̂(x2)Ψ̂(x1)〉

〈n̂(x1)〉〈n̂(x2)〉...〈n̂(xN )〉
. (S1)

Here, we have considered equal-time density [n̂(xj) ≡
Ψ̂†(xj)Ψ̂(xj), j = 1, 2, ..., N ] correlations in position space
for simplicity, but the definition and the context can be ex-
tended to, e.g., correlations in the reciprocal momentum
space. The physical meaning of the above correlation function
is that it represents the joint probability of detecting N parti-
cles in their respective positions {x1,x2, ...,xN}, normalized
to the product of single-particle detection probabilities.

Operationally, sufficient knowledge of higher-order corre-
lation functions is equivalent to solving the quantum many-
body problem. For example, consider the case of a thermal
state, which is an example of a broad class of Gaussian states.
Here, all higher-order correlation functions factorize (as per
Wick’s theorem) into a sum of terms involving only prod-
ucts of normal densities 〈Ψ̂†(xi)Ψ̂(xj)〉 (i, j = 1, 2, ..., N ).
Hence their knowledge alone is sufficient to predict all these
higher-order correlations. For the same-point correlation
function g(N)(x,x, ...,x), this property leads to the simple
result that g(N)(x,x, ...,x) = N !, which for N = 2 implies
the Hanbury Brown–Twiss bunching effect [6]. More gen-
erally, Wick’s factorisation for Gaussian states requires inclu-
sion of terms also containing products of anomalous densities,
〈Ψ̂(xi)Ψ̂(xj)〉, which do not have to be zero in general (un-
like for thermal states). The anomalous density (also known
as the anomalous Green’s function in quantum field theory)
involves a product of two annihilation operators and charac-
terises the amplitude of nonlocal pair correlations present in
the system.

Momentum-space correlations studied in this work can be
defined analogously to Eq. (S1) as

g(N)(k1,k2, ...,kN ) =
〈 : n̂k1

n̂k2
... n̂kN

: 〉
〈n̂k1
〉〈n̂k2

〉... 〈n̂kN
〉

=
〈â†k1

â†k2
...â†kN

âkN
...âk2 âk1〉

〈n̂k1
〉〈n̂k2

〉... 〈n̂kN
〉

,(S2)

with â†k and âk being the momentum mode creation and
annihilation operators in plane-wave basis, satisfying equal-
time bosonic commutation relation

[
âk, â

†
k′

]
= δk,k′ , and

nk ≡ 〈n̂k〉 = 〈â†kâk〉 giving the distribution of halo mode
occupancies. We have omitted the explicit time-dependence
of the operators for notational simplicity.

The scattering problem under investigation can be de-
scribed within the undepleted and constant (in time) source
BEC approximation, valid when the total number of scat-
tered atoms constitutes only a small fraction (< 5%) of the
initial number of atoms in the source condensates and when
the mean kinetic energy of the colliding atoms is much larger
than the mean interaction energy per atom [22–24]. Further-
more, given that the initial trapping frequencies in all three
dimensions are rather weak in our experiments and that the
scattering occurs predominantly from the condensate central
(high-density) region where the real-space density is nearly
constant, we can approximate the source condensate as a uni-
form system, in which case the scattered atoms can be de-
scribed by the following pairwise coupled Heisenberg equa-
tions of motion [24]:

dâk(t)

dt
= −i∆kâk(t)− iχâ†−k(t), (S3)

dâ†−k(t)

dt
= i∆kâ−k(t) + iχâk(t). (S4)

Here, χ = Uρ̄/~ is the effective coupling, U = 4π~2as/m is
the s-wave interaction strength characterised by the scattering
length as, and ρ̄ is the density of the source condensate prior
to its splitting into two colliding (counterpropagating) halves.
In addition, ∆k ≡ ~(k2 − k2

r)/ (2m) is the effective detun-
ing from the scattering resonance, with k2 = |k|2 and kr the
collision momentum, i.e., the momentum kick imparted onto
each colliding condensate in the center-of-mass frame.

The explicit solutions to these equations, which are anal-
ogous to the equations of motion for producing a two-mode
squeezed vacuum state in quantum optics by means of para-
metric downconversion [25], are [26, 27, 46]:

âk(t) = αk(t)âk(0) + βk(t)â†−k(0), (S5)

â†−k(t) = β∗k(t)âk(0) + α∗k(t)â†−k(0), (S6)

where the coefficients αk(t) and βk(t) are given by

αk(t) =

[
cosh

(√
χ2 −∆2

k t

)
+

i∆k√
χ2 −∆2

k

sinh

(√
χ2 −∆2

k t

)]
ei

~|kr|2
2m t,(S7)

βk(t) =
−iχ√
χ2 −∆2

k

sinh

(√
χ2 −∆2

k t

)
ei

~|kr|2
2m t, (S8)

and satisfy |βk|2 − |αk|2 = 1.
From these solutions, and for vacuum initial conditions

for all scattering modes, one finds that the only nonzero
second-order moments of creation and annihilation operators
in this model are the normal and anomalous mode occupan-
cies given, respectively, by:

nk(t) = 〈â†k(t)âk(t)〉 = |βk(t)|2, (S9)
mk(t) = 〈âk(t)â−k(t)〉 = αk(t)βk(t). (S10)
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TABLE I. Complete set of 4th order correlation functions in terms of normal and anomalous lattice mode occupancies, nki and mki . All
momenta ki (i = 1, 2, 3, 4) are drawn from the halo peak centered radially at |ki| = kr , and for notational simplicity we have omitted the
momentum index (i.e. nki ≡ n and mki ≡ m). The unnormalised correlation function is denoted via G(4)(k1,k2,k3,k4) and refers to the
numerator in Eq. (S2).

Case G(4)(k1,k2,k3,k4) g(4)(k1,k2,k3,k4) Decays to case:

(1) n4 1 N/A

(2) 4|m|4 + 16n2|m|2 + 4n4 24 + 24/n+ 4/n2 (3)

(3) 2n2(2|m|2 + n2) 6 + 4/n (6)

(4) 2n2(2|m|2 + n2) 6 + 4/n (5)

(5) 2n4 2 (1)

(6) n2(n2 + |m|2) 2 + 1/n (1)

(7) (n2 + |m|2)2 4 + 4/n+ 1/n2 (6)

(8) 6n2(n2 + 3|m|2) 24 + 18/n (3)

(9) 6n2(n2 + 3|m|2) 24 + 18/n (10)

(10) 6n4 6 (5)

(11) 4n4 4 (5)

(12) 2n2(n2 + |m|2) 6 + 4/n (6)

(13) 2n2(n2 + |m|2) 6 + 4/n (5)

(14) 24n4 24 (10)

An important relationship that follows immediately from these solutions is that the amplitude of the anomalous occu-
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pancy |mk| for any mode is related to the normal occupancy
nk by

|mk|2 = nk (nk + 1) , (S11)

where nk(t) = χ2

χ2−∆2
k

sinh2
(√

χ2 −∆2
k t
)

. This follows
from the bosonic commutation relation and the conservation
of particle number difference in equal but opposite momen-
tum modes in the s-wave pair-production process. Note that
for any resonant (or peak) halo mode k0, for which ∆k = 0
and therefore |k0| = kr, the mode occupation acquires the
well-known form for the two-mode squeezed vacuum state,
nk0(t)=sinh2 (χ t) [25, 26, 46].

The linearity of Eqs. (S3)–(S4) ensures that the evolution
will result in a Gaussian many-body state and hence Wick’s
factorisation scheme for all higher-order correlation functions
will apply. This allows one to express anyN -point correlation
as a sum of terms containing all possible distinct products of
the nonzero second-order moments. Taking the second-order
correlation function, i.e., for N = 2 in Eq. (S2), between two
collinear (CL) atoms with the same momenta as an example,
this means that it can be evaluated as

g
(2)
CL(k) ≡ g(2)(k,k) =

〈: n̂†kn̂
†
k :〉

〈n̂k〉〈n̂k〉
=
〈â†kâ

†
kâkâk〉

〈n̂k〉〈n̂k〉

=
2n2

k

n2
k

= 2. (S12)

Similarly, the back-to-back (BB) second-order correlation
function between two atoms with equal but opposite momenta
will be given by

g
(2)
BB(k) ≡ g(2)(k,−k) =

〈: n̂†kn̂
†
−k :〉

〈n̂k〉〈n̂−k〉
=
〈â†kâ

†
−kâ−kâk〉

〈n̂k〉〈n̂−k〉

=
n2
k + |mk|2

n2
k

= 2 +
1

nk
. (S13)

The third- and any higher-order peak correlations and their
expressions in terms of the mode occupancy nk can be eval-
uated similarly; the complete set of third-order correlations is
listed in Fig. 2 of the main text, while we list fourteen nontriv-
ial fourth-order correlations in Table I.

Quantitatively, the best agreement between the results
based on the uniform source-condensate model and those that
can be obtained numerically for nonuniform condensates is
achieved when the size of the quantisation box in the uniform
model is matched with the characteristic size of the source
[24, 26, 28]. In this case, the spacing between the plane-
wave modes ∆k = 2π/L (which we assume is for a cubic
box of side L, for simplicity) takes the role of the coherence
or correlation length beyond which any higher-order correla-
tion function containing pairs of nearly equal or nearly op-
posite momenta decays (stepwise) from the peak value to the
respective uncorrelated value. For nonuniform systems, on
the other hand, the physical correlation length may span over
several plane-wave modes depending on the quantization vol-
ume adopted for the problem. In this case, the results of the
uniform model, while being applicable to peak amplitudes

of correlation functions for nonuniform systems, cannot ad-
dress the quantitative details of the decay of these correlations
with distance. Such details can be addressed numerically us-
ing stochastic approaches in phase-space [27, 29–33] or ana-
lytic approaches based on perturbation theory [23, 24, 33–35],
which are, however, beyond the scope of this work.

Thus, in order to use the simple analytic results of this sec-
tion for comparison with experimentally measured quantities
(see below), we will restrict ourselves to quantitative results
that refer to the peak amplitudes of correlation functions. Fur-
thermore, we note that in order to improve the counting statis-
tics the experimental data is averaged over a certain spherical
shell (excluding the regions occupied by the source BECs),
which is justified due to the spherical symmetry of the scat-
tering halo and the fact that the halo mode size in our exper-
iments is comparable with the radial thickness of the shell.
This means that the average halo-mode occupancy (n), used
in the analysis of experimental results, is identified with

n =
1

M

∑
k∈VS

〈n̂k〉 =
1

M

∑
k∈VS

nk ' nk0
, (S14)

in our analytic theory; similarly, the absolute value of the av-
erage anomalous occupancy |m| refers to

|m| = 1

M

∑
k∈VS

|mk| ' |mk0
|. (S15)

Here, VS is the averaging volume chosen to be a spherical
shell centered (radially) at the halo peak |k0| = kr, whereas
M is the number of modes contained in VS (see the next sec-
tion for details).

2. EXPERIMENTAL DETAILS

The experiment begins with a He∗ BEC trapped in a bi-
planar quadrupole Ioffe configuration magnetic trap [36].
The trap has harmonic frequencies of {ωx, ωy, ωz}/2π '
{15, 25, 25}Hz and a bias magnetic field B0 = 1.31(1) G
along the x̂-axis. Note that the near uniformity of the trap-
ping frequencies justifies the angular integration performed to
convert g(3)

BB(∆k1,∆k2) to ḡ(3)
BB(∆k1,∆k2) described in the

main text. Our detector consists of a pair of 80 mm diameter
multichannel plates and a delay line, located ∼ 850 mm be-
low the trap center (416 ms fall time), which has a quantum
efficiency of ≈10%.

2.1 Halo generation

Similarly to our previous work [37] we employ the same
laser beams for both Raman and Bragg pulses, only chang-
ing the relative frequency detuning of the waveforms, which
is set by the bias B0 and geometrical angle between the
beams (90◦).
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Bragg diffraction

We use scattering off a grating formed by the same two
laser beams in either the Raman, Bragg and Kapitza-Dirac
regimes to generate the halos, similar to our previous work
[12, 37]. The laser beams are blue detuned by ≈ 2 GHz from
the 23S1 → 23P0 transition. For all experiments we start with
a Raman pulse to transfer ≈ 95% of the BEC atoms in the
k = 0 momentum mode of the mJ = +1 sublevel into the
magnetically insensitive mJ = 0 sublevel. These untrapped
atoms are then diffracted using a second pulse into a num-
ber of diffraction orders, depending on the desired mode oc-
cupancy of the final s-wave halo as follows. For the halos
with the five highest mode occupancies, the second diffrac-
tion pulse uses Bragg scattering to transfer between ∼ 10%
and ∼ 50% of the atoms back into the k = 0 momentum
mode. The two momentum modes then collide, producing a
sphere of scattered atom pairs through s-wave collisions [10].
The sphere has a radius in momentum space approximately
equal to kr ' k0/

√
2 (note that there is a small deviation due

to the halo not being quite spherical [31, 32] and the angle
between the diffraction beams not being exactly 90◦). This
allows us to produce halos with average mode occupancies
ranging from n = 0.104(8) to n = 0.44(2). Here n = N/M ,
where N is the average number of atoms per halo and M is
the average number of modes for that halo (see below). The
halos for this subset of the data are produced using five dif-
ferent population transfer fractions, with 7,305 shots for each
transfer fraction.

Kapitza-Dirac diffraction

To generate halos with smaller mode occupancies, we
use higher-order Kapitza-Dirac scattering [38–40] to produce
multiple BECs that each act as distinct sources of s-wave
scattering halos in an individual experimental run [12]. This
yields 12 separate diffraction orders l = −6... + 5, with
each adjacent pair then colliding to produce 11 different ha-
los (see Fig. S1). Each halo still has a radius of kr in mo-
mentum space, centred in between the diffracted condensates.
As the diffraction orders are populated with varying num-
bers of atoms, according to the Kapitza-Dirac effect, a con-
sequence is that the average mode occupancy in the result-
ing halos (nl,l+1) ranges from n0,+1 = 0.077(10) down to
n+5,+6 = 0.0017(17). By creating and measuring 11 differ-
ent halo mode occupancies in a single experimental run, this
increases the data acquisition rate by over an order of mag-
nitude, which is crucial to achieve good signal to noise for
halos with such a low number of counts per shot. The Kapitza-
Dirac data comes from 54,473 separate individual experimen-
tal runs. This means the total number of different individual
halos presented in this manuscript is 635,728.

For both methods of generating s-wave scattering halos, it
is convenient to operate in momentum space co-ordinates with
the origin at the centre of each halo as follows. Knowing the
time-of-flight to the detector Tf , we convert measured atom
spatial coordinates r in the detector plane to momenta k via

r = Tfv, using v = ~k/mHe, where mHe is the mass of a
4He* atom.

Stimulated versus spontaneous scattering

The combination of the two halo generation methods pro-
duces a dataset of halos where the mode occupancy spans
more than two orders of magnitude. An important parame-
ter that characterises whether the scattering is in the sponta-
neous or stimulated regime is the ratio of two characteristic
timescales γ = tcol/tint, the collision duration tcol and the
interaction timescale tint. The characteristic collision dura-
tion itself is determined by the smallest of two timescales,
tcol = min{texp, tsep}: the characteristic timescale for ex-
pansion of the colliding BECs texp ' 1/ωy,z (which in our
experiment is determined by the largest trapping frequency)
and the characteristic timescale for geometric separation of
the colliding condensates tsep ' 2RTF /3vr, with RTF being
the Thomas-Fermi radius of the BEC in the collision direction
(∼ 70µm) and vr = ~kr/mHe the collision velocity. The
numerical factor of 2/3 in tsep is introduced to account for
the fact that, as the colliding condensates separate in space,
the density-dependent scattering rate [22, 56] becomes sig-
nificantly smaller well before the condensate overlap region
vanishes completely. With these definitions and for our ex-
perimental parameters, we estimate that texp ∼ 8 ms, whereas
tsep ∼ 0.7 ms, and therefore the characteristic collision dura-
tion is tcol ∼ 0.7 ms.

The characteristic interaction timescale, on the other hand,
is given by tint ' 1/χ0 = ~/Uρ0 and defines the intrin-
sic pair production rate should the scattering proceed at a
constant effective coupling strength χ0, in the simple unde-
pleted and uniform condensate model of Section 1, Eqs. (S5)-
(S6). Within this model, where the halo peak mode occu-
pancy grows as nk(t) = sinh2(χ0t), the spontaneous scatter-
ing regime corresponds to χ0t � 1 where nk(t) ' (χ0t)

2

grows nearly quadratically with time, whereas the stimulated
regime corresponds to χ0t > 1 where the growth of nk(t) be-
comes near exponential. The predictions of this model will re-
main approximately valid as long as the condensate density in
the overlap region is not significantly diminished due to their
expansion in free space or their geometric spatial separation.
Accordingly, if the stimulated regime is never reached due to
tint remaining smaller than the actual collision duration tcol,
the pair production process will remain in the spontaneous
regime. Estimating tint for our experiment, with χ0 = Uρ̄/~,
U = 4π~2as/mHe, as = 7.51 nm, and taking ρ̄ equal to
the average BEC density within the typical parabolic Thomas-
Fermi profile, we obtain (for our highest density samples with
peak density of ρ(0) ' 1.7 × 1018 m−3) tint ∼ 1 ms. This
gives tcol/tint ' 0.7.

Thus, for the halos with maximum mode occupancy, the
largest value for our experiment is γ ' 0.7, meaning it should
always be in the spontaneous regime of pair production. In-
creasing γ > 1 would cause the system to enter the stimulated
regime, where Bose-enhancement leads to a few modes dom-
inating the scattering and a range of other effects, such as the
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FIG. S1. Kapitza-Dirac scattering halos. Experimental data showing the reconstructed momentum space density for all 11 halos produced
by Kapitza-Dirac scattering. The black regions show the diffraction orders of the BECs, which saturate the detector, with diffraction indices l
labeled in red. Scattered halo atoms are shown in blue.

formation of phase grains, become apparent [41]. However,
as long as the condensates are not significantly depleted, the
Wick’s factorisation scheme described in Section 1 still holds
and we would expect to observe similar correlation properties.

2.2 Halo mode occupancy

The mode occupancy in the halo is given by n = N/M ,
where N is the total number of atoms in the halo and M is the
number of modes in the halo. Following Ref. [56], we take
M = VS/VM , where

VS ' 4π
√

2πk2
rw (S16)

is the momentum-space volume of the scattering shell (assum-
ing a Gaussian profile radially), with w the rms width of the
shell and kr the shell radius. The mode volume, VM , is given
by

VM ' (2π)3/2(σk)3, (S17)

where σk is the rms width of the momentum distribution of
the source BEC, assuming that it can be approximated by an
isotropic Gaussian distribution. For a simple Thomas-Fermi
parabolic density profile of the source BEC (which our BECs
can be well approximated by), the momentum distribution is
given by a Bessel function [24, 42]; the bulk of the Bessel
function can be fitted by a Gaussian, which is then used to
define the rms width σk in Eq. (S17).

Previous analytic and numerical calculations of the second-
order back-to-back correlation function have demonstrated the
relation σk ≈ σBB/1.1 [24], which motivates us to use the
experimentally measured values of σBB (see the discussion
in the following section) to extract σk. Note that although σk
will be slightly different along each dimension correspond-
ing to the magnetic trap axes, the spherically averaged corre-
lation function measured experimentally in this paper yields
only a single, spherically averaged correlation length σBB .
The assumption of an isotropic correlation length, i.e. that it
is the same along all directions, is an approximation. How-
ever, there is only a small asymmetry in our trap frequencies,
which in our previous work [12] led to a measured variation of
< 15% in the correlation lengths between different axes and
thus the approximation should be valid.

From the average Gaussian halo thickness (measured across
all halos) of wav ≈ 0.031kr and the fitted back-to-back

correlation length we find M ranging from 2,900(200)–
32,000(21,000).

2.3 Correlation functions

Back-to-back correlations

From the aggregate (over many repeated runs of the exper-
iment) detected atoms within each experimental run, we can
reconstruct the normalised two-atom back-to-back correlation
function,

g
(2)
BB(∆k) =

∑
k∈V 〈: n̂kn̂−k+∆k :〉∑
k∈V 〈n̂k〉〈n̂−k+∆k〉

, (S18)

between atom pairs with nearly equal but opposite momenta,
k and −k + ∆k. Due to the spherically symmetric nature
of the scattering halo, the summation over momenta k lying
within a certain spherical shell of volume V corresponds to
first averaging the unnormalised correlation function over the
bulk of the halo (to improve the overall statistics) and then nor-
malising the result with respect to the uncorrelated counterpart
of the same quantity. Thus, the normalisation and averaging
in Eq. (S18) ensures that g(2)

BB(∆k) = 1 for uncorrelated mo-
menta, while any dependence on k within V is lost due to the
averaging.

The integration volume V in Eq. (S18), as in all correlation
functions described in this paper, is performed over a thin shell
in momentum space encompassing the halo but excluding the
condensates and any background atoms which lie outside the
halo. Radially, this volume includes all atoms with 0.55kr <
|k| < 1.28kr, which means all atoms in the halo (gaussian
width≈0.03kr) will be counted. The volume around the con-
densates is windowed out by taking −0.44kr< kz < 0.44kr,
which is somewhat conservative but avoids potential satura-
tion problems that we observe on the delay-line detector when
the flux becomes too high. Note that although the experimen-
tal integration volume V is somewhat thicker radially than VS ,
very few correlated pairs are measured outside VS . Therefore
the correlation amplitudes are dominated by atoms in VS and
thus the use of Eq. (S14) in theoretical predictions will yield
a reasonable approximation for comparison with the experi-
mental results.

Furthermore, for consistency across all correlation func-
tions and to allow easy visualisation of higher-order functions,
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FIG. S2. Individual plots of back-to-back two-atom correlation functions. Full plots and fits of ḡ(2)BB(∆k) for all 11 halos produced by
Kapitza-Dirac (labeled K-D in the figure) and the 5 halos produced by Bragg scattering, along with fit functions. See text for details of the fits.
Fit 1 is Eq. (S22) fitted to all data, fit 2 excludes the smallest ∆k value and fit 3 excludes the smallest 2 ∆k values.

we additionally integrate over the angles of the displacement
vector ∆k in spherical coordinates, both for the top and bot-
tom lines of Eq. (S18). We denote the resulting correlation
function as ḡ(2)

BB(∆k), which we plot (see Fig. S2 for ex-
amples) as a function of the scalar distance between atoms
∆k = |∆k|.

Similarly, the three-atom back-to-back correlation function
is given by

g
(3)
BB(∆k1,∆k2) =

∑
k3∈V 〈: n̂k3

n̂−k3+∆k1
n̂−k3+∆k2

:〉∑
k3∈V 〈n̂k3

〉〈n̂−k3+∆k1
〉〈n̂−k3+∆k2

〉
.

(S19)

Again, to allow clear visualisation of the correlation function,
as well as improve the signal to noise, it is more practical
to plot the correlations as a function of the scalar distances
∆k1 = |∆k1| and ∆k2 = |∆k2|, which involves spherically
integrating over all angles for both the top and bottom terms of
Eq. (S19). We denote the corresponding correlation function
ḡ

(3)
BB(∆k1,∆k2), and this function is plotted in Fig. 2 (g) of

the main text.
As a consistency check, we can use the inter-dependency

of the different correlation functions to reconstruct ḡ(2)
BB(∆k)

from the asymptotes of the full three-atom correlation func-
tion ḡ

(3)
BB(∆k1,∆k2). This is highlighted by the blue lines

ḡ
(3)
BB(∆k1,∆k2 � σBB) and ḡ

(3)
BB(∆k1 � σBB ,∆k2) in

Fig. 2 (g). We average the two lines and fit a Gaussian to
extract ḡ(2)

BB(0). These extracted values are shown in Fig. S3
along with the theory curve Eq. (1). The agreement between
experiment and theory is comparable to the values of ḡ(2)

BB(0)
measured directly [Fig. 3 (a)].

Collinear correlations

Similarly to Eq. (S18), the collinear two-particle correlation
function is defined as

g
(2)
CL(∆k) =

∑
k∈V 〈: n̂kn̂k+∆k :〉∑
k∈V 〈n̂k〉〈n̂k+∆k〉

, (S20)

with the same spherical integration as described above per-
formed to transform from g

(2)
CL(∆k) to ḡ

(2)
CL(∆k), where

∆k = |∆k|. Due to the low number of counts for some values
of n the fits have a large uncertainty and in fact for two halos
the statistics are so poor that no meaningful fit is possible.
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However, theoretically there is no expected trend with n, as
in the limit of small detector resolution and small correlation
function bins we expect ḡ(2)

CL(0) ' 2 for all n [24, 56].
The correlation function between three collinear atoms is

then analogously defined as

g
(3)
CL(∆k1,∆k2) =

∑
k3∈V 〈: n̂k3

n̂k3+∆k1
n̂k3+∆k2

:〉∑
k3∈V 〈n̂k3

〉〈n̂k3+∆k1
〉〈n̂k3+∆k2

〉
,

(S21)

where now k1 = k3 + ∆k1 and k2 = k3 + ∆k2. As with
Eq. (S19), the actual correlation function we plot is integrated
over all angles and denoted ḡ(3)

CL(∆k1,∆k2), which is shown
in Fig. 2 (h) of the main text. This surface plot is equivalent
to previous measurements of ḡ(3)(∆k1,∆k2) for cold thermal
Bose gases [4, 43], although note that in the present experi-
ment our BEC source would be much colder and without the
collision would not display such correlations [43].

Higher-order correlations

The poor statistics associated with three-atom collinear cor-
relations in the regimes investigated in this manuscript mean
that not enough values of n yield ḡ(3)

CL(∆k1,∆k2) with suf-
ficient signal to extract the dependence of ḡ(3)

CL(0, 0) on n.
However, theoretically we expect ḡ(3)

CL(0, 0) = 6 for all val-
ues of n. Even for three-atom back-to-back correlations
ḡ

(3)
BB(∆k1,∆k2), reliable correlation functions can only be

extracted for 11 different values of n, hence only 11 points
are shown in Fig. 3 (c) of the main text.
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FIG. S3. Two-atom back-to-back correlation amplitudes ex-
tracted from three-atom correlation functions. The two-atom cor-
relation amplitudes ḡ(2)BB(0) as extracted from the asymptotes of the
full three-atom correlation functions ḡ(3)BB(∆k1,∆k2) (blue lines in
Fig. 2), plotted along against the average mode occupancy n. The
dotted line shows the analytic theory curve. This plot can be directly
compared to Fig. 3 (a).

The lack of statistics in this dataset also prevented us from
extracting the complete 4th and higher-order correlation func-
tions. However, by combining the 5 highest count rate data
into a single dataset (with n = 0.31(12)) we are able to re-
construct the maximally correlated case of two atoms on each
side of the halo ḡ(4)

BB(∆k1,∆k2,∆k3). The four dimensional
nature of this correlation function and the poor signal to noise
make a clear visual representation problematic, so for simplic-
ity we only plot the diagonal case of ∆k1 = ∆k2 = ∆k3 =
∆k, shown in Fig. S4.

Correlation function fits

To extract the maximum correlation amplitudes
[ḡ(2)
BB(0), ḡ

(3)
BB(0, 0) etc.], the individual correlation functions

are fitted with a 1D Gaussian fit function [4, 43]. For
ḡ

(2)
BB(∆k), this is given by

ḡ
(2)
BB(∆k) = Ae−∆k2/2σ2

BB +O, (S22)

where the fit parameters A, σBB and O correspond to the cor-
relation amplitude, two-atom correlation length and offset re-
spectively. Note that this means that ḡ(2)

BB(0) = A+O. Simi-
lar fit functions are defined for the other correlation functions.

For the three-atom correlation functions, we fit the 1D cor-
relation functions to ∆k1 = ∆k2 [see Fig. 2 (g) and (h)],
while the ḡ(2)

BB(0) values shown in Fig. 3 (c) are taken from
the average of fits ḡ(3)

BB(0,∆k2 � σBB) and ḡ(3)
BB(∆k1 �

σBB , 0) [see Fig. 2 (g) and (h) of the main text]. Due to poor
statistics, the uncorrelated values ḡ(3)

CL(∆k1 � σBB ,∆k2 �
σBB) ḡ

(4)
BB(∆k1 � σBB ,∆k2 � σBB ,∆k3 � σBB) are

also slightly larger than one.
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FIG. S4. Four-atom back-to-back correlation function. Full four-
atom correlation function ḡ(4)BB(∆k1,∆k2,∆k3) plotted along the
diagonal ḡ(4)BB(∆k,∆k,∆k) for n = 0.31(12). The dashed line
shows a gaussian fit. The dotted lines bounding the shaded region
show the fits to the statistical noise above and below each data point,
as shown by the error bars.
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Due to the angular integration inherent in our definition of
the correlation functions (see, e.g., Eq. (S20)), smaller values
of ∆k will have relatively fewer pairs in both the numera-
tor and denominator of the correlation function compared to
larger values of ∆k (the same is also true of ∆k1 and ∆k2).
This means the relative noise will be larger for small values of
∆k. To account for this, when fitting correlation functions to
fits such as Eq. (S22), we perform three fits: one to all data,
one excluding the smallest value of ∆k and one excluding the
two smallest values of ∆k. In the data shown in Fig. S2, the
average of each fit parameter is then used, while the spread is
taken as the fit uncertainty, which can be quite large for some
data.

g
(2)
BB(∆k) correlation length

From the Gaussian fits shown in Fig. S2, we can extract
the two-particle back-to-back correlation length σBB from
Eq. (S22), which is plotted against average mode occupancy
in Fig. S5. The correlation length is seen to increase with
higher mode occupancy. Theoretically, we would expect [24]
the length scale of σBB to be set by the Thomas-Fermi ra-
dius RTF of the source condensate that is being split into
two equal halves in the Bragg diffraction regime. Even in the
Kapitza-Dirac regime of splitting into multiple pairs of collid-
ing condensates, the characteristic size of any particular pair
is set by RTF of the source condensate prior to any diffrac-
tion, and therefore σBB should be approximately constant for
halos of different average mode occupancy n. On the other
hand, σBB and n have both previously been predicted (using
numerical simulations [24]) to increase with increasing col-
lision times, which is consistent with our observed result of
increasing σBB with larger n (Fig. 6). However, due to subtle
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FIG. S5. g(2)BB correlation length. Back-to-back correlation length
σBB extracted from Gaussian fits to the individual correlation plots,
as shown in Fig. S2 (see text for details), plotted as a function of
the average halo mode occupancy n, in units of the halo radius in
momentum space (kr). Errorbars indicate combined statistical and
fit errors.

differences in our experimental regime (e.g., in our setup n is
the final mode occupation, which is varied due to the different
total number of atoms in a given pair of colliding conden-
sates, rather than by changing the collision duration), a direct
comparison is not possible. A complete understanding of the
relationship between σBB and n for our experiment would re-
quire detailed numerical simulations, which are beyond the
scope of this work.

Note that the correlation lengths we measure are smaller
than the experimental values for previously published work
[10, 56]. Small correlation lengths are desirable in this sys-
tem, as the correlation length determines the halo mode vol-
ume, and thus smaller correlation lengths enable lower mode
occupancies to be accessed. The only caveat to this is that
the correlation lengths should be larger than the detector res-
olution, as otherwise it will be impossible to differentiate be-
tween adjacent modes. In our system we ensured that σBB is
always at least 3 times larger than our worst detector resolu-
tion.

2.4 General applicability of momentum microscopes to other
many-body systems

As mentioned in the main text, additional considerations
may be necessary when looking to apply a similar momen-
tum microscope to study other many-body systems. In some
strongly interacting systems the TOF expansion may not ini-
tially be ballistic, so in these cases alternative experimental
steps or further minimal input from theory might be required,
such as a treatment within short-time expansion or linear re-
sponse theory, to relate the experimentally measured quan-
tities to the in-trap momentum or quasi-momentum distribu-
tions. An example of the latter case is the expansion of a 1D
Lieb-Liniger gas, for which the long-time asymptotic density
distribution can be mapped to the in-trap distribution of quasi-
momenta (also known as Bethe rapidities) [44].

2.5 Cauchy-Schwarz violation

There are a number of subtleties which need to be consid-
ered when comparing our Cauchy-Schwarz violation to exper-
iments with photons. Firstly, in a quantum optics experiment
the source is usually parametric down conversion in the low-
gain regime, which produces a state approximating a twin-
photon Fock state: |ψ〉 ∼ |0, 0〉 + α|1, 1〉, with α a constant.
Although there are higher occupancy states (|22〉, |33〉...) gen-
erated, in practice they occur with such low probability that
any direct experimental measurement of g(2)

CL(0) would not
result in any statistically significant signal. This means that
g

(2)
CL(0), which enters into the definition of the correlation co-

efficient C2 that quantifies the degree of Cauchy-Schwarz vi-
olation, can only accurately be inferred, for example from the
visibility VHOM of a Hong-Ou-Mandel dip [27, 45], where

VHOM = 1− 1

1 + C2
. (S23)
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To the best of our knowledge, the largest VHOM reported is
VHOM ≈ 0.98 (98% visibility) [59], which from Eq. (S23)
would imply a value of C2 ≈ 58, hence the claim that our
Cauchy-Schwarz violation is the best on record. Note that for
another experiment to beat our value of C2 > 100 it would
need to measure VHOM > 0.99 (> 99% visibility). The high
degree of violation that we observe clearly demonstrates the
quantum nature of our halo.

All previous similar collision halo experiments with ultra-
cold atoms were only able to measure peak correlation ampli-

tudes ḡ(2)
BB(0) ' ḡ(2)

CL(0) [10, 11]. Therefore they were only
able to demonstrate a violation of the Cauchy-Schwarz in-
equality using volume-integrated atom numbers, rather than
bare peak correlations. This was made possible by the larger
correlation volume of g(2)

BB in their system, which was due to
the fact that the colliding sources were phase-fluctuating qua-
sicondensates, rather than nearly pure condensates as is the
case in our experiment.




