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We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein con-
densatesBECd via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can
potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that
the interaction of a small incoming atomic BEC with asstationaryd molecular BEC can produce two counter-
propagating atomic beams - an amplified atomic BEC and its phase-conjugate or “time-reversed” replica. The
two beams can possess strong quantum correlation in the relative particle number, with squeezed number-
difference fluctuations.
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The fascinating experimental progress in controlling ultra-
cold atomic gases has now resulted in the creation of
quantum-degenerate samples of ultracold molecules and mo-
lecular Bose-Einstein condensatessBECd. The first step to-
ward seeing molecular condensation was undertaken in tran-
sient experiments with a BEC of85Rb atomsf1g, in which
interference measurements were indicative of a small mo-
lecular condensate formation. More recent experiments with
133Cs, 87Rb, and23Na f2g, as well as with degenerate Fermi
gases of40K and 6Li atoms f3g, have produced even larger
samples of ultracold molecules, including molecular conden-
sates.

All these experiments have employed conversion of atom
pairs into weakly bound molecular dimers in the vicinity of a
magnetically tunable Feshbach resonance. This technique ap-
pears to be more successful at present than Raman photoas-
sociationf4,5g. Unambiguous claims on the observation of
equilibrium molecular condensates have only been made for
the case of molecules consisting of fermionic atoms. These
molecules have much longer lifetimes because of Pauli
blocking, which suppresses their decay due to inelastic col-
lisions f6g. Despite this, the production of Bose condensed
dimers composed of bosonic atoms should not be out of
reach using current experimental techniques.

The purely bosonic case is particularly interesting since
the underlying dynamics in the atom-molecule conversion
can take advantage of coherence and bosonic stimulation
with respect to both the atomic and molecular species. In
practical terms, this could lead to a wider range of techniques
for coherent quantum control of ultracold quantum gases,
including the possibility of superchemistryf5g, matter-wave
amplification with atom-molecular “laser” beams, as well as
various implementations of nonlinear atom optics and quan-
tum atom optics.

Here, we propose a scheme for nonlinear, coherent
matter-wave amplification and phase conjugation, which at
the same time is capable of producing pair-correlated or
number-squeezed atomic beams. The scheme relies on the
process of stimulated dissociation of a BEC of molecular
dimers, taking place in the presence of an injected signal—a

small incoming atomic condensate. The resulting output con-
sists of an amplified signal and its “time-reversed” or phase-
conjugate replicaf7g.

This is analogous to the nonlinear optical process of para-
metric amplification of a “seed” signal, using frequency con-
version of photons in a quadratically nonlinear mediaf8g. In
the matter-wave parametric amplification, the coupling that
takes the role of the “quadratic nonlinearity” and converts
molecules into atom pairs and vice versa can be realized via
coherent Raman transitions or using magnetic Feshbach
resonances. Either of these mechanisms have certain advan-
tages and disadvantages from the practical point of view,
however, the essential physics can be modeled via an effec-
tive quantum-field theory, which is identical in the two cases
f9–11g.

The advantage of the present scheme compared to spon-
taneous molecule dissociationf12–16g, with no atomic con-
densate present initially, is that the desired quantum effects
with mesoscopic atom numbers can be achieved on much
shorter time scales. As a result, the disruptive effect of in-
elastic collisions on molecule lifetimes can be bypassed, thus
making the present scheme much more robust for practical
implementation. In addition, the scheme has an advantage
compared to earlier related proposalsf17g using four-wave
mixing f18g in that it is less susceptible to phase noise in the
“pump” BEC—once its depletion is taken into account.

We start by considering the Heisenberg equations of mo-
tion for the coupled atomic-molecular system in a one-
dimensionals1Dd environment, which in a rotating frame
and in a dimensionless form, are given byf9,13g

]ĉ1
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Here, ĉ1sj ,td=Îd0Ĉ1sx,td and ĉ2sj ,td=Îd0Ĉ2sx,td repre-
sent the dimensionless atomic and molecular field operators
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ssuch thatkĈi
†Ĉil gives the 1D linear densityd, with bosonic

commutation relations fĉisj ,td ,ĉ j
†sj8 ,tdg=di jdsj−j8d,

wherej=x/d0 is the dimensionless coordinate,t= t / t0 is the
dimensionless time,d0 is a length scale, andt0=2m1d0

2/" is a
time scale. In addition,m1 andm2=2m1 are the atomic and
molecular masses,d=Dt0 is the dimensionless detuning
swith 2"D giving the overall energy mismatch between a
pair of free atoms and a moleculed, k=xt0/Îd0 is the dimen-
sionless atom-molecule couplingswith x being the respective
1D couplingd, and u22=U22t0/d0 is the dimensionless cou-
pling for molecule-molecules-wave–scattering interaction
swith U22 being the respective 1D couplingf19,20gd. Finally,
V2sjd=−u22n2

0s1−j2/j0
2d describes the axial trapping poten-

tial for the molecules, which we assume is harmonic, where
n2

0=kĉ2
†s0,0dĉ2s0,0dl is the dimensionless initial peak den-

sity of the molecular condensate andj0 is the respective
Thomas-Fermi radius.

We assume a highly elongated cigar-shaped trap geometry
such that the system can be modeled by a 1D theoryf19,20g,
as above. The atoms are assumed to be untrapped axially,
while confined transversely. The molecules are trapped both
transversely and axially.

In the case of Raman photodissociation, the energy mis-
match is given by 2"D=2E1−E2−"v, wherev is the fre-
quency difference between the two Raman lasers, while 2E1
andE2 refer, respectively, to the energy of free-atom pairs in
the dissociation limit and the energy of the bound molecular
state.

In the case of a Feshbach resonancef15,16g, 2"D gives
the energy mismatch achieved upon switching on the atom-
molecule coupling, i.e., upon a rapid crossing of the mag-
netic field through the resonance, which “brings” thesini-
tially stabled molecular level above the atomic dissociation
limit. This corresponds to havingD,0, and results in disso-
ciation of molecules into atom pairs such that the potential
energy 2"uDu is converted into the atomic kinetic energy
f2"uDu.2"2k2/ s2m1dg for selected phase-matched modes
with opposite momenta around ±k0=Î2m1uDu /". This strat-
egy of a fast ramp through the resonance is very similar to
the one realized experimentally in Ref.f16g, where a quasi-
mono-energetic spherical wave of atoms was created. A re-
alization of this experiment in a one-dimensional environ-
ment would correspond to the conditions of the current
proposal.

In our model, the interaction terms due to atom-atom and
atom-molecules-wave–scattering processes are neglected on
the grounds that we only consider large absolute values of
the detuninguDu and restrict ourselves to short dissociation
times. As a result, the number of atoms produced during
dissociation remains small, and the mean-field or phase dif-
fusion terms due to atom-atom and atom-molecule scatter-
ings remain negligible compared touDu.

Before analyzing the quantum dynamics of the system
described by Eqs.s1d, we first consider a simplified model
that has an analytic solution. This corresponds to an unde-
pleted, uniform molecular condensate in a coherent state at
density n2

0, in which case the molecular field amplitude
swhich we assume is reald can be absorbed into an effective

coupling g=kÎn2
0. Expandingĉ1sj ,td in terms of single-

mode annihilation operators,ĉ1sj ,td=oqâqstdeiqj /Îl, where
q=kd0 is the dimensionless momentum,l is the quantization
length, and the operatorsâq satisfy the usual commutation
relations fâqstd ,âq8

† stdg=dq,q8, we obtain the following
Heisenberg equations of motion:

dâq/dt = − ifq2 + dgâq + gâ−q
† ,

dâ−q
† /dt = ifq2 + dgâ−q

† + gâq. s2d

These have the following well-known solutionf13,21g:
âqstd=Aqstdâqs0d+Bqstdâ−q

† s0d and â−q
† std=Bqstdâqs0d

+Aq
*stdâ−q

† s0d, where

Aqstd = coshsgqtd − ilqsinhsgqtd/gq,

Bqstd = g sinhsgqtd/gq, s3d

anduAqu2−Bq
2=1. Here, the parameterlq;q2+d can be iden-

tified with an effective phase mismatch, whilegq;sg2

−lq
2d1/2 is the gain coefficient, which—if real—causes a

growing output in modeq, while—if imaginary—leads to
oscillations.

To study parametric amplification in the atomic field, we
consider initial conditions where all momentum components
with q.0 are initially in a coherent stateâqs0duaql=aquaql,
whereaq are the corresponding amplitudes, while all nega-
tive momentum components are initially in the vacuum state
â−qs0du0l=0.

Next, we introduce particle number operatorsN̂+

=oq.0âq
†âq and N̂−=oq.0â−q

† â−q corresponding to the total
number of atoms with positive and negative momenta, re-
spectively, and find that the respective average numbers are
given by

kN̂+stdl = o
q.0

fBq
2stds1 + uaqu2d + uaqu2g, s4d

kN̂−stdl = o
q.0

Bq
2stds1 + uaqu2d. s5d

For d,0, the functionBq
2 has two distinct global maxima at

±q0=Îudu corresponding to a zero-effective-phase mismatch,

lq=0. In the expression forkN̂+stdl, the three terms under
the sum are identified as the amplified contribution of the
vacuum noise in the modeq, Bq

2std, the amplified coherent
component of the input,Bq

2stduaqu2, and the coherent input

component itself,uaqu2, while kN̂−stdl consists of the ampli-
fied vacuum noise and the phase conjugate of the input.

To quantify the correlation and relative number squeezing

betweenN̂+ and N̂−, we consider the normalized variance

Vstd of the particle number differenceN̂+std−N̂−std. In nor-
mally ordered form,Vstd is given by

Vstd = 1 + k:fDsN̂+ − N̂−dg2:l/skN̂+l + kN̂−ld. s6d

Here,DX̂; X̂−kX̂l, andVstd,1 implies squeezing of fluc-
tuations below the coherent level, which is due to strong
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quantum correlation between the particle numbers inN̂+std
and N̂−std.

Calculating the quantitiesk:sN̂+,−d2: l and kN̂+N̂−l in Eq.
s6d and assuming thatuaqu2@1 gives the following approxi-
mate result for the variance:

Vstd . 1 −

2o
q.0

Bq
2stduaqu2

o
q.0

f2Bq
2std + 1guaqu2

. s7d

As we see, the degree of squeezing depends on the magni-
tude of the amplification factorBq

2std, and for strong ampli-
fication, Bq

2std@1, one can obtain almost perfects100%d
squeezing,Vstd.0.

We now turn to the exact quantum dynamical simulation
of the nonuniformsystem, Eqs.s1d. Here, we take into ac-
count molecular field depletion, molecule-molecules-wave
scattering, and we include possibleslineard losses of atoms
and molecules, occurring at ratesg1 andg2, respectively. The
simulation is done via numerical solution of the stochastic
sc-numberd differential equationsf13g in the positive-P rep-
resentationf22g

]c1

]t
= i

]2c1

]j2 − sg1 + iddc1 + kc2c1
+ + Îkc2h1,

]c2

]t
=

i

2

]2c2

]j2 − fg2 + iV2sjd + iu22c2
+c2gc2 −

k

2
c1

2

+ Î− iu22c2h2, s8d

together with the equations for the “conjugate” fieldsc1,2
+ ,

having noise termsh1,2
+ . Apart from the new loss terms, these

equations are equivalent to Eqs.s1d, where ci and ci
+ are

independent complex stochastic fields corresponding, respec-

tively, to the operatorsĉi and ĉi
†, while hi and hi

+ si =1,2d
are four real independentd-correlated Gaussian noises with
khisj ,tdh jsj8 ,t8dl=khi

+sj ,tdh j
+sj8 ,t8dl=di jdsj−j8ddst−t8d.

Figure 1 represents an example of a quantum dynamical
simulation of Eqs.s8d illustrating parametric amplification
and phase-conjugation of an incident atomic BEC with a
center-of-mass momentumq0=Îudu. Here, the top frame cor-
responds to the initial condition of a stable molecular con-
densatesshown in the middled in a coherent state with a
Thomas-Fermi density profile. The small incoming atomic
BEC sshown on the left and moving to the rightd is also
assumed to be in a coherent state initially, and since we
neglect the atom-atom interactions in this low-density re-
gime, we assume a Gaussian density profile. The dissociation
coupling k is invoked at timet1 when the atomic cloud is
aligned with the molecular BECsframe 5 from topd. It is
kept switched on for a short durationDt such that the am-
plified and the “reflected” output beams have densities com-
parable to that of the input beam and can be seen on the same
graph.

The next set of simulations is carried out for a more real-
istic set of parameter values than in Fig. 1. We use a longer
dissociation time and a larger couplingk to result in a large

amplification factor and hence a strongly correlated output
with squeezing in the particle number difference. For sim-
plicity, the simulation starts fromt=t1=0 when the incom-
ing atomic cloud is already aligned with the molecular con-
densate and we invoke the atom-molecule couplingk. The
dissociation is then stoppedsk=0d at t=t2, and we continue
the dynamical evolution of the atomic field in free spacesin
1Dd to allow spatial separation of the modes with positive
and negative momenta during the time interval fromt2 to t f.

For spatially separated components, we can introduce a
pair of particle number operators

N̂+s−dstd =E
0s−l/2d

l/2s0d

ĉ1
†sj,tdĉ1sj,tddj. s9d

Next, we define the normalized varianceVstd of the particle
number difference as in Eq.s6d and numerically evaluate the
relevant averages, using the standard correspondence be-
tween the normally ordered operator moments and the
c-number stochastic averagesf22g.

Figure 2 shows the results for the atomic density distribu-

tion n1sj ,t fd=kĉ1
†sj ,t fdĉ1sj ,t fdl at final timet=t f and the

varianceVstd as a function oft. In this simulation, the initial

FIG. 1. Atomic and molecularsshown in the middled density
profiles, illustrating parametric amplification and phase conjugation
of an incoming atomic BECstop frame, leftd via stimulated mol-
ecule dissociationf23g. The results are obtained using 5000 stochas-
tic trajectory averages fork=84, u22=1.8, d=−4.93104, g1=0.5,
andg2=0. The dissociation coupling is switched on att1=0.01 for
a duration of Dt=4310−4, while the total time window ist f

=0.0204.

FIG. 2. sad Final atomic density profilen1sj ,t fd and sbd the
varianceVstd as a function of timet. Here, the simulationswith
40 000 stochastic trajectory averagesd starts att1, the duration of
dissociation isDt=8310−4, and t f =1.9310−2. Other parameter
values arek=297, u22=0.068, d=−5.52253104, g1=g2=3, n2

0

=89.3, andj0=3.49 f24g.
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total number of molecules is 415, the initial number of atoms
in the incoming BEC is 21, whereas the final average number
of atoms in the two output beams is,60 and 78. The
squeezing in the particle number difference att=t f is about
75% fVst fd.0.25g, and it is achieved on a time scale of
Dt=t2−t1=8310−4 corresponding to 12.7 ms, with the pa-
rameter values used heref24g. This is much shorter than the
time scale required in spontaneous dissociationf13g to reach
the same total number of atoms. At the same time, the degree
of squeezing is still rather high.

Thus, the disruptive effect of molecule losses due to in-
elastic collisions can be reduced in the present scheme. The
reason for the shorter time scales required here is that the
process of dissociation in the presence of a “seed” atomic
BEC begins in the stimulated regime, with exponentially
growing output. In the case of spontaneous dissociation, on
the other hand, the initial dynamics is in the spontaneous
regime and the system spends a relatively long time here
before the bosonic stimulation into the phase-matched modes
becomes dominant.

To summarize, we have analyzed the process of stimu-
lated dissociation of a condensate of molecular dimers in the
presence of a small incoming atomic BEC. This results in
parametric amplification of the input BEC together with gen-
eration of its phase-conjugate replica, propagating in the op-
posite direction. The two output beams are strongly corre-
lated in the particle number and have squeezed number-
difference fluctuations. The squeezing with a mesoscopic
total number of atoms can be achieved on much shorter time
scales than in the case of spontaneous dissociation. This
makes the present scheme more feasible for practical imple-
mentation, using short-lived molecular condensates. In addi-
tion, the scheme provides a range of opportunities for coher-
ent quantum control of ultracold quantum gases, including
applications of nonlinear and quantum atom optics.
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