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Parametric oscillation in four-wave
mixing with nondegenerate pumping

G Yu Kryuchkyan, K G Petrosyanf, K V Kheruntsyan

Abstract. A theoretical investigation is made of parametric
generation of light by four-wave mixing in an optical cavity
with two pump fields of different frequencies. Mixing con-
figurations resulting in the excitation of one and three cavity
modes are considered taking into account the effects of
phase modulation and of depletion of the pump fields. An
analysis is made of stable steady-state oscillation regimes.
Calculations are reported of the intensities of the generated
radiation modes at the exit from the cavity above the thresh-
old. An analysis is made of the conditions for the appearance
of optical bistability at nonzero values of the cavity detuning.

1. Introduction

Four-wave mixing (FWM) under the influence of a pump
with one carrier frequency is one of the main nonlinear
optical processes. Such mixing is governed by the third-
order nonlinear susceptibility #'3' in a semiclassical theory
and it generally describes the conversion of two pump
photons into two other photons. Parametric oscillation
based on FWM in an optical cavity has been observed on
a num-ber of occasions (see, for example, Refs [1 - 3]). Less is
known about FWM under the influence of two pump fields
with different frequencies. The latter process has been inves-
tigated experimentally [4] and oscillation at the frequency
w0 = (aj| + a2)/2, equal to the half-sum of the frequencies
a»! and o>2 °f the two pump fields, has been observed.

The present paper provides a theoretical analysis of the
problem of parametric oscillation based on intracavity
FWM under the action of nondegenerative pumping
(&>! ̂  co2). Two configurations of such a parametric oscilla-
tor will be considered.

In one configuration a nonlinear #'3> medium is inside a
ring cavity where one radiation field mode is excited (Fig. la).
Two pump beams with frequencies ajj and o)2 propagate in
the same direction at a small angle to the cavity axis. Intra-
cavity FWM excites spontaneously a signal mode of
frequency co0 = (a>l + a>2)/2 In this configuration the con-
dition of phase-matching between the wave vectors km

(m = 0, 1,2) of the a>m modes is satisfied approximately
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(kl + k2 ~ 2k0). This configuration is relatively easy to
describe because the pump fields cross the nonlinear
medium only once and can be regarded as undepletable
(Section 2). In the experiments reported by Grandclement
et al. [4] a similar parametric oscillator configuration has
been used with a linear cavity in which two pump fields of
different frequencies propagate in opposite directions.

#

Figure 1. Schematic diagrams illustrating parametric four-wave mixing
under the influence of two pump fields with the frequencies cu, and a>2:
(a) configuration with excitation of one cavity mode at the frequency
to0 = (c«| + OJT)/2; (b) configuration with excitation of three cavity
modes at the frequencies OJJ, toi, and oiQ = ( O ) I + O J 2 ) / 2 .

In another configuration (Fig. lb) the directions of prop-
agation of the two pump beams coincide with the cavity axis.
When the phase-matching conditions are satisfied, three
modes are excited in the cavity: they have the pump field
frequencies a>j and a>2, and the frequency to0 = (w[ + co2)/2
In this configuration the effects of depletion of the pump
fields and of the mutual influence of the modes are impor-
tant (see Section 3).

A theoretical analysis will be made of these two nonlinear
optical configurations and the conditions will be found under
which stable above-threshold generation is possible. The
intensities of the radiation field modes at the exit from the
cavity will be calculated. The results obtained indicate that
FWM parametric oscillation of nondegenerate pumping has
a number of special features. The results obtained for one con-
figuration (Fig. lb) in the special case of zero cavity detuning
have already been reported by us [5]. We shall now consider
the case of nonzero values of the cavity detuning, so as to
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obtain information on real conditions in parametric oscilla-
tion and optical bistability for FWM with nondegenerate
pumping.

2. Single-mode oscillation in the presence of
phase modulation

We shall now consider the FWM configuration shown in
Fig. la in the absence of optical resonances when the non-
linear medium is described phenomenologically by the third-
order nonlinear susceptibility #'3'. In this case we can ignore
wave dispersion and describe the Fourier component of the
nonlinear polarisability at the frequency <u0 of the signal
mode as follows [6]:

•2-̂ 0 + \EQ\ EO

2\El\
2E0 + 2\E2\

2E0) (1)

where Em (m = 0, 1, 2) are the slowly varying complex
amplitudes of the fields with the frequencies a>m. Expres-
sion (1) is derived subject to the phase-matching condition
k\ + k2 w 2k0 and subject to u>i + a>2 = 2co0. The first term
in expression (1) describes the FWM interaction, the second
represents the self-phase-modulation of the signal wave ca0,
and the last two terms correspond to cross-phase-modula-
tion caused by the pump fields.

As pointed out, in this FWM configuration the pump
fields can be regarded as undepletable (E\ and E2 are con-
stant). However, the phase modulation effects will be included.

2.1 Equation for the signal mode in the cavity and its
linearisation
Standard methods readily yield the following equation for the
slowly varying amplitude Eo of the signal wave in the cavity:

(2)

Here, y is the damping constant of the cavity mode a>0;
A = w0 — coc is the cavity detuning; coc is the cavity eigen-
frequency; x = 6mco0x^l/nL is the net nonlinear coupling
constant; / is the length of the nonlinear medium; L is the
cavity length; n is the refractive index.

We shall now analyse steady-state oscillation in the inves-
tigated nonlinear configuration. The steady-state solutions
EQ of Eqn (2) can be found by an analysis of their stability
in the presence of small perturbations &E0(t) = E0(t) — £0°.
An equation linearised in terms of these perturbations is
readily obtained from Eqn (2) and from the corresponding
complex-conjugate equation; the matrix form of the new
equation is

— 5E = -A8E .
At

Here, 5£ denotes the column vector Sis =
and the matrix A has the following elements

(3)

A1X=A\2 \2
(4)

We can easily see that one of the steady-state solutions of
Eqn (2) is trivial: £o° = 0. It corresponds to oscillation at the
spontaneous noise level. The stability of the steady-state solu-

tion requires that the real parts of the eigenvalues of the
matrix A of the linearised equation should be positive. The
use of a characteristic equation and of the Routh - Hurwitz
criterion [7] makes it possible to write down the stability con-
dition of the steady-state solution £0° = 0 in the form of the
following inequality

(5)

It follows from this inequality that if (x/y) \EX\ \E2\~ < l,the
steady-state solution £0° = 0 is stable for any value of the
parameter A/y. If {x/7)2\Ei\2\E2\

2 > 1, this solution ceases
to be stable in the range d1-'"1 < A/y < rf(+', where

y
(6)

In the latter case, when the conditions for changes in the
^ 2intensities of the pumps and |£2 |2 are specified, the

inequality (5) defines also the oscillation threshold (which
is discussed below).

Other steady-state solutions with a nonzero amplitude of
the signal wave can be obtained more conveniently by
considering the intensities Im and the phases <pm of the fields
Em = (/m)1-/2exp(i(?)m) (m = 0,1,2). Then, instead of Eqn (2),
we obtain the following equations of motion:

-,1/2 COSl// ,

(7)

(8)

where \ji = <p{ + <p2 - 2cpQ. An analysis of the stability of the
steady-state solutions /0° and $ of Eqns (7) and (8) also
requires linearisation of the equations of motion. This is
done by substituting 70(f) = 70° + 8/0(/), <po(t) = q>Q

Q + 5<po(O
into Eqns (7) and (8). The linearised equations are

dt \ 5<p0

0
X/2 2Z

w h e r e \\i = <px + q>2 - 2<JOO.

2.2 Above-threshold oscillation. Bistability
We shall now consider the conditions for stable above-
threshold oscillation and find the signal mode intensity at
the exit from the cavity. The steady-state solutions of
Eqns (7) and (8) are

(±) __ 2? (A
i± -

1/2

y

They are physically meaningful if

(10)

(11)

(12)

In an analysis of the stability of these solutions we must
turn to the appropriate characteristic equation for the
eigenvalues of the matrix of the linearised system of equa-
tions (9). If the real parts of these eigenvalues are positive,
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the Routh - Hurwitz criterion can be used to show that the
stable steady-state solution / ' + ' satisfies

(13)

This inequality and inequality (12) define together the ranges
of the dimensionless parameters {x/y)h,i a°d A/y in which
stable generation of the field with the frequency w$ is possi-
ble above the threshold. As pointed out earlier, the
oscillation threshold is found from inequality (5).

A more detailed analysis of these problems is given below
for two cases: equal and different intensities of the pump
fields /j and L-

Equal intensities of the pump fields. If I{ = I2 = I, the
threshold intensity 7, defined by inequality (5), is

/ = _LJ —- I ( -\ -
3*

(14)

Above the threshold the signal field intensity at the cavity
exit is

. (15)

The steady-state solution is stable in the following ranges
of the pump intensities:

/— ZJ

X

where

>2 ,

— + - - 3
1/2

(16)

(17)

(18)

When the pump field intensities reach the value / = 7B,
stable above-threshold oscillation disappears and the config-
uration again changes over to oscillation at the spontaneous
noise level.

The dependence of the radiation field intensity, normal-
ised to 4y2/x, at the cavity exit on the dimensionless pump
intensity parameter {x/y)I is shown in Fig. 2. The continu-
ous curves represent stable steady-state oscillation regimes
and the dashed curve represents the unstable steady-state
solution 70 described by expression (10). The curve repre-
senting the above-threshold oscillation regime is calculated
for the range A/y > 2. In this case, it follows from the
inequalities (17) and y/x < I A t n a t the nonlinear configura-
tion under discussion exhibits optical bistability of the out-
put radiation intensity, relative to the pump field intensities.

X r O U t I -

3 -

2 -

1 -

0

Figure 2. Dependence of the ratio z/o u t /472 on / / /y , calculated for
A/y = 5

Different intensities of the pump fields. We shall now con-
sider the situation in which the intensity of one of the pump
fields (for example, 72) is constant and the intensity of the
other (/[) varies (it describes exactly the situation in the
experiments reported by Grandclement et al. [4]). We shall
study the behaviour of the steady-state intensity of the out-
put radiation 70Ut = 2y70

(+) as a function of 7, for fixed
values of 72 and A/y. In this case the threshold intensity I{

is, according to inequality (5):

x L y y ' \ y2

and the corresponding stability regions are defined by the
inequalities

3(*/y)2/22+4 A h/yfli
<h

rjA (x/yfrj
>

Here,

/ , , = ^---ii

, (20)

(21)

. (22)

The behaviour of the output radiation intensity 7ou! as a
function of 7) for fixed values of 72 and A/y is demonstrated
in Fig. 3. In accordance with the formulation of the problem
and with relationships (19)-(22), the bistable behaviour of
the intensity 7ollt is observed in the range y'/x h < h < h.A-
It should be pointed out that this result is in agreement
with the experimental observations of the optical bistability
in a similar FWM system with a linear cavity and counter-
propagating pump beams [4].

j_

Figure 3. Dependence of//o l l t/4v" on xh/y- calculated for xh/y
and A/y = 5.

We shall conclude this section with the following com-
ment. If expression (1) for the nonlinear polarisability is
simplified by ignoring the term corresponding to the self-
phase-modulation effect, the equations of motion for the sig-
nal mode become analogous to the equations describing the
processes of parametric frequency division of light in a cavity
and of degenerate FWM under the influence of monochro-
matic undepletable pumping (see, for example, Refs [8, 9],
as well as Refs [10, 11], where these equations and their
analysis are given in the form best suited for comparison), t

t in this case, inclusion of the effect of cross-phase-modulation in FWM
corresponds to the replacement of the resonator detuning A with the
effective detuning Atf! = A - x(\E, |2 + |£2 |2).
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The stable steady-state solution corresponding to these proc-
esses describes the behaviour below the oscillation threshold.

Our analysis of the investigated nonlinear system takes
into account the influence of self-phase-modulation of the
signal mode when the FWM interaction occurs effectively
in a x'3' medium. This analysis yields the conditions for sta-
ble generation of the signal mode below and above the
oscillation threshold. Inclusion of the phase modulation
effects and an analysis of steady-state oscillation in another
FWM configuration, with monochromatic pumping and
two nondegenerate output modes, have been reported by
Brambilla et al. [12].

3. Multimode oscillation with depletion of the
pump fields

We shall now consider parametric oscillation in the other
FWM configuration (Fig. lb) when both the signal mode
and the pump modes propagate in the cavity. In this case
we must take account of the pump depletion and of the
mutual influence of all the modes. A quantum-mechanical
analysis of the process within the framework of the stochas-
tic equations of motion of intracavity mode amplitudes is
given in Ref. [5] in connection with the generation of squeezed
states of light. However, the results of Ref. [5] apply to the
specific case of zero detuning Am = com — cocm = 0
(m = 0, 1, 2) of the frequencies of the pump modes ml2

and of the signal mode COQ from the cavity eigenfrequencies
a)cm. In this case we shall identify the real conditions for
FWM parametric oscillation, including the influence of the
cavity detuning on stable oscillation and on bistability, by
considering the more general case when Am =£ 0.

3.1 Equations of motion for the cavity modes
This problem can be solved by using just the semiclassical
equations for slowly varying complex amplitudes of the
cavity fields Em (m = 0, 1, 2), which are (see also Ref. [5]):

d£o - T7
— = -y0EQ

dt
(Z'/lJ (23)

dt

Here, ym = ym — iAm, ym are the damping constants of the
com modes in the cavity; Am represents the values of the cavity
detuning which, because the phase-matching condition is
obeyed rigorously, are related by 2A0 — Ax+ A2; Eln

2 are
the input amplitudes of the pump fields at the entry to the
cavity. In the case under consideration, when the coupling in
and out occur at one of the ring-cavity mirrors, the relation-
ships between the amplitudes of the input and output (E%ut)
cavity fields and the intracavity amplitudes are given by

r-out _ (* \ 1/2 p. r-in c-out _ f> \ 1/2 p.
E\,2 - UA.2J t-\.2~h\2< Ô ^ (WO) h0
These relationships take into account that the signal

mode OJ0 is generated spontaneously. Moreover, the system
of equations (23), describing the FWM interaction, ignores
the phase modulation effects.

Our aim is to find the steady-state solution E°m of the sys-
tem of equations (23) and to study their stability. Once again,
we need linearised equations for small deviations 8£m(/) =
Em(t) — E%, from the steady-state solutions. These equations

follow from the system of equations (23) and from the corre-
sponding conjugate equations. In the matrix form, the new
equations can be written in the same form as Eqn (3), where
5£ = (5£o, 87s0*, S£b 5E[, §E2, §E2) denotes a column
vector and the matrix is

-z£,°£? -W£0°)'E?

7o 0

0 7,

y(E$YE? o

0 0

•/XE2YEJ> h.iE$y2

3.2 Oscillation regimes
We shall consider the case of equal damping constants
y{ = y2 = y, equal values of the resonator detuning
Ai = A2 = A (y{ = y2 = y), and equal amplitudes of the
pump fields at the entry to the resonator |£in | = \E2

m\ =
Em. Omitting details of the calculations, we shall give
directly the steady-state intensities /^ and phases ij/®tv corre-
sponding to the amplitudes E% = (/^))'^2exP(i|/'m) of the
fields with the frequencies com.

It is easy to show that the threshold intensity of the input
pump fields at the entry to the cavity / i n = |£"ln|" is

7™ =
|y|2l7o

2yx
(25)

Below the oscillation threshold (7ln < 7t
ln) the stable steady-

state solution is

TO A r° - T° -
l0 = U, 1, - h -

2yP"

+ arccos ( ^~

Vlvl

(26)

(27)

where <j>l -, are the phases of the pump fields E™-> =

Above the threshold (7m > /,'") as well as for zero cavity
detuning [5] there are two oscillation regimes. In one of them,
the steady-state intensities of the pump modes 7[° and 7?° are
equal and the expressions for 7,J) and ip°m (m = 0, 1,2) are

T" _ rU _
' 1 — h. —

7 v

\%\ (28)

(29)

l/'o

- C ± [fl - C —

k= 1, 2 ,

To

(30)

(31)

The notation used above is

c =

\i\\io\
and it should be noted that |c| < 1.

Expressions (29) and (30) [with the minus sign in front of
(^ + f" — 1) ] corresponds to the unstable steady-state
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solution. The solution with the plus sign is stable in the fol-
lowing ranges of the input intensity 7 ln:

/,'" < / l n <2 / t
i n ( l +c), c > 0 ,

7 t
i n ( l - c 2 ) < 7 i n < 2 7 t

i n ( l + c ) , c < 0 .

(32)

(33)

In the other regime, which occurs at higher input inten-
sities of the pump fields at the entry to the cavity, the
intensities I\ and 72° are different and the steady-state solu-
tions are

(34)

- 2 < f - 4]
(35)

or

(36)

The steady-state phases are then

\j/°l2 — (j)\ .2 + arccos—-—-—

h)

(37)

(38)

An analysis shows that these solutions are stable in the
range

7 ln >27 t
i n( l+<:•) . (39)

3.3 Bistability in the presence of two above-threshold
oscillation regimes
We shall now give the results of calculations of the output
intensities I°ut = \E0Ul\2 of three interacting modes at the
cavity exit. It follows from expressions (24), (26)-(29), and
(34)-(36) that below the oscillation threshold (7 in < 7t

in), we
have

70
out = 0, 7,°2

ul = 7 l n . (40)

Above the threshold in the ranges 7t
m < 7 i n < 27t

in(l + c) if
c> 0 and 7t

in(l - c2) < 7 in < 27t
in(l + c) if c < 0, we find

that

4v,out _ 4yp,out _
In —

rOUt rOUt IV

1\ = 12 = 2/7

4y0y

Ivol lvl

Finally, in the range 7 i n > 27t
in(l + c)

In°m = —
X (42)

7 Vo

2r/
4y0v

Vollv

It should be pointed out that the pump mode intensities
7°ut and 72

out at the cavity exit are equal throughout the

above-threshold range, although inside the cavity, when
7ln > 2/,in(l +c), the intensities 1° and 72° are different
[see expressions (35) and (36)]. This circumstance is related,
in accordance with expression (24), to the interference of
the amplitudes £[ 7 and E^.

The dependences of the intensity of the signal mode /O
out

on the ratio \i = 7m/7t
ln are plotted in Fig. 4, where the con-

tinuous curves represent the stable steady-state solutions and
the dashed curves represent the unstable solution described
by expression (29). We can easily note that if the parameter
c is negative, i.e. if AAQ > yy0, the intensity /0"

ut demonstrates
bistability behaviour. The existence of two above-threshold
oscillation regimes in the case of bistability of the investi-
gated nonlinear system manifests itself as follows. In the
range of the parameter —1 <c< -0.5 a transition can
take place from oscillation below the threshold directly to
the second above-threshold regime. In this case two stable
states are possible in the range 27t

m(l + c) < 7m < 7,'n with
constant intensities 7()

0Ut. independent of the pump intensities.
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Figure 4. Dependences of the intensities of the signal mode '/J»m/^','o\"i'\
on the ratio \i = /'"//,'", calculated for c = 0.5 (a). -0.4 (b), and
-0.8 (c).
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